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Abstract: This paper develops an algorithm for solving the generalized Nash equilibrium problem
(GNEP) in non-cooperative games. The problem involves a set of players, each with a cost function
that depends on their own decision as well as the decisions of other players. The goal is to find
a decision vector that minimizes the cost for each player. Unlike most of the existing algorithms
for GNEP, which require full information exchange among all players, this paper considers a more
realistic scenario where players can only communicate with a subset of players through a connectivity
graph. The proposed algorithm enables each player to estimate the decisions of other players and
update their own and others’ estimates through local communication with their neighbors. By
introducing a network Lagrangian function and applying the Douglas-Rachford splitting method
(DR), the GNEP is reformulated as a zero-finding problem. It is shown that the DR method can find
the generalized Nash equilibrium (GNE) of the original problem under some mild conditions.

Keywords: generalized Nash equilibrium (GNE); Douglas-Rachford; global decision information;
partial decision information

1. Introduction

In recent years, the generalized Nash equilibrium (GNE) [1,2], has been increasingly
applied to solve practical problems. Examples include electricity market scheduling [3],
peer-to-peer electricity market analysis [4] and energy trading in combined heat and power
market [5]. In a noncooperative game, there are both shared and unshared constraints.
These constraints cause players’ private costs and feasible decision sets to interact with
each other. In such a situation, it is necessary to establish rules for the players. The players
make decisions by exchanging information according to the rules. A Nash equilibrium can
be found as long as the rules are appropriate.

Algorithms for solving Nash equilibrium problems can be classified as centralized
optimization algorithms and distributed optimization algorithms based on the way they
solve optimization problems. In a centralized optimization algorithm, the entire problem is
solved by a single entity with access to all the necessary information. In contrast, distributed
optimization algorithms solve the problem by decomposing it into smaller sub-problems
that are cooperatively solved by multiple players. This paper mainly studies distributed
optimization algorithms. The information setting of distributed optimization algorithms is
also divided into two types. The first type requires each player to publicly disclose their
decision information. Another type only requires players to disclose information to their
neighbors. In this paper, these rules are referred to as “global information setting” and
“partial information setting”, respectively.

Since the 1950s, research on GNEP has gradually become a hot topic [6–9]. For the
solving of Nash equilibrium problems, many distributed algorithms have been studied in
recent years, such as an algorithm based on the forward-backward operator partitioning
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method [10], a triangular preconditioned proto-dual algorithm [11] and an algorithm
fully adapted to monotone variational inequalities [12]. In [13], Lacra Pavela proposes
a distributed primal-dual algorithm for the computation of generalized Nash equilibria
(GNE) in noncooperative games in networked systems. The algorithm handles games
with shared affine coupling constraints via operator splitting methods. In contrast, the
Algorithm 1 proposed in this paper has a higher convergence speed. [14] reformulates
the GNE problem as a variational inequality problem and solves it through the doubly
augmented operator splitting method (DAOS). This method can handle nonsmooth and
nonconvex objective functions and constraints. In contrast, the Algorithm 1 proposed
in this paper solves the optimization problem by using unconstrained optimization and
linear mapping, which has higher computational efficiency. Moreover, some studies have
combined the ideas of machine learning to solve optimization problems. By combining
extremum-seeking control (ESC) with learning algorithms, Feng Xiao, Xin Cai and Bo Wei
proposed a GNE-seeking algorithm in [15]. This algorithm can be executed in a partial
information setting and does not require knowledge of the explicit expression of the cost
function. In most of the current research, only algorithms under the local information
setting are studied. This paper discusses two forms of algorithms under two information
settings. It also shows intuitively through experiments that the algorithm under the local
information setting has higher efficiency.

Algorithm 1 GNE seeking under partial-decision

Initialize: For each player i ∈ N , let x[i]i,0 ∈ R
ni , x[i]−i,0 ∈ R

n−ni , zi,0 ∈ Rm and λi,0 ∈ Rm.
for k = 1, 2, ... do

x̆[i]−i,k = x[i]−i,k +
1
2 cαi ∑N

j=1 wij(x[j]−i,k − x[i]−i,k)

x̆i,k = proxαi fi
{xi,k +

1
2 cαi ∑N

j=1 wij(x[j]i,k − xi,k)− 1
2 αi AT

i λi,k)}
z̆i,k = zi,k +

1
2 τi ∑N

j=1 wij(λj,k − λi,k)

