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Abstract: This study introduces a novel performance-based weighting scheme for ensemble learning
using the Shapley value. The weighting uses the reciprocal of binary cross-entropy as a base learner’s
performance metric and estimates its Shapley value to measure the overall contribution of a learner
to an equally weighted ensemble of various sizes. Two variants of this strategy were empirically
compared with a single monolith model and other static weighting strategies using two large banking-
related datasets. A variant that discards learners with a negative Shapley value was ranked as first or
at least second when constructing homogeneous ensembles, whereas for heterogeneous ensembles
this strategy resulted in a better or at least similar detection performance to other weighting strategies
tested. The main limitation being the computational complexity of Shapley calculations, the explored
weighting strategy could be considered as a generalization of performance-based weighting.

Keywords: machine learning; ensemble methods; Shapley value; performance weighting; privacy-
preserving distributed learning

1. Introduction

With increasing interest in machine learning technologies, the number of created and
used machine learning models is increasing. The information technology sector also faces an
ever-growing demand for digital data storage facilities, and approximately 50 massive new
data centers appear each year, with some researchers warning of an imminent information
catastrophe [1]. This growth may influence more and more parties to work using similar
data and could require the ability to collaborate. Such collaboration could be achieved by
federated learning [2] and privacy-preserving approaches, and also simply by combining
the models into ensembles in distributed or local environments. The ensemble methods
have been successful and brought many popular techniques today, such as bagging and
boosting. Although most of these techniques usually use homogeneous model types in the
creation of ensembles, ensembles with heterogeneous model types might as well be used to
tackle machine learning tasks of similar nature.

Ensemble learning approaches aim at constructing a strong learner from a set of weak
learners [3], with the most popular techniques nowadays being bagging and boosting [4].
These techniques often outperform a monolith single model but typically are applied as
off-line algorithms, which still need centralized data repositories for ensemble building.
Online ensemble-building techniques suitable for training on streaming data are also being
developed, i.e., online AdaBoost [5] or online Arcing [6]. Ensemble-based approaches for
adapting to concept drift are closely related to online ensembles and seek to give more
emphasis to the most recent training data batch. One set of approaches is to maintain a
fixed-size committee of classifiers with new base classifiers built on each arriving batch
of data and included in the committee by replacing its worst-performing member. This is
done after validation of new data, either directly, as in the streaming ensemble algorithm [6]
using majority weighting, or indirectly, by using top k performance-weighted classifiers,
as in the accuracy-weighted ensemble [7]. Another online ensemble learning approach [8]
tries to achieve robustness to concept drift by adapting weights in a pool of online learners
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and expanding or pruning the committee using an overall ensemble performance as a
benchmark. This is carried out by using a dynamic weighted majority approach [9], where
weights are normalized to always sum to one, and the individual weight is decreased
if a base learner makes a mistake. Simultaneously, data privacy is a major concern in
numerous areas, including in citizen science projects [10], where participants frequently
reveal personal details. One of the approaches to overcome the fear of sharing sensitive data
and, consequently, the lack of motivation for data sharing overall, could be privacy-focused
variants of distributed learning [11–16]. One variant of such approaches is knowledge
transfer architecture where an ensemble of models corresponds to the teacher and is trained
on disjoint internal subsets of the sensitive data, whereas a student model is trained on
public data to replicate ensemble predictions [17]. Such architecture could benefit from an
ensemble weighting strategy.

The Shapley value [18], in the context of machine learning, is mostly used for feature
selection or assessment of data quality, but it could also be applied as a weight selection
approach. The goal of our research is to introduce a novel performance-based weighting
scheme for ensembles based on the Shapley value. Even though both performance-based
weighting and Shapley values are commonly used in the machine learning field, the
combination of these two, to the best of our knowledge, has not been experimentally tested
and presented as an ensemble weighting approach. To test the new ensemble weighting
approach, we compare it to other weighting strategies: random weights, equal weights,
simple performance-based and Shapley voting-based [19] weighting by using two large
datasets for machine learning classification tasks from the banking domain. The proposed
weighting strategy could be used for general ensembling purposes but especially in the
knowledge transfer architecture domain to help in constructing a teacher model with strong
privacy guarantees after the student model is learned as a weighted ensemble. We envision
the medical, financial, and scientific domains as the primary areas of application when
participants are few, but their proprietary data is large and sensitive. We are planning to use
the proposed weighting strategy as an incentive mechanism in blockchain-powered PPML
systems by continuing the work on previously presented research in this field [20,21]. Our
proposed approach introduces two novel performance-based weight selection strategies.

