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Abstract: In the smart manufacturing sector, analyzing time series data is essential for monitoring
plants and machinery to prevent costly failures or shutdowns. In order to gain new insights and
make better control decisions, new methods are needed for extracting information and interpreting
sensor data from hundreds of systems. In this paper, we present an approach for visualizing and
interpreting sensor data from TRIMET Aluminium SE Essen (TAE) using time series meta-features
and principal component analysis (PCA). We describe our general approach of generating multiple
two-dimensional feature spaces to identify salient and implausible sensor data. Using a set of 20 time
series meta-features, we applied our approach to sensor data from TAE which were generated by
thermocouples. Each step of the approach was integrated into a dashboard to ensure a user-friendly
and approachable interaction in finding salient and implausible sensor data.

Keywords: aluminum electrolysis; meta-features; principal component analysis; sensor data; time series

1. Introduction

Due to advances in digitalization and the growing market in the smart manufactur-
ing sector, most plants and machinery are now equipped with new sensor technology.
The possible use cases of sensors can vary greatly: in the aluminum-production industry,
sensors are used to monitor the state of reduction cells [1] or to measure individual anode
currents [2] while in the food-refrigeration industry sensor data are analyzed to predict
over-temperature disturbances [3]. To gain new insights about a system, the sensor data
have to be preprocessed, analyzed and visualized in a compact way. However, manually
analyzing the data from each sensor is a time consuming process. To tackle this problem
new methods have to be developed that are capable of quickly extracting information and
interpreting the sensor data from hundreds of systems.

Calculating certain features is a promising solution for quantifying the characteristics
of a time series [4] which reduces the amount of data to a specific number of meta-features
and can be understood as a dimensionality reduction technique [5]. According to [4],
a representation of time series and similarity metric can be used in different fields, i.e., query
by content, anomaly detection, motif discovery, clustering and classification. Furthermore,
calculating meta-features is an essential part in the field of meta-learning to improve
learning systems by incorporating already collected knowledge [6].

Meta-features should describe the “global picture” of a time series [5]. Specific time
series meta-features, such as the trend (or trend-cycle) and seasonal strength, can be
computed just like the mean or median. Examples of these meta-features can be seen in
Figure 1, which shows different time series from the Makridakis Competitions, i.e., M1-
and M3-Competition [7]. Strength values close to 1 indicate a strong trend or seasonal
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component in the corresponding time series. A strength value close to 0 indicates a weak
trend or seasonal component in the corresponding time series.

Trend strength: 0.98
Seasonal strength: 0.04

Trend strength: 1.0
Seasonal strength: 0.04

Trend strength: 0.98
Seasonal strength: 0.23

Trend strength: 1.0
Seasonal strength: 0.02

Trend strength: 0.07
Seasonal strength: 0.96

Trend strength: 0.06
Seasonal strength: 0.96

Trend strength: 0.06
Seasonal strength: 0.97

Trend strength: 0.2
Seasonal strength: 0.96

Trend strength: 1.0
Seasonal strength: 0.99

Trend strength: 0.95
Seasonal strength: 0.97

Trend strength: 0.95
Seasonal strength: 0.97

Trend strength: 1.0
Seasonal strength: 0.98

Figure 1. Several raw time series from the M1- and M3-Competition [7], which have different
characteristics regarding the trend and seasonal strength. Values were rounded to two decimal places.
Trend strength and seasonal strength were computed using feasts 0.1.6 [8]. Further examples can be
found in [9].

Beside the trend and seasonal strength, more time series meta-features, e.g., the
spectral entropy, seasonal period or autocorrelation coefficients, can be computed. Time
series meta-features should be selected according to the type of the time series and the
problem in question [9,10]. Expert knowledge about a specific domain, in our case the
aluminum electrolysis, can help to find suitable meta-features that describe the different
characteristics of time series.

The core business of TRIMET Aluminium SE is the development and production of
aluminum products. Figure 2 shows one of the three pot rooms containing 120 reductions
in an end-to-end configuration at the Essen site in Germany. In total, TRIMET Aluminium
SE Essen (TAE) operates 360 reduction cells that produce liquid aluminum. The industrial
production of aluminum is based on the Hall–Héroult process, in which alumina (Al2O3) is
dissolved in liquid cryolite (Na3AlF6) with an excess of aluminum fluoride (AlF3) [11,12].
The Hall–Héroult process is performed with an almost constant energy supply to ensure
stable aluminum production [12,13].