λ̆i,k = λi,k − 1
2 γi Aixi,k − 1

2 γi ∑N
j=1 wij(zi,k − zj,k) − γib + γi Ai x̆i,k − γi ∑N

j=1 wij(z̆j,k −
z̆i,k)
x̃i,k = 2x̆i,k − xi,k

x̃[i]−i,k = 2x̆[i]−i,k − x[i]−i,k
z̃i,k = 2z̆i,k − zi,k
λ̃i,k = 2λ̆i,k − λi,k

x[i]−i,k = x̃[i]−i,k +
1
2 cαi ∑N

j=1 wij(x̃[j]−i,k − x̃[i]−i,k)

xi,k = proxαi fi
{xi,k +

1
2 cαi ∑N

j=1 wij(x̃[j]i,k − x̃i,k)− 1
2 αi AT

i λ̃i,k}
zi,k = z̃i,k +

1
2 τi ∑N

j=1 wij(λ̃j,k − λ̃i,k)

λi,k = λi,k − 1
2 γi Ai x̃i,k − 1

2 γi ∑N
j=1 wij(z̃i,k − z̃j,k) − γib + γi Aixi,k + γi ∑N

j=1 wij(zi,k −
zj,k)
xi,k+1 = xi,k + 2rkxi,k − 2rk x̆i,k

x[i]−i,k+1 = xi,k + 2rkx[i]−i,k − 2rk x̆[i]−i,k
zi,k+1 = zi,k + 2rkzi,k − 2rk z̆i,k
λi,k+1 = λi,k + 2rkλi,k − 2rkλ̆i,k

end for
Retuen: The sequence (x[i]i,k, x[i]−i,k)

∞
k=1 will eventually approximate the optimal solution.

The Douglas-Rachford splitting method used in this paper can handle nonsmooth
convex functions and even non-convex functions, in addition to being able to use ran-
dom block coordinate strategies and asynchronous execution to improve efficiency and
robustness. This approach has been widely used to study graph coloring [16], compression
perception [17], and image denoising [18].

The contributions of this paper can be summarized as follows:
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• Two new variants of the Douglas-Rachford algorithm are proposed in this paper,
denoted as Algorithms 1 and 2, which can solve Nash equilibrium problems.

• Two pairs of new splitting operators are introduced for Algorithms 1 and 2, respec-
tively, which can ensure the convergence and efficiency of the algorithms.

• Algorithm 2 is proved in this paper, and it has a linear convergence rate under the
global information setting, while Algorithm 1 has a faster convergence rate under the
local information setting.

• The theoretical results in this paper are verified by numerical experiments and the
advantages of Algorithm 1 are shown by comparison with the existing method.

Algorithm 2 GNE seeking under global-decision
Initialize: For each player i ∈ N , let xi,0 ∈ Rni , zi,0 ∈ Rm and λi,0 ∈ Rm

for k = 1, 2, 3, ... do
x̆i,k = arg minx(

1
2‖x− (xi,k − αi AT

i λi,k)‖2 + αi fi(xi, x−i))

z̆i,k = τi ∑N
j=1 wij(λj,k − λi,k) + z̆i,k

λ̆i,k = λi,k − 1
2 γi Aixi,k − 1

2 γi ∑N
j=1 wij(zi,k − zj,k) − γibi + γi Ai x̆i,k + γi ∑N

j=1 wij(z̆i,k −
z̆j,k)
x̃i,k = 2x̆i,k − xi,k
z̃i,k = 2z̆i,k − zi,k
λ̃i,k = 2λ̆i,k − λi,k
xi,k = proxai gi{x̃i,k − 1

2 αi AT
i λ̃i,k}

zi,k =
1
2 γi ∑N

j=1 wij(λ̃j,k − λ̃i,k) + z̃i,k

λi,k = projRm
≥0
(λ̃i,k − 1

2 γi Ai x̃i,k − 1
2 γi ∑N

j=1 wij(z̃i,k − z̃j,k) + γi Aixi,k + γi ∑N
j=1 wij(zi,k −

zj,k))
xi,k+1 = xi,k + 2rkxi,k − 2rk x̃i,k
zi,k+1 = zi,k + 2rkzi,k − 2rk z̃i,k
λi,k+1 = λi,k + 2rkλi,k − 2rkλ̃i,k

end for
Retuen: The sequence (xi,k)

∞
k=1 will eventually approximate the optimal solution.

In this paper, Section 2 derives the KKT conditions of the variational problem of the
original game using dual analysis method; Section 3 proposes distributed Algorithms 1 and 2
based on DR; Section 4 analyzes the convergence of the two algorithms; Section 5 presents
the simulation results of these two algorithms; and Section 6 summarizes the whole paper
and looks forward to the future.