This study introduces a novel performance-based weighting scheme for ensemble
learning using the Shapley value. The proposed weighting strategy is applied to two
large banking datasets using logistic regression and decision tree classifiers and has been
benchmarked against other known approaches. The study explores the applicability of the
proposed strategy not only with homogeneous but also with heterogeneous ensembles.

The rest of this paper is structured as follows. Section 2 provides an overview of
existing weighting strategies and related research on using the Shapley value in the context
of machine learning. Section 3 describes the methods used to experimentally test the
proposed solution. In Section 4, the settings and parameters used in the experiment are
introduced. The experiment results for two tested ensemble creation scenarios are presented
in Section 5 as well as discussion on the advantages and drawbacks of the proposed strategy.
Section 6 concludes the investigation.

2. Related Work

Machine learning models that are trained as a single classifier and then combined by
merging their outputs into final predictions are called ensembles [22]. These ensembles are
classified into two categories. Homogeneous ensembles consist of a single model type and
heterogeneous ones are composed of more than one model type. The success of machine
learning model ensembles could be attributed to prognostic diversity. This diversity comes
from the possibility that each model could interpret the same training data in a different
way and could result in models that complement one another, thus increasing the overall
performance of an ensemble. Ensemble diversity may be obtained through input data
sampling approaches such as bagging [4], variations in learner design, or adding a penalty
to the outputs to encourage diversity. The bagging approach uses a random subset of data
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to train classifiers that are later combined, using voting to obtain a final prediction. Decision
tree classifiers are commonly used for the bagging approach. The ensemble weighting
approach explored in our solution is closest to bagging [4] and divide-and-conquer [23]
strategies due to the horizontal partitioning of the input space. It also allows variations
in learner design through a multi-inducers strategy [23], where either the same type of
base model can be used with different hyperparameters or a different type of model can
be supported.

Ensemble weights can be equal, as in the majority voting [24] case, or based on individ-
ual models’ accuracy, as in performance weighting [22,23,25] or optimized to maximize the
accuracy of the whole ensemble on the validation set [22], as in search-based ensemble selec-
tion approaches. Our proposal could be viewed as an extension of the performance-based
weighting strategy. The performance-based weighting process consists of two primary
steps: (a) benchmarking of the model performance and (b) adjustment of the ensemble
weights based on the benchmarking results. The fusion of model outputs into a final predic-
tion can also be derived through stacking, as in meta-learning [21]. Model fusion through
stacking employs a combination of weak learners with training data to train the meta-
learning model that provides final predictions. Recently, a strategy for an optimal ensemble
was proposed in [26] by combining the tuning of hyperparameters and weights for regres-
sion tasks. Effective weights could also help sort classifiers for ranking-based ensemble
selection and filter out non-useful ones as a technique of ensemble reduction. Search-based
approaches tend to outperform ranking-based ones with respect to accuracy [25], but due
to the optimization involved in weight tuning, they are more computationally expensive.

Shapley value [18] was first introduced as a measure to fairly distribute coalition
worth among the participants by measuring their contributions. In the context of Shapley
values are used mostly to facilitate model-agnostic selection of the most significant features
by measuring the importance of each feature to the final prediction [27–29]. There are
attempts to measure the importance of input data through Shapley values [30,31]. Our
approach applies Shapley values in measuring the contribution of each model (in a fixed
set of models) to all possible variants of ensembles.