Due to the energy transition, the energy supply in Germany is increasingly reliant on
renewable energy sources, which means that the energy supply for the industrial aluminum
production is no longer constant but variable [12]. In order to ensure a stable operation of
the reduction cells with a variable energy supply, TAE has started to equip the reduction
cells with magnetic field compensation and shell heat exchangers [14]. The magnetic field
compensation is used to prevent bulging of the liquid aluminum at high current levels,
while the shell heat exchangers are designed to control the heat loss from the side walls
of the cells, maintaining a protective side ledge. Additional thermocouples are mounted
on some cells to monitor the heat balance. Due to the corrosive environment, loose or
faulty thermocouples are unavoidable and can result in incorrect heat balance calculations.
Abnormal thermocouples are identified by manual evaluation of the recorded temperature
signals (time series). However since hundreds of temperature signals have to be checked,
this procedure is time consuming.
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Figure 2. One of the three pot rooms operated at the Essen site in Germany by TRIMET Aluminium
SE. One pot room contains 120 reduction cells in an end-to-end configuration.

In order to reduce the time required for the inspection of salient temperature signals,
we present an approach to visualize and analyze a sensor data set from TAE using time
series meta-features. We used the work of Hyndman et al. [15] as a basis and extended their
approach in three ways: First, we transferred the approach to the aluminum electrolysis
process to analyze TAE sensor data generated by thermocouples. Second, we generated
two-dimensional feature spaces in multiple iterations to identify salient and implausible
sensor data. Third, we picked up the idea of a dashboard, which enables a user to visualize
and analyze the characteristics of the sensor data in a simple and approachable way.

Section 2 summarizes the use of time series meta-features in different settings, e.g., anomaly
detection or meta-learning. The approach is presented in Section 3 and then applied to real
sensor data from TAE in Section 4. Section 5 describes the main features of the dashboard.
Section 6 gives a conclusion about the future work using time series meta-features.

2. Literature Overview

We reviewed some of the time series meta-features literature and divided it into
six domains, i.e., regression, classification, clustering, anomaly detection, visualization,
and meta-learning, which are listed in Table 1. Grabowski et al. [16] calculated meta-
features, i.e., the mean for numeric data and the sum for binary data, of several process
variables in a rolling window to predict the bath temperature of reduction cells using a
random forest. Kremser et al. [17] used several time series meta-features from [18,19] in a
rolling window to predict anode effects in reduction cells using logistic regression, linear
support vector machine, random forest and eXtreme Gradient Boosting.

Nanopoulos et al. [20] used a multilayer perceptron (MLP) and eight time series meta-
features to classify patterns in control charts. The authors compared the performance of
the MLP with another MLP that is solely based on the values of the time series. In further
experiments, the performance of both MLPs was analyzed with noise corrupted time
series and time series at varying length. Horvath et al. [21] used hierarchical clustering
and seven parameters (meta-features) to divide reduction cells with similar behavior into
control groups.

Hyndman et al. [15] computed 18 meta-features from time series representing the
performance of servers at the internet company Yahoo. With the help of a principal
component analysis (PCA), α-hulls and highest density regions, the authors used the
calculated meta-features to identify entire time series that differed from other time series in



Appl. Sci. 2023, 13, 7065 4 of 11

the data set. In [22], the extreme value theory was used to identify anomalous streaming
time series data. The presented framework is based on the calculation of 14 time series
meta-features, which are used in an offline and an online phase. The offline phase is
used to train a model on the typical behavior of the system. Afterward, the model was
deployed in the online phase to identify anomalous time series using a rolling window.
Furthermore, the authors present an algorithm that updates the model if a significant
change in the distribution of the typical behavior of the system is detected. In a practical
example, the authors used the framework to identify anomalous sensor data.