2. Preliminary Acquaintance
2.1. Graph Theory

The graph G is mainly represented by two sets, namely the set of vertices N and the
set of edges ε, i.e., G = {N , ε}, where N = {1, ..., N} and ε ⊂ N ×N . A player i and a
player j are said to be neighbors of i if they can exchange information, and this relationship
is represented in the connectivity graph as (i, j) ∈ ε. Moreover, the set of neighbors of
player i is N−i = {j|(i, j) ∈ ε}. A path in a graph G is an interleaved sequence of vertices
in N and edges in ε, where the end point of each edge is the start point of the next edge. If
∀i, j ∈ N , (i, j) ∈ ε, then the graph G can be called a connected graph. DefineR as the set
of real numbers then the adjacency matrix of the graph G is W = [wij] ∈ RN×N , whereR
denotes the set of real numbers, and whether the value of wij is greater than zero indicates
whether there exists a path between i and j. Let di = ∑N

j=1 wij, and the weighted degree
matrix of the adjacency matrix W is WD = diag(di)i∈N . Then L = WD−W is the Laplace
matrix of the graph G.
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Suppose G is a connected graph and is undirected, i.e., W = WT; then L has a simple
eigenvalue s1 = 0 and all other eigenvalues are greater than zero. Arrange all eigenvalues in
descending order as: sN >sN−1 >... >s2 >0. Let d∗ = max{d1, ..., dN}, then d∗ ≤ sN ≤ 2d∗ [19].

2.2. Game Model

This subsection studies the noncooperative game model on an undirected connected
graph G. Player i in the set N learns other players’ decisions x−i through paths in the
graph and then controls the local decision xi. Then, the global decision set x is col(x1, ...xN).
Denote ∑N

i=1 Aixi ≤ ∑N
i=1 bi as global coupling constraint, then we get the cost function:

∀i ∈ N ,

arg min
xi∈Rni

Ji(xi, x−i) = fi(xi, x−i) + gi(xi),

s.t. ∑N
i=1 Aixi ≤ ∑N

i=1 bi,
(1)

where i ∈ N , Ai ∈ Rm×ni , bi ∈ Rm, xi ∈ Ωi. Ωi ⊆ Rni is private data of player i, and
x−i = col(xj)j∈N ,j 6=i denotes the decisions of all players except player i, x−i ∈ Rn−ni ,
n = ∑N

i=1 ni.

Assumption 1.
1. The domain of the function dom(gi) = Ωi ⊆ Rni is nonempty, compact and convex.
2. gi is lower semicontinuous on its domain.
3. The function satisfies the convexity inequality on its domain.

Denote

X :=
N

∏
i=1

Ωi ∩ {x|x ∈ Rn,
N

∑
i=1

Aixi − bi ≤ 0}, (2)

which is the set of feasible values of the global decision vector x. The feasible decision set
of agent i is Xi(x−i) := {xi ∈ Ωi|(xi, x−i) ∈ X}.

Assumption 2.
1. Every locally feasible set Xi is a non-empty closed convex set.
2. Globally shared feasible set X is nonempty.
3. For any feasible point, there exists a nonzero vector that is orthogonal to all gradients of the

constraint functions, i.e., (MFCQ) holds.

Let A = [A1, ..., AN ] ∈ Rm×N and b = ∑N
i=1 bi, then the objective function is equal to

∀i ∈ N ,

arg min
xi∈Rni

Ji(xi, x−i) = fi(xi, x−i) + gi(xi),

s.t. Ax ≤ b,
(3)

which consists of two parts, i.e., fi(xi, x−i) and gi(xi), the former representing the local
impact of the global decision set and the latter representing the local cost. A GNE of
game (3) is (4)

∀i ∈ N ,

x∗i ∈ arg min
xi∈Rni

Ji(xi , x∗−i ),

s.t. xi ∈ Xi(x∗−i).
(4)

Assumption 3.
1. When given x−i, Ωi is a non-empty compact convex set and ∀i ∈ N , Ji(xi, x−i) is
2. continuously differentiable at xi.
3. Ji(xi, x−i) is a convex function and X is a nonempty set satisfying Slater-constraint-

qualification.
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2.3. Nash Equilibrium for Variational Problems(V-GNE) and KKT Condition

If the original problem is a convex optimization problem, then v-GNE and GNE are
equivalent. If the original problem is a nonconvex optimization problem, then v-GNE and
GNE may be different, but v-GNE can be used as an approximate solution or a lower bound
for GNE [8].

Define a local Lagrangian function for agent i asLi(xi, x−i, λi) = Ji(xi, x−i) + λT
i (Ax− b).

Let λ = col((λi)i∈N ) ∈ RNm, L = L
⊗

Im ∈ RNm×Nm, where L is the Laplacian matrix
and Im is a unit matrix of order m. In order to solve for v-GNEs, it is necessary to add the
equality constraint Lλ = 0, and the augmented Lagrangian function is Li(xi, x−i, λi, zi) =
Ji(xi, x−i) + λT

i (Ax− b) + ∑N
i=1 ∑N

j=1 zT
i Lijλj, where zi ∈ Rm serves to satisfy the coupling

constraints and coordinate the local multipliers λi to bring them to consensus. Let z =
col(z1, z2, ..., zN) ∈ RNm, there have

Li(xi, x−i, λi, zi) = Ji(xi, x−i) + λT
i (Ax− b) + zT Lλ, i ∈ N . (5)