The closest study to our proposed approach would be [19] where a technique for
quantification of the model contribution to the ensemble of classifiers was proposed. It cal-
culates approximate Shapley values by considering classifier predictions on each individual
dataset instance. The study has used three datasets for evaluation, demonstrating that their
own Shapley value approximation method is close in performance to other Shapley value
approximation methods. The authors of the study have also tested the performance of an
ensemble selected by their algorithm. It outperformed other approaches in two datasets
out of the three tested. Even though the authors apply similar strategies, our approach
differs from [19] in that we use a less localized assessment of detection performance. In
our approach, binary cross-entropy values of models are used for Shapley value calcula-
tions as opposed to using predictions and ground-truth values directly. The goal of the
authors in [19] is to improve the ensemble performance at the level of individual prediction
points, while our approach evaluates the contribution of ensemble members by using their
performance measures as a basis for Shapley value calculations. The method proposed
in [19] is also utilizing Shapley approximation methods, thus differing from our proposed
approach of calculating Shapley values exactly. The authors of this study did not consider
the possibility to use Shapley values produced by their method as an ensemble weight
selection strategy. To test if this could be a viable solution, we compared our proposition
with the strategy proposed by [19].

Shapley values [18] were also applied in the ranking-based ensemble selection ap-
proach [32] that was based on the inducted subgraph game from combinatorics. This
approach evaluated the contribution of every available classifier by incorporating ensem-
ble characteristics such as individual accuracies and group variety into a Shapley value.
The researchers validated the effectiveness of the approach by comparing it to five other
techniques using 26 UCI benchmark datasets using AdaBoost [4] with a decision stump as
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their base learner. The results of this new ranking approach showed improvement over
the original ensemble and outperformed other tested approaches in more than half cases.
This approach evaluated the contribution of every available classifier by incorporating
ensemble characteristics such as individual accuracies and group variety into a Shapley
value. The difference in approach in [32] from ours is that we choose not to measure
ensemble diversity explicitly.

Ensemble heterogeneity and the possibility to apply Shapley values to evaluate clas-
sifiers have also been explored by [33]. The authors proposed a heterogeneous ensemble
model based on the generalized Shapley value and the Choquet integral. The proposed
method employs a fuzzy measure that uses model accuracy and diversity to construct
a machine learning classifier. The predictions for such a classifier are aggregated using
the Shapley–Choquet integral. The authors prove that the proposed classifier can outper-
form four existing classifiers, as well as five homogeneous model ensembles and three
heterogeneous model ensembles using four banking-related datasets. Similarly, as in
our approach, authors applied their model in the banking-related domain for credit risk
modeling and compared ranks of classifiers using the Friedman test. This method differs
from our strategy due to the application of fuzzy measures and advocating the use of
heterogeneous ensembles.

Recently, Shapley model ranking techniques have been applied in the field of federated
learning [31]. The authors propose a method to approximate federated Shapley values with
increased efficiency. The presented research also suggests that Shapley values could be
used in a wide range of data evaluation tasks. The comparison of related research and their
application areas are presented in Table 1.

Table 1. Comparison of methods employing Shapley value for data or model performance evaluation.

Article Metrics Used Shapley Calculation Approach Application Area

Benedek Rozemberczki [19] Prediction voting Expected marginal
contributions approximation

Method to quantify the model
importance in an ensemble

Hadjer Ykhlef [32] Classifier accuracy Exact calculations Ensemble selection method

Tianhao Wang [31] Classifier accuracy
Permutation sampling-based

approximation, group
testing-based approximation

Method to evaluate data
importance in federated

learning approaches

Xiaohong Chen [33] Generalized Shapley
Choquet integral Exact calculations

A heterogeneous ensemble
classifier for credit
risk management

Our proposal Binary cross-entropy Exact calculations Ensemble weight
selection strategy

Our proposal differs from existing approaches by two main aspects: (a) weighting
strategies utilize binary cross-entropy in combination with Shapely value calculations, as
opposed to relying on individual predictions on a case-based level; and (b) Shapley value
is calculated by utilizing empty coalition as a benchmark value corresponding to expected
binary cross-entropy of random guessing with respect to class imbalance.