Kang et al. [23] computed six time series meta-features to visualize and analyze
the M3-Competition data set [24]. The authors performed a PCA using the calculated
meta-features, then visualized the first and second principal component (PC) to obtain an
overview of the time series characteristics of the M3-Competition data set. Furthermore,
the two-dimensional feature space and a genetic algorithm were used to generate new time
series that extend the original data set. The authors then compared the feature space with
the performance of selected forecasting methods. Talagala et al. present in [9] the FFORMS
framework which includes the training of a classifier with time series meta-features to
predict an algorithm that might be appropriate in forecasting a time series.

The authors in [25] applied the meta-learning approach to automate the process of
selecting forecasting models for individual time series using meta-features. In their first
case study decision trees with 10 meta-features calculated from stationary time series
were trained to choose between two forecasting models. The second case study considers
NOEMON [26] and five meta-features, which were calculated for each time series in the
yearly M3-Competition data set [24], to rank forecasting models, i.e., random walk, Holt’s
linear exponential smoothing, and auto-regressive model.

The presented literature shows that time series meta-feature are widely used in differ-
ent domains. Our approach presented in this paper contributes to the field of visualization
and anomaly detection. We classify our paper in the category of visualization, since we
show two-dimensional representations of meta-feature instances in Section 4 and describe
a dashboard that simplifies working with time series meta-features in Section 5. It dif-
ferentiates itself from the presented literature by applying the combination of time series
meta-features and PCA to the aluminum electrolysis process to identify data outliers
indicating faulty thermocouples.

Table 1. Literature addressing the calculation of time series meta-features in six different domains.

Domain Literature

Regression [16]

Classification [17,20]

Clustering [21]

Anomaly
detection [15,22]

Visualization [23]

Meta-learning [9,25]

3. Approach

The iterative approach visualized in Figure 3 is not specifically tailored to the alu-
minum electrolysis process and can be applied to different fields of the smart manufacturing
sector. With our approach, we wanted to assess the suitability of PCA and time series
meta-features in the aluminum industry. This gives us a baseline that we can use for a
comparison with future methods. At first, several time series meta-features are calculated
for each time series in a data set and are saved as a meta-feature data set. Although it is
presented in the context of meta-learning, the guideline in [25] is also helpful to find appro-
priate meta-features. The guideline points out that a manageable amount of meta-features



Appl. Sci. 2023, 13, 7065 5 of 11

already used in the literature should be considered in the analysis. Additionally the type of
each time series in the data set should be incorporated in the selection of meta-features.

  

Identified implausible 
time series?

Yes
End

No

Start

Calculate a set of 
time series meta-features

Create a 2-dimensional feature 
space using the first and second 

principal component

Remove corresponding 
meta-feature instances

Conduct
principal component analysis

Figure 3. The flow chart shows each step of the approach. A set of time series meta-features is
calculated, which should describe the characteristics of the time series data set. Using the calculated
meta-features, a principal component analysis (PCA) is conducted to create a two-dimensional feature
space, which is used to identify implausible time series. The corresponding instances (rows) are
removed from the meta-feature data set and further iterations are performed until all implausible
time series have been identified.

In the next step, a PCA is conducted using the z-transformed meta-features. PCA has
already been successfully applied in [15,23] to identify data patterns by projecting time
series meta-features into a lower feature space. Therefore, we decided to apply PCA to the
aluminum electrolysis process. Afterward, the first two principal components are used
to generate a two-dimensional feature space that visualizes the characteristics of the time
series data set. We chose a two-dimensional representation because it is easier to analyze
for salient time series than three- or four-dimensional feature spaces. Higher dimensions
lead to increased complexity, for which suitable representations should be reviewed. Each
point in the two-dimensional feature space represents a time series. The feature space
helps to find time series with abnormal characteristics, e.g., implausible ranges of values,
compromising the feature space. Hence, the corresponding instances (rows) should be
removed from the meta-feature data set.

It is not necessary to identify all abnormal time series and to remove the corresponding
meta-feature instances from the data set in the first iteration because further iterations are
conducted (see Figure 3). The iteration process can be stopped if one is convinced that all
compromising meta-feature instances have been removed from the data set. This constitutes
a soft breaking parameter: the more compromising instances are removed, the more
accurate the resulting insights are to be expected. Conversely, this means: Stopping too
early only influences the details of the insights but not the overall results. The identification
of abnormal time series in the two-dimensional plot depends on the human operator using
our approach. We are aware that this step is not optimal and should be addressed in
further research.