Suppose (x∗i , x∗−i) is the optimal solution of (5) and it follows from the definition
of the generalized Lagrangian function that (x∗i , x∗−i) is also the variational GNE of the
game (3), then x∗ satisfies Formula (4). Let A = diag(Ai)i∈N , b = col(bi)i∈N , when
λ1 = λ2 = ... = λN = λ∗, the KKT condition for a v-GNE is

0 ∈ F(x) +G(x) + ATλ,
0 = Lλ,
0 ∈ b + Lλ + NRNm

≥0
(λ)− Ax− Lz,

(6)

where F(x) = col(∇xi fi(xi, x−i))i∈N , G(x) = col(∂xi gi(xi))i∈N .

3. Distributed Algorithm
3.1. Global Information Setting

In this subsection, the derivation of Algorithm 2 is given based on the assumption
that the global decision set of the game model is public. Next, we need to use the KKT
condition obtained in the previous section to derive two operators. Using these two
operators and a positive definite matrix, we can apply the DR operator splitting method to
obtain Algorithm 2. Equation (10) is the standard form of the DR operator splitting method.

Let v = [xT , zT , λT ]T and define A, B as

A : v 7−→

 F(x)
0
b

+
1
2

 0 0 AT

0 0 L
−A −L 0

v, (7)

B : v 7−→

 G(x)
0

NRNm
≥0

(λ)

+
1
2

 0 0 AT

0 0 L
−A −L 0

v, (8)

then the KKT condition (6) is equal to 0 ∈ A(v) +B(v). Denote Φ as

Φ =
1
2

 0 0 −AT

0 0 −L
−A −L 0

+

 α−1 0 0
0 τ−1 0
0 0 γ−1

, (9)

where α = diag(αi I), τ = diag(τi I), γ = diag(γi I) are fixed step in the iteration, and rk
meets ∑k∈N rk(1− rk) = ∞, (0 < rk < 1). Then we can design the Algorithm 2:
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v̆ = (Id + Φ−1A)−1(v̆k),

ṽk = 2v̆− vk,

vk = (Id + Φ−1B)−1(v̆k),

vk+1 = vk + 2rk(vk − v̆).

(10)

3.2. Partial Information Setting

In this subsection, players are reluctant to disclose their decisions due to privacy
concerns, i.e., player i is not aware of other players’ decisions x−i. In this case, each
player can only find the GNE by exchanging local information with their trusted neighbors
through the connectivity graph G and minimizing their objective function with the obtained
information. Next, we will obtain an equivalent form of the variational problem under
certain assumptions. By following a similar process as in the previous subsection, we can
derive Algorithm 1.

Assumption 4.
G is undirected and connected and it has no self-loops.

Define x[i] to denote the estimate of agent i for GNE x∗, where x[i] = col(x[i]j )j∈N and

x[i]−i = col(x[i]j )j∈N ,j 6=i. We next investigated under what conditions the player can use the

estimator x[i] to minimize the objective function and why this can be done.

Remark 1. x[i]j represent the state estimate of i versus j, and x[i]i = xi. When ∀(i, j), x[i] = x[j],
all the agents reach an agreement.

The variational problem of the original game problem (3) can be written as the follow-
ing optimization problem: 

arg min
x∈Rn

〈F(x∗), x〉+ g(x),

s.t. Ax ≤ b,
Lλ = 0,

(11)

where F(x) = col(∇xi fi(xi, x−i))i∈N , g(x) = ∑N
i=1(gi(xi)), A = diag(A1, A2, ..., AN),

b = col(b1, ..., bN). In order that the decision variable xi and the estimation variable
x[i]−i of agent i can be selected from x[i], define two linear mappings: let

Ri =
[

0ni×n<i Ini 0ni×n>i

]
, (12)

Si =

[
In<i 0n<i×ni 0n<i×n>i

0n>i×n<i 0n>i×ni In>i

]
, (13)

where n<i = ∑j<i,j∈N nj, n<i = ∑j>i,j∈N nj, i.e.,Ri ∈ Rni×n : x 7−→ xi and Si ∈ R(n−ni)×n :

x 7−→ x−i. Hence Rix[i] = x[i]i = xi and Six[i] = x[i]−i. Furthermore, these two operators
satisfy the following formulas:

RiST
i = 0ni×(n−ni)

,

RiRT
i = Ini ,

SiST
i = I(n−ni)×(n−ni)

,

ST
i Si + RiRT

i = In.