3. Methods

This section presents two proposed weighting strategies and their evaluation methods.
It also describes datasets and data preparation measures utilized in the experiments. The
last subsection presents a description of performance comparison methods that were
applied to the experiment results. The general process representing the workflow of our
proposed approach is presented in Figure 1. The overview of the proposed weight selection
strategy is presented in Figure 2, demonstrating the data division into batches, model
training and weighting processes. The weight selection strategy produces a weighted
ensemble that produces final predictions.
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3.1. Base Learners

We have used two types of classifiers as base learners in the experiments: CART
(classification and regression tree) and binary logistic regression. These two classifier
types were chosen because they are generally widely known and are commonly applied
for machine learning classification tasks, such as, for example, logistic regression in the
banking industry [34]. Other classifiers [35,36] would be also suitable, as long as they can
predict class probabilities. In our research, these learners are used to train either a single
model on a full training dataset meaning that the training dataset was not divided into
smaller batches (such model will be called a monolith) or multiple models that are trained
on a part of training data and are further combined into ensemble.

The CART classifier represents a traditional decision tree [37]. The leaf nodes contain
predicted values of the class of the input vector and the intermediate nodes contain binary
decisions, each rejecting a subset of potential sequential points and classification choices.
The tree is built by applying a greedy split algorithm over the learning data by minimizing
the Gini impurity (1); more specifically, the best split gives a minimal weighted average of
class impurity in child nodes. The Gini impurity is calculated as:

Gini(k) = ∑
i⊆C

ρi,k(1− ρi,k) = 1− ∑
i⊆C

ρ2
i,k (1)

where C is a list of all classes, k corresponds to a specific category (child node) after splitting
and ρi,k is a probability of category k having class i. The main advantage of decision trees
over other classifiers is that the “reasoning” behind the classification output can always be
described in human-friendly terms. An illustrative example of the Bank Marketing Dataset
used in our work is provided in Figure 3. Our approach differs from the random forest
ensemble learning method by not using bootstrap aggregation and combining classifiers
trained on datasets with varying sizes respecting data size distribution patterns defined in
Section 3.3.

Binary logistic regression is also one of the traditional approaches [38] to the problem
of binary classification. It models the linear expectation of vector X = {x1, x2, . . . , xn}
belonging to class A as E(A|X), where:

E(A|X) =
ey

1 + ey (2)

y = β0 + β1 ∗ x1 + β2 ∗ x2 + · · ·+ βn ∗ xn (3)
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The logistic regression model fitting weighting coefficients {β0, β1, β2, · · · , βn} in a
manner that best satisfies the logistic loss (log-loss) function:

cost(P(A|X), X) =

{
−log(P(A|X)), i f X is in class A
−log(1− P(A|X)),i f X is not in class A

(4)

The feature selection step and regularization were omitted from the logistic regression
model, as the goal of this research was to compare existing weighting strategies to two
novel approaches.

The performance of models for detection tasks in our experiments was evaluated using
binary cross-entropy metric [39]. Cross-entropy is one of the more popular loss functions
used for classification problems. It quantifies the difference between two probability
distributions—the predicted output distribution and the real output distribution. Binary
cross-entropy (BCE) can be seen as a generalization of log-loss for multi-class cases and is
defined as:

BCE
(

y,
.
ŷ
)
= −(y·log(ŷ) + (1− y)·log(1− ŷ)) (5)

The y represents the ground-truth class label and ŷ corresponds to the model’s predic-
tion of class probability.
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3.2. Weighting Strategies

We have used five ensemble weight estimation strategies: Equal, Random, Perf,
posShap, and maxShap. The purpose of the Equal weight strategy was to determine
how well the model performs in an ensemble without any effort to estimate the weights.
All ensemble members receive the same values under the Equal weighting approach.
In the Random weighting strategy, each model gets its value randomly generated in
a range from 0 to 1, which constitutes a baseline to compare against other weighting
heuristics. Performance weighting (Perf) was calculated using Function (6), where BCE
measure corresponds to Formula (5) and was calculated on validation data (Figure 4). This
corresponds to the reciprocal of BCE:

wPer f
n =

1
BCE

(6)
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Shapley value was first introduced as a way to evaluate coalition participants’ contribu-
tion to an overall coalition in a game theory paper [18]. Since then, Shapley values have been
adopted in many research fields such as economics [40] and machine learning [19,29,30]. In
our proposed weighting strategy, the Shapley transformation of performance-based weight
for model n was calculated as follows:

wShap
n (v) = ∑S⊆N\{n}

|S|!(N− |S| − 1)!
N!