Generating multiple feature spaces has several advantages: Implausible time series
indicate detached or faulty sensors, which can be quickly identified by analyzing the feature
spaces. This can help process engineers save time because they will not have to check
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hundreds of time series to find salient sensors manually. Moreover, the feature space can
be used to compare the different characteristics of the sensor data, which can be useful to
monitor the behavior of several systems.

PCA and extended versions of it are already used in the aluminum electrolysis to
monitor the conditions of reduction cells [27–30]. By considering several time series
meta-features in the PCA, the monitoring of reduction cells could be further enhanced.
For example, TAE has started to modulate the power input of reduction cells in their first
pot room due to the increasing market of renewable energy resulting in a variation of
electrical energy supply [12,14]. By modulating the power input, the behavior of each cell
could be visualized and monitored with the help of time series meta-features and feature
spaces. In the following Section 4, we exclusively focus on the first part of finding salient
sensor data from TAE that indicate detached or faulty sensors. The monitoring of the cells
behavior using meta-features will be the subject of future research.

4. Experiment and Results

For the experiment, we used Python 3.9.12, R 4.0.5, scikit-learn 0.24.1, pandas 1.2.1,
Matplotlib 3.3.4, and feasts 0.1.6. We applied the presented approach to real sensor data
from TAE to find salient sensor data that indicate detached or faulty sensors. The original
sensor data set under analysis contained 748 time series between 8 October 2020 07:00 and
9 October 2020 07:00, generated by 22 thermocouples mounted to 34 reduction cells in the
first pot room. All 120 cells in the first pot room are fitted with shell heat exchangers to
maintain the ledge of each cell during current modulation [14]. The mounting positions of
the thermocouples were not considered in the analysis, as we were only interested in finding
salient sensor data. The data have been resampled with a resolution of 1 min to create
evenly spaced time series. For the calculation of time series meta-features, the temperature
data were converted to Kelvin. We conducted three iterations, following each step in
Figure 3. To create a meta-feature data set, we calculated several time series meta-features
taken from [8,15,22,31], which are listed in Table 2.

Table 2. 20 time series meta-features were calculated for the experiment.

ACF1 Burst

Curvature Linearity

Longest flat spot Max

Mean Min

Moment Ratio high low mean

Ratio mean iqmean Shift level index

Shift level max Shift var index

Shift var max Spectral entropy

Spikiness Var tiled mean

Var tiled var Variance

A total of 432 time series had at least one meta-feature for which no value could be
calculated. A visual inspection showed a constant value for each of the time series, which
resulted in an exclusion of the corresponding meta-feature instances in further analyses.
In the next step, a PCA was conducted using the z-transformed meta-feature instances
from 316 time series. The first and second principal component were used to generate a
two-dimensional feature space, which is visualized in Figure 4. Each point represents a
time series, some of which are plotted as a black curve next to their corresponding point in
the figure. Several points, e.g., TCWT2-1068, TCWT5-1118, TCWT3-1118, TCWT6-1118 and
TCWT2-1118, diverge from the left-hand side cluster and therefore show an implausible
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range of temperature values. The corresponding meta-feature instances were removed
from the meta-feature data set.
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Figure 4. The visualization of the two-dimensional feature space created in the first iteration. Each
point represents a time series. Some time series, e.g., TCWT2-1068, TCWT5-1118, TCWT3-1118,
TCWT6-1118 and TCWT2-1118, are further away from the left-hand side cluster and exhibit an
implausible range of values. The corresponding meta-feature instances were not considered in the
next iteration.

After removing the meta-features in the first iteration, an additional PCA was con-
ducted. The resulting first two principal components are visualized in Figure 5. The time
series TCWT5-1012, TCWT4-1033 and TCWT6-1116 showed implausible characteristics.
The corresponding meta-feature instances were not considered in the third iteration.
The first two principal components from the third iteration are shown in Figure 6. Some
time series displayed in Figure 6 exhibit a curved progress, some of which can be explained
by an influence of the shell heat exchangers airflow, due to an increase in current that
took place over four hours of the analysis period. Other time series, e.g., TCWT3-1061,
TCWT3-1001, TCWT6-1012, and TCWT2-1115, are salient in their characteristics and should
be further analyzed. In summary, Figure 6 gives an overview about the different time
series characteristics of the sensor data set. Due to the generation of a two-dimensional
feature space in multiple iterations, salient and implausible time series could be identified.
In Section 5, a dashboard is introduced which focuses on a user-friendly handling of the in-
dividual steps in Figure 3. To reproduce our experimental results, the source code and data
set were published on Github at: https://github.com/ngrabows/ts-information-extraction
(accessed on 18 April 2023).