(14)
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Define x̂ = col(x[i])N
i=1, F̂(x̂∗) = col(∇xi fi(xi, x[i]∗−i ))i∈N , if ∀(i, j) ∈ ε, x[i] = x[j], then

F̂(x̂∗) = F(x∗). With Rix[i] = xi and R = diag(Ri), the stacking decision x is equivalent to
Rx̂. Since ∀(i, j) ∈ ε, x[i] = x[j] ⇔ (L

⊗
In)x̂ = 0, let L̂ = (L

⊗
In) ∈ RNn×Nn, then (11) is

equivalent to 
arg min

x∈Rn

〈
F̂(x̂∗), Rx̂

〉
+ g(Rx̂),

s.t. ARx̂ ≤ b,
Lλ = 0,
L̂x̂ = 0.

(15)

The Lagrangian function of the optimization problem (15) is defined as L̂ =
〈
F̂(x̂∗), Rx̂

〉
+ g(Rx̂) + λT(ARx̂− b) + zT Lλ + c

2 x̂T L̂x̂. Let Ĝ(Rx̂) = col(∂x̂g(Rx̂))i∈N , the KKT condi-
tion is 

0 ∈ RTF̂(x̂) + RTĜ(Rx̂) + RT ATλ + cL̂x̂,
0 = Lλ,
0 ∈ ARx̂− b + Lz− NRNm

≥0
(λ).

(16)

Next, according to the KKT condition (16), the operator T can be defined as:

T :

 x̂
z
λ

 −→
 RTF̂(x̂) + RTĜ(Rx̂) + RT ATλ + cL̂x̂

Lλ
−ARx̂ + b + Lz + NRNm

≥0
(λ) + Lλ

. (17)

Let ω = col(x̂, z, λ); the KKT condition can be written as 0 ∈ T(ω), then the solu-
tion of optimization problem (15) is converted into the operator zero-seeking problem.
If col(x̂∗, z∗, λ∗) is a zero of the operator T, then Rx̂∗ is a v-GNE of the original game
problem (3). The operator T is partitioned into A, B as follows :

A : ω −→

 RTF̂(x̂)
0
b

+
1
2

 cL̂ 0 RT AT

0 0 L
−AR −L 0

ω, (18)

B : ω −→

 RTĜ(Rx̂)
0

NRNm
≥0

(λ)

+
1
2

 cL̂ 0 RT AT

0 0 L
−AR −L 0

ω. (19)

In view of the partition operators A, B. To obtain the distributed algorithm, a matrix
Φ is defined, and this matrix is required to be positive definite. One choice is

Φ =
1
2

 −cL̂ 0 −RT AT

0 0 −L
−AR −L 0

+

 α−1 0 0
0 τ−1 0
0 0 γ−1

, (20)

where α = diag(αi I), τ = diag(τi I), γ = diag(γi I), with αi, τi and γi for i ∈ N . Substitut-
ing A = A, B = B, Φ = Φ and v = ω into (10), the distributed algorithm under the local
information setting, i.e., Algorithm 1 can be derived.

In Algorithm 1, both the local decision xi and the local estimate x[i]−i are updated by the
Laplace matrix, which causes the global estimate x[i] of agent i get closer to its neighbors,
and the gradient descent causes the local cost function to decrease. The range of values of
the step size parameter αi, τi, γi depends on the positive definiteness of the matrix Φ, which
can be found analytically using the Gershgorin. Note that the update step in the algorithm
rk needs to meet two conditions according to the requirements of the Douglas-Rachford
method, i.e., 0 < rk < 1 and ∑∞

k=1 rk(1− rk) = ∞.
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Remark 2. In the pseudo-code, the input parameters are x[i]i,0, x[i]−i,0 , zi,0 and λi,0, where (x[i]i,0, x[i]−i,0)

is player i’s estimate of the global decision set at iteration 0 and the output parameter is (x[j]j,k, x[j]−j,k),
which is player i’s final estimate of the global decision set.

Observing the output parameters (x[j]j,k, x[j]−j,k) after the algorithm iterations are com-
pleted reveals that eventually, all players have the same estimate of the global decision set,
i.e., ∀i, j ∈ N , (x[i]i,k, x[i]−i,k) = (x[j]j,k, x[j]−j,k). As shown in Figure 1 in Section 3, the variance
of the estimates of all players converges to zero during the iterations of the algorithm.

Figure 1. The figure shows the process by which all customers agree on the estimated value of GNE.

The vertical coordinate is the variance, i.e.,Var(x[1]i , ..., x[N]
i ), i ∈ {1, 2, ...N}.

4. Convergence Analysis

In this section, two assumptions are proposed to analyze the convergence of
Algorithms 1 and 2. First, the range of values of the step size α, τ, γ can be obtained
according to Gershgorin, and then the convergence of the two algorithms can be proven
based on two mild assumptions.

Assumption 5.
1. The set of Nash equilibria of the variational problem of the original problem is nonempty
2. and RTF̂+ 1

2 cL̂ is maximally monotone operator.