(v(S∪ {n})− v(S))−∅ (7)

with reciprocal BCE corresponding to coalition members’ contribution v. N is the set of
classification models and sub-ensemble S is a subset S ⊆ N. (S ∪ {n})− v(S) represents a
marginal contribution of a single coalition member. The empty coalition ∅ value was calcu-
lated using Formula (7) with all predictions fixed at 0.5 and tested against ground-truth
values of validation data, which in effect provides a performance baseline derived with
respect to existing class imbalance. It is well known that a baseline threshold of BCE in the
case of balanced classes is exactly 0.693 and BCE exceeding this value indicates that a corre-
sponding detector is performing worse than chance [41]. Moreover, this threshold value
decreases in case of a stronger class imbalance. Therefore, a need to account for that when
using Shapley estimation with a possibility to assign value to an empty coalition arises.

The posShap weighting strategy calculated weights based on Formula (7) and models
that resulted in negative Shapley values were not included in the ensemble by setting their
weight to 0:

f (w) =

{
w, w ≥ 0
0, w < 0

(8)

where w is obtained using Formula (8) and posShap transformation of w is identical to
rectified linear unit activation function ReLU [42].

The maxShap weights were calculated in the case of negative Shapley values, which
meant the net loss with respect to the overall coalition. For such models, the assumption
was made that the classes were switched when training a model or that some labeling noise
was present in the training data. To allow such models to be used in a model coalition, we
have inverted the model predictions as follows:

f (p) =
{

p, p ≥ 0
1− p, p < 0

(9)
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where p is the output from the detection model. This was supposed to enable a model that
was trained on mislabeled data to still be useful in the overall coalition to the extent of its
contribution if it was due to label noise.

The voting-based Shapley weights Roz were calculated using the method described
in [19]. This method uses marginal contribution approximation to speed up the calculations
and calculates Shapley values at individual data point levels. To transform the individual
data point level Shapley values to ensemble weights we average these values into their
weight representation using Formula (10):

wRoz
n =

1
N

N

∑
i=1

ϕi (10)

where N is the number of model predictions and n is the model number in an ensemble
and ϕ represents Shapley value for individual data point levels.

3.3. Data Preparation

The five ensemble weighting strategies were tested using two datasets: Bank Market-
ing and BNG-Credit_a. Data characteristics and dataset sources are described in Table 2.
The Bank Marketing dataset was also used for experiments in [32]. Preparation of the Bank
Marketing dataset consisted of transforming targeted value from “Yes” and “No” to 1 and
0, respectively, and one hot encoding of categorical data. One hot encoding transformed
categories into an expanded feature set. The BNG-Credit_a dataset features A6, which
represented bank customer occupation, and A7, which represented the last known month
the customer was contacted including many unique categories. To reduce the number of
categories, categories that had less than 25,000 entries for feature A6 and 89,044 entries
for feature A7 were aggregated into the new “other” category. After reducing the number
of categories in A6 and A7, all categorical data was one hot encoded resulting in new
features. The training data was shuffled randomly based on the seed provided for each
separate iteration.

Table 2. Experiment dataset characteristics (number of features was calculated excluding the target
value). Total features were obtained by using all numerical features and converting categorical
features into dummy types by one hot encoding.

Data Characteristic Bank Marketing BNG-Credit_a

Initial features 16 15
Categorical features 10 10

Total features 51 33
Total instances 45,211 1,000,000

Classes 2 2
Target class proportion 0.12 0.544

Dataset sources Bank Marketing [43] BNG_credit-a [44,45]