https://github.com/ngrabows/ts-information-extraction
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Figure 5. The visualization of the two-dimensional feature space created in the second iteration.
The time series TCWT5-1012, TCWT4-1033 and TCWT6-1116 exhibit implausible characteristics.
The corresponding meta-feature instances were not considered in the final iteration.
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Figure 6. The visualization of the two-dimensional feature space created in the final iteration
gives an overview about the characteristics of the sensor data set. Some time series are salient,
e.g., TCWT3-1061, TCWT3-1001, TCWT6-1012, and TCWT2-1115, which should be further analyzed
and monitored.

5. Dashboard

Picking up the idea from [15], we conceptualized and developed a dashboard to
interact with the steps in Figure 3 in a user-friendly way without having to run actual
code. The dashboard was developed with Dash [32] and is connected to a database that
is hosted at the Institute for Automation/Computer Science, University of Wuppertal.
It receives the sensor data for a specific period one wants to analyze, such as a current
modulation experiment. As shown in Figure 7, the user can choose between several time
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series meta-features, which can be selected and deselected in a multi-value drop-down
menu. This menu can be helpful to check different combinations of time series meta-
features quickly. Moving the cursor over a point on the two-dimensional feature space
triggers a popup with additional information about the corresponding time series while
the progress of the time series is also plotted in an additional figure below the feature
space. Clicking on a point on the feature space adds it to an additional checklist that
can be used for ignoring corresponding meta-feature instances in further iterations (see
Figure 3). Accidentally added points can be reconsidered by removing the corresponding
check. Furthermore zooming in and out on the feature space helps analyzing the sensor
data regarding their characteristics.

Figure 7. A screenshot of the dashboard portraying the feature space that is also displayed in Figure 4.
The time series TCRL5-1026, which exhibits an implausible range of values, is plotted below the
feature space. Several time series meta-feature can be selected and deselected using the multi-value
drop-down menu. The checklist on the left side is used to exclude sensor data in further iterations.

6. Conclusions

In this paper we present an approach based on the work of Hyndman et al. [15]
using time series meta-features in conjunction with a PCA to extract and visualize the
characteristics of a sensor data set from TAE in multiple two-dimensional feature spaces.
The first part of the paper provides an overview about the beneficial use of time series meta-
features in different settings, i.e., regression, classification, clustering, anomaly detection,
visualization and meta-learning. We introduce a flow chart that generates multiple two-
dimensional feature spaces to find salient sensor data. The feature spaces can be used to
detect detached or faulty sensors easily. Furthermore, we present a dashboard to interact
with the steps in Figure 3. The dashboard can enables employees at TAE to find sensor data
outliers, which makes our research applicable in practice.

The work described in this paper opens up the potential for the following extensions.
Currently the identification of implausible time series is based on assessment, which
could be improved with the help of additional methods, e.g., α-hulls or highest density
regions [15]. Another idea is to enhance the manual selection of meta-features by using an
algorithm to recommend several time series meta-features for an individual data set [5].
For further research, we plan to investigate strategies that use time series meta-features to
enhance the monitoring of reduction cells.

In Section 3 we state that our approach can be applied to different fields of the smart
manufacturing sector. However, we cannot guarantee that the results will always be of
practical use. Further research should be conducted to validate the performance of our
approach on other data sets, including the TAE data. The choice of suitable time series
meta-features plays an essential role and should be performed with the help of expert
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knowledge from the relevant field in order to obtain meaningful and interpretable insights
into the sensor data. So, a different choice of time series meta-features may need to be used
if our approach is transferred to another sector of the smart manufacturing. Furthermore,
a survey should be conducted with TAE employees to verify the usability of our developed
dashboard. In summary, the presented work is an essential step for the smart manufacturing
sector. The approach enables process engineers at TAE to extract and visualize information
from reduction cells in order to detect salient sensor data.
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