Assumption 6.
1. The pseudo-gradient operator F is strongly monotone and Lipschitz continuous, i.e., there

exist θ1, θ2 > 0, satisfying ∀x, x′ ∈ Rn, 〈x−x′ ,F(x)−F(x′)〉
‖x−x′‖2 ≥ θ1 and ‖F(x)−F(x′)‖

‖x−x′‖ ≤ θ2.

2. The operator RTF̂ is Lipschitz continuous, i.e., there exist θ3 > 0, satisfying ∀x̂, x̂′ ∈ (R)nN ,
‖F̂(x̂)−F̂(x̂′)‖
‖x̂−x̂′‖ ≤ θ2.

Note that if and only if 0 ∈ Zer(Φ−1A + Φ−1B), exists 0 ∈ Zer(A + B). Define
PA := (I + Φ−1A)−1 and PB := (I + Φ−1B)−1 , iterative process can be expressed as
ωk+1 = ωk + 2rk(PAPB − PB − PA)(ωk). Let OA = 2PA − I and OB = 2PB − I, when
rk = 0.5, the iterative form of the Algorithm 1 can be transformed as (According to
reference [20], when rk = 1, it is the alternating direction method of Multipliers.)

ωk+1 =
1
2

ωk +
1
2

OBOA(ωk). (21)
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When Assumptions 1–4 hold, the operators A and B are both maximally monotone.
Referring to the theory of monotone operators [21], it is easy to prove the convergence of
Algorithm 2. Next, we focus on the convergence of Algorithm 1.

Consider the real vector spaceRn(N+|ε|)+n(N+|ε|) and define an inner product opera-
tion 〈ω, ω′〉 = 〈Φω, ω′〉 by which an inner product space Q can be obtained.

Lemma 1. Assuming that the matrix Φ is positive definite, then α, τ, γ must satisfy the follow-
ing inequalities:

∀δ > 0,



αi ≤ (δ + cL̂i + max
j∈{1,2...ni}

m

∑
k=1
|[−RT

i AT
i ]jk|)−1,

τi ≤ (δ + 2di)
−1,

γi ≤ (δ + max
j∈{1,2...m}

ni

∑
k=1
|[−AiRi]jk|+ 2di)

−1,

(22)

where di = 1
2 ∑m

k=1 |[L]ik| denotes the degree of player i. This is a result of a calculation by
Gershgorin which states that a sufficient condition for a positive definite matrix is that all eigenvalues
are greater than zero [22].

Lemma 2. Denoted B̃ by Φ−1B, the operator B̃ is maximally monotone on Q when
Assumptions 1–4 hold and Φ satisfies Lemma 1. Moreover, OB is nonexpansive on Q.

Proof. According to Definition 9.12 in [23] and Theorem 20.25 in [23], the operator Ĝ is
maximally monotone when Assumptions 1 holds. Operator B consists of a maximally
monotone operator and a symmetric matrix. Therefore, operator B is maximally monotone.
Since the matrix fair is positive definite, by Proposition 20.24 in [23], we can conclude that
B̃ is also maximally monotone. Moreover, by Corollary 23.11 in [23], we can know that the
inverse preconditioner OB is nonexpansive.

Lemma 3. Denoted Ã by Φ−1A, the operator Ã is maximally monotone on Q when
Assumptions 2–5 hold and Φ satisfies Lemma 1. Moreover, OA is nonexpansive on Q.

Proof. The proof is similar to that of Lemma 2. When RTF̂+ 1
2 cL̂ is a maximally monotone

operator, the conclusion of the Lemma 3 can be obtained.

Theorem 1. Suppose λ∗ satisfies (6) and that x∗ is the v-GNE of Problem (3). When Lemma 3
is valid, the sequences {x̂k} and {λk} generated by Algorithm 1 satisfy limk→∞ x̂k = (1N ⊗ x∗)
and limk→∞ λk = (1N ⊗ λ∗) [21].

Proof. Since λ∗ and x∗ are generalized Nash equilibrium solutions, col(x∗, z∗, λ∗) =
(A+B)col(x∗, z∗, λ∗) holds. According to Theorem 26.11 in [23], when A and B are maxi-
mally monotone operators, the sequence {x̂k} and {λk} obtained by (21) converges to x∗

and λ∗.

Based on Assumptions 1–5, Algorithm 1 can be shown to be convergent using existing
research, i.e., Theorem 1. The operator Ã is restricted monotone on Q if Assumption 5
does not hold and Assumption 6 holds. Next, referring to the key concept of restricted
monotonicity in the literature [13], it is possible to analyze the convergence of the algorithm
based on Assumption 6.