3.4. Evaluation Scheme

The hold-out validation consisted of two steps. First, shuffle data and split it into
80% and 20% parts, where 80% would be used for training a monolith or providing it for
ensembling, and 20% would be held out for testing purposes to enable a fair comparison
between comparison monolith and ensembling strategies. After the initial data split, the
second step was done on non-testing data, again, taking 80% for training ensemble models
and leaving 20% as validation data for weight estimation in performance weighting and
Shapley-based proposal. During the last step of the hold-out strategy, the data dedicated to
training ensemble models were split into smaller model-wise batches based on Zipf’s law
distribution with its exponent value set to 0.2. Each model was trained on its individual
data batch and tested on validation data to obtain a BCE estimate of its performance.
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Zipf’s distribution was used to partition the training dataset into chunks of varying
sizes, and thus introduce non-IID nature into the data splits used for training base mod-
els. The non-IID nature was desirable because it is observed that, in general, datasets
used in real-world federated learning are non-IID (non-independent and identically dis-
tributed) [46]. To simulate non-IID conditions in artificial environments, training datasets
are usually partitioned into chunks where either the chunk size or class distribution inside
the chunks follows some variant of power law Y = kXa. Here, k is a scaling factor, X is a
chunk index, a is the exponent factor and Y is either the chunk size or the number of classes
reflected in a chunk or some other property of the chunk relevant to the training. Some
authors choose to select power law coefficients in an arbitrary way, i.e., [47–49], while some
choose to use one of the specific power law variations, with Zipf’s distribution being one
example [50–52].

3.5. Performance Comparison

The classifier performance comparison was performed using the cd-diagram library [53]
and using similar techniques to the ones presented in [54]. Friedman’s test [55] was used to
detect whether there is a statistical difference between the performance of the classifiers
compared. If the Friedman test showed that classifiers are statistically different, pairwise
analysis was performed as recommended in [56] by replacing the average rank comparison
with the Wilcoxon signed-rank test [57] corrected with Holm’s alpha correction [58]. In
critical difference diagrams (see diagrams in Section 4.3, e.g., Figure 6), the bold line be-
tween the classifiers displays a lack of statistical difference between the results presented
by these two classifiers. Similar ranking approaches also appear as the choice of result
representation in [32].

4. Results and Analysis
4.1. Experimental Setup

The main goal of the experiments was to compare our proposed weight estimation
techniques with existing ensemble weighting techniques and a monolith model. To reach
this goal, we have conducted two experiments that tested different types of ensembles:
homogeneous ensembles consisting of either logistic regression or decision tree classifiers
and heterogeneous ensembles that used a mixture of both classifiers. Each experiment
consisted of three main parts: model training, ensemble weight selection and ensemble
performance evaluation. During the model training step, individual models were trained.
The weight estimation step consisted of individual model performance evaluation on
validation data and calculation of weights using a selected scheme. Finally, the models
were joined into ensembles by using a weighted average of their predictions. All ensembles
were evaluated on reserved testing data for proper comparison of detection performance
and results were analyzed using the Friedman test. The monolith model differed from the
ensembles that it consisted of a single model created using a training dataset that was not
divided into smaller batches, as shown in Figure 4.

The experiments were conducted on a virtual machine with an Intel Xeon Silver
4114 CPU running at 2.20 GHz that contained 10 CPU cores and featured 32 gigabytes
of RAM with SSD storage. The experiment environment was developed using Ubuntu
18.04 operating system. Two execution environments, R 4.1.3 and Python 3.6.9, were
used for implementation. We chose Python and R programming languages based on
their popularity in the ML field and to demonstrate that the proposed method could be
applicable in systems that use components with heterogeneous environments. By testing
this approach on two popular machine learning languages, we demonstrate that the method
is not hard to replicate in different settings and provide additional insight into the suitability
of weighting strategies, irrespective of the implementation platform. The R implementation
used the machine learning library MLR3 version 0.13.3. The Python implementation used
the machine learning library PySpark version 3.1.2. The parameters used for each mode
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type are listed in Table 3, showing unified parameter values where possible, as well as a
few implementation-specific settings.

Table 3. Hyperparameter values for different model implementations.

Model Type Common Parameters Implementation-Specific Parameters

MLR3 LR 1
E = e × 108

iterations = 25

singular.ok = True; trace = False

PySpark LR 1 regParam = 0.0; aggregationDepth = 2;
threshold = 0.5; elasticNetParam = 0.0; fitIntercept = True

MLR3 DT 2

maxDepth = 30
minInfoGain = 0.01

minSplit = 20; maxcompete = 4; maxsurrogate = 5;
surrogatestyle = 0; usesurrogate = 2; xval = 10

PySpark DT 2
minInstancesPerNode = 20; Standardization = False;

minWeightFractionPerNode = 0.0; minInstancesPerNode = 1;
maxBins = 32; minInfoGain = 0.0; impurity = ‘gini’