Lemma 4. Define σ = s2(L) and Ãp : col(x̂, z, λ) −→ col(RTF̂(x̂) + 1
2 cL̂x̂, 0, b), assuming

that Assumptions 2–4 and 6 hold and that the monotonicity of the operator Ãp on the inner product

space Q is restricted when c satisfies c ≥ 2
σ (

(θ2+θ3)
2+4θ1θ3

4θ1
).
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Proof. ∀ω and ω∗, 〈ω − ω∗, Ãp(ω) − Ãp(ω∗)〉 = 〈x̂ − x̂∗, RT(F̂(x̂) − F̂(x̂∗))〉 + 〈x̂ − x̂∗,
1
2 cL̂(x̂− x̂∗)〉. Denote x̂x = (1N×N

⊗
L)x̂ and x̂y = (InN − (1N×N

⊗
L))x̂. Since ω∗ is GNE,

there exists x̂∗ = x̂*x. Assuming that Assumptions 4 holds, then 〈x̂− x̂∗, 1
2 cL̂(x̂− x̂∗)〉 ≥

cσ
2 ‖x̂y‖2 and

〈x̂− x̂∗, RT(F̂(x̂)− F̂(x̂∗))〉
= 〈x̂x + x̂y − x̂∗, RT(F̂(x̂)− F̂(x̂∗))〉

≥ θ1

N
‖x̂x − x̂y‖2 − θ2 + θ3

N0.5 ‖x̂
y‖‖x̂x − x̂∗‖ − θ3‖x̂y‖2.

Combining the above two inequalities, when c ≥ 2
σ (

(θ2+θ3)
2+4θ1θ3

4θ1
) holds, Ãp is restricted

monotone on Q.

Lemma 5. Assume that Lemma 4 holds and that the monotonicity of the operator Ã on the inner
product space Q is restricted. In addition, OA is restricted non-expansive on Q.

Proof. Assume that Ãp is a restricted monotone operator. By a similar process as in
Lemma 2, Lemma 5 can also be proved.

Remark 3. The operator B̃ is still maximally monotonic since Assumption 1 holds. Furthermore,
PA is still single-valued and well-defined, even though Ã is a restricted monotone operator.

Theorem 2. Suppose λ∗ satisfies (6) and x∗ is the v-GNE of Problem (3). When Lemma 5 is valid.
The sequences {x̂k} and {λk} generated by Algorithm 1 satisfy limk→∞ x̂k = (1N ⊗ x∗) and
limk→∞ λk = (1N ⊗ λ∗).

Proof. According to (21), ∀ω̂∗ ∈ Fix(OBOA), we have

‖ω̂k+1 − ω̂∗‖2

=
1
2
‖ω̂k − ω̂∗‖2 +

1
2
‖OBOAω̂k − ω̂∗‖2 − 1

4
‖OBOAω̂k − ω̂k‖2

≤ 1
2
‖ω̂k − ω̂∗‖2 − 1

4
‖OBOAω̂k − ω̂k‖2.

Since B is a maximal monotone operator and A is a restricted monotone operator, the
sequences {ω̂k} is Fejer monotone. Note that ∑∞

k=1
1
4‖OBOAω̂k − ω̂k‖2 ≤ ‖ω̂0 − ω̂∗‖2, so

limk−→∞ ‖OBOAω̂k − ω̂k‖2 = 0.
According to the above conclusion, it can be known that there exists a subsequence

{ω̂ki} Based on the previous result, the subsequence, i.e., limi−→∞ ω̂ki = ω̂s. As OBOA is a
continuous mapping, ω̂s is a fixed point Fix(OBOA). This implies that
limk−→∞(ω̂k = ω̂s). It follows from the above inequality that {ω̂k − ω̂s} is a mono-
tonically non-increasing sequence. In summary, the sequence ω̂k can converge to the fixed
point ω̂s, and ω̂s is a zero point of the operator T.

In summary, in this section, the convergence of Algorithms 1 and 2 based on two
parallel assumptions is analyzed, and the interval for the value of step size is given.

5. Algorithm Simulation

In this section, we verify the functionality of the two algorithms proposed in this paper
and compare their convergence with other algorithms based on a non-cooperative game
competition network. Referring to the networked course game [24], consider a LAN with
15 clients (i.e., N = 15) and four routers (i.e., m = 4), where each client can choose one
router to connect, and clients i can pay xi to the Internet operator to get more network
bandwidth. Due to the cost, the client’s sentiment and interest are affected by the payment
amount xi, so each client has a private cost function gi(xi) : Rni → R. Since the bandwidth
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that each router can carry is finite, each client has a cost function fi(xi, x−i) that depends
on the decisions of all clients.

Using the matrix A, we can characterize the routers chosen by each client individually,
and let x = col(x1, x2...xn), then Ax is the total supply vector to all routers given the action
profile x of all clients. A constraint Ax < b is used to denote the bandwidth limit of these
routers, where b = col(b1, b2, ..., bm) ∈ Rm. In addition, each client is restricted to exchange
decisions only with its neighboring clients, and the adjacency relationship between clients
is represented by a Laplace matrix. Then, the goal of each player in this model is to solve
(3) in a situation where they can only communicate with adjacent clients.