1 LR—logistic regression. 2 DT—decision tree.

Both MLR3 and PySpark were used to train models, perform model inference and
store inference results in files. The results of trained models were later used in an ensemble
creation environment implemented using caret 6.0, kappalab 0.4 and matrixStats 0.61,
which summarized inference success by BCE, calculated Shapley values, and combined
output from model inference into a weighted ensemble. One hundred iterations of the
model training process were performed. The implementation provided in [59] was used
to test the method described in [19]. We used marginal contribution approximation as
recommended by Ref.’s [19] research with the quota parameter set to 0.35. The Shapley
values for this method were calculated for individual predictions and then aggregated by
averaging all individual model’s Shapley values. In cases when this method was unable
to produce Shapley values they were substituted with equal weights. The heterogeneous
experiments used the same models that were created for homogeneous ensembles, but
mixed different model types into a single ensemble. Monolith (Mono) approach was
calculated separately by providing model training libraries with undivided training data
and training a single model. To enable a comparison of overall performance, the Mono
strategy that presented the best performance in a homogeneous experiment was also added
to the experiment results. Experiments were conducted with multiple ensemble sizes:
{2, 3, 5, 8, 13} for homogeneous ensembles and {4, 6, 10, 16} for heterogeneous ensembles.
Data hold-out was performed using the R script with Caret package version 6.0-90.

4.2. Experimental Results

The results of the experiment will be presented using two diagrams: the line diagram
displays how BCE error values change with increasing ensemble size and the critical
difference diagram ranks models after pooling the BCE results of all tested ensemble
sizes. Detailed results of the experiments are available online [60]. The experiments
compared the monolith approach (Mono) to five ensemble weighting strategies: equal
weight strategy (Equal), performance-based (Perf), randomly generated (Rand), voting-
based Shapley [19] (Roz), positive Shapley (PosShap) and maximum Shapley (MaxShap).
The monolith approach Mono used the undivided training and testing dataset, providing
a base value for model capabilities without the introduction of ensembling. Due to a
sufficient amount of data, members of ensembles built on the BNG-credit_a dataset did not
produce negative Shapley values; thus, the MaxShap weighting strategy was not applied
in relation to this dataset. Critical difference diagrams evaluate the statistical significance
overall of the ensemble sizes tested.

4.3. Results of Homogeneous Model Ensembles

The homogeneous model ensembles were created using a single type of model. The
two model types chosen were decision tree and logistic regression. The results of logis-
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tic regression ensembles for the BNG-credit_a dataset are presented in Figure 5. These
results indicate that the monolith approach had the lowest BCE of 0.326. All ensemble
weighting strategies exhibited similar results across all evaluated ensemble lengths. The
critical difference diagram in Figure 6 shows an overview of the aggregated rankings for
all tested ensemble configurations and notes that the equivalent model rankings were
produced by both Python and R implementations. These model ranks specify that there
was no statistical significance difference between the other weighting strategies and the Roz
strategy indicating that the gains provided by ensembles using logistic regression model
type we minimal. A Mono approach had the highest rank with posShap ranked as the
second most successful.
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Homogeneous decision tree ensembles in Figure 7 indicate that all ensemble weight-
ing strategies surpassed the performance of the Mono approach. The difference between
weighted ensembles and the Mono approach increased on higher ensemble member counts.
This difference increased from 0% to 4.8% for the best-performing posShap weighting
strategy. If we compare the performance of only weighting strategies, the results reveal
that if the number of models in an ensemble is small (2 or 3), all tested strategies per-
form similarly, when the number of models is greater than 5 posShap outperforms other
approaches with the best result of 0.317 BCE. The performance difference between other