To satisfy Assumptions 1 and 2, we define function gi(xi) = ηi(∑
ni
j=1[xi]j)

2 + ξT
i ,

where xi, ηi, ξi ∈ R. gi(xi) is a strongly convex, Lipschitz continuous function. Define
F : Rm → Rm to map the amount paid by users connected to the router and the bandwidth
they can allocate, then fi(xi, x−i) = −FT(Ax)Aixi. Reference to economics [25], using a
linear inverse demand function Fj(x) = Fj − dj[Ax]j as the mapping F. Denote gradient
vector F(x) = col(F1(x), ..., Fm(x)), F = col(F1, F2, ..., Fm) , B = diag{d1, ..., dm}. Then
F(x) = F− BAx is the unit return vector function and the player’s cost function can be
written as gi(xi) + ∑N

j=1 xT
j AT

j BAixi − FT Aixi.
The experimental setup is described next, with 15 customers, i.e., N = 15, 4 routers,

i.e., m = 4, and the total bandwidth that the 4 routers can carry being 9, 6, 12, and 8, i.e.,
b = col(9, 6, 12, 8). Clients 1, 3, 5, and 7 are connected to the first router; clients 2, 4, 6, and
8 are connected to the second router; clients 9, 10, and 13 are connected to the third router;
and the remaining clients are connected to the fourth router, as shown in Figure 2.

As shown in Figure 3, Algorithms 1 and 2 and the DA algorithm based on the Doubly-
Augmented operator splitting approach [13] all have good convergence results.

Next, the cost functions of all participants are accumulated and gradually decrease
with algorithm iterations. As shown in Figure 4, it can be found that all three algorithms
mentioned above minimize the cost function, and in comparison, using Algorithm 1 leads
to the fastest decrease in the cost function.

Figure 2. The black arrows start at the client end and end at the router chosen by that client, and the
clients at either end of the yellow arc are neighbors.

In order to clearly show how the algorithm works, the decreasing cost function of
the 15 participants is shown in Figure 5, and it can be found that the cost function of each
participant converges to the minimum value continuously and smoothly.
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Figure 3. The blue, red, and yellow curves indicate the convergence process of Algorithms 1 and 2,
and DA algorithm, respectively.

Figure 4. The figure shows how the sum of the costs of all customers changes under the action of the
three algorithms. The ordinate is ∑i=N

i=1 [ fi(xi, x−i) + gi(xi)].

Figure 5. The figure shows how the private cost per customer changes under the action of Algorithm 1.
The ordinate is fi(xi, x−i) + gi(xi), i ∈ {1, ...N}.
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At the end of this section, the process of reaching agreement on the estimated vari-
ables x̂ of the global decision set x by the participants i ∈ N during the iteration of the
algorithm is shown in Figure 1. As mentioned in this paper, the algorithm under local
information elevates the decision vector latitude of the participants, and each participant
has not only their own local decision xi = x[i]i ∈ R, but also an estimate of the other

participants’ decisions x[i]−i = col(..., x[i]i−1, x[i]i+1, ..., x[i]N ), where x[i]j denotes the estimate of
participant i on participant j. Relatively, for each participant i, there exist N estimates of
him, and we define this set as E, i.e., E = {x[1]i , ..., x[N]

i }, let k be the number of iterations, if
∀i ∈ {1, ..., N}, limk→∞ Var(E) = 0, then it is proved that all decision makers reach agree-
ment on the estimate of the global decision set, which is equivalent to knowing the global
decision set.

6. Summary and Prospect

In this paper, we study algorithms for finding the GNE of noncooperative game
problems for two different situations. In the case of global decision information, each
participant can use the global decision set to minimize the cost function. In the case of
partial decision information, participants need to estimate the global decision set and
perform local optimization by estimating variables, while consensus dynamics with the
Laplacian matrix ensures that the local estimations will reach the same GNE. This paper
devotes an entire section to the derivation of Algorithms 1 and 2. In addition, we derive
the step size condition for the convergence of the algorithm using the Gershgorin Circle
Theorem and analyze the convergence of the algorithm under mild assumptions. Finally, we
simulated both algorithms and compared them with the FB algorithm. This paper assumes
that the objective function of each player is continuously differentiable, but in practical
problems, there may be nonsmooth or nonconvex situations. Therefore, how to generalize
the algorithm proposed in this paper to more general cases is a worthwhile research
question. This paper only considers undirected connected graphs as the communication
topology among players, but in real networks, there may be directed graphs or disconnected
graphs. Therefore, how to analyze and design distributed algorithms that apply to these
complex topological structures is a challenging problem. This paper only discusses the
algorithm based on a synchronous update strategy, but in real networks, there may be
asynchronous or random updates. Therefore, how to consider the impact of these update
strategies on the performance and stability of the algorithm is a meaningful problem.
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