Appl. Sci. 2023, 13, 7010 12 of 23

strategies and posShap also appears in the critical difference diagram in Figure 8 where the
posShap strategy obtained the highest rank. The results also reveal that there is no statistical
significance between Equal and Roz strategy results, as well as Perf and Roz strategies
for the Python implementation. The results for the R language implementation produced
the highest performance gains of all experimentally tested solutions. When compared to
a single model approach Mono on the largest number of ensemble member (13) setting,
ensemble weighting increased the performance with 4.1% and 4.8 % for Perf and posShap
weighting strategies, respectively.
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Logistic regression ensembles for the Bank Marketing dataset (Figure 9) indicate
similar results for ensembles with 2, 3 and 5 member counts over all tested strategies. For
ensembles sized 8 and 13, there was a major increase in BCE for the maxShap weighting
approach. When the ensemble member count reached 8 members, the distinction between
Mono and other strategies became apparent, but the difference remained minimal at
only less than 0.1%. Of all tested cases, the Perf weighting approach showed the best
performance of 0.236 BCE. The weighting strategy comparison via the critical difference
diagram in Figure 10 reveals that the posShap strategy had the best performance, while the
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Perf strategy gave the second-best results. Both posShap and Perf were ranked better than
the Mono approach indicating a performance boost of weighting. Although the results
indicate a clear performance boost of weighting strategies, the 0.4% gain compared to the
monolith approach could be considered trivial this also explains no statistical significance
between the most tested weighting strategies.
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Decision tree model ensembles for the Bank Marketing dataset (Figure 11) demonstrate
that all weighting strategies surpassed the monolith approach, even in the case of very
small ensembles. When the ensemble contained 3 or more members, the BCE of maxShap
classifiers performance decreased and kept on diminishing with higher member counts.
The results of Python implementation revealed that ensembles with member counts of 2
to 8 outperformed the monolith approach, and for larger ensembles of 13 members only,
the posShap strategy exhibited better results of 0.264 BCE for Python and 0.274 BCE for
R implementations. As for experiment implementation using R language Perf, Equal and
posShap weighting strategies presented a lower BCE than the monolith approach for all



Appl. Sci. 2023, 13, 7010 14 of 23

evaluated model counts. The results also indicate that the Perf ensemble weighting strategy
with member count 8 produced the best result of 0.251 BCE. The posShap approach was
ranked first for the R implementation and second for the Python implementation, as can
be seen in the critical difference diagram (Figure 12). In both implementations, the results
were not statistically significant between Random and Roz strategies as well as the PosShap
and Equal approaches in Python implementation.
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The results of the homogeneous ensembles experiment results presented in Table 4
indicate that ensembles composed of the decision tree classifier benefited more from
weighting than the logistic regression classifier ensembles. Decision tree-based ensembles
exhibited a performance increase when compared to the monolith approach by 1.9 %
for Bank Marketing and 4.8% for BNG_credit-a datasets, whereas the performance of
logistic regression ensembles resulted in only a trivial gain of 0.2 % and 0.002%. Although
the benefit of weighting was not as effective in logistic regression ensembles, posShap
weighting still performed very similarly to the Perf strategy, which outperformed other
weighting strategies. The lowest BCE of 0.236 for the Bank Marketing dataset was exhibited
by the Perf weighting strategy with the largest ensemble size of 13, where the posShap
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strategy presented the second-best result of 0.238 BCE. Similar experiment results were
exhibited for the BNG_credit-a dataset where posShap and Perf performance was 0.317
and 0.318 BCE. The effectiveness of the posShap weighting strategy was more apparent
when applied to ensembles with a larger number of members. In contrast to posShap,
the maxShap weighting strategy performed the worst of all tested strategies for larger
ensembles of sizes 8 and 13. In all tested experiment settings our approach surpassed
or at least performed similarly to the weighting strategy Roz [19]. A comparison of
implementations between two different programming languages revealed that even though
some minor differences in results were evident, general trends and ensemble performance
insights were consistent.

Table 4. Rank comparison from Friedman test for homogeneous experiment results with lowest rank
value highlighted in bold.

Model Type LR 1 DT 2 LR 1 DT 2

Dataset BNG 3 BNG 3 Bank 4 Bank 4

Weighting Strategy

Implementation
Python R Python R Python R Python R

Mono 2.13 2.45 5.52 4.86 3.67 3.61 5.33 6.40
Rand 4.40 4.38 3.80 3.50 4.97 5.04 4.11 4.22
Equal 4.58 4.43 3.86 3.94 4.88 4.86 3.21 3.52
Perf 3.63 3.52 2.86 3.10 3.32 3.22 2.25 3.44
Roz 3.58 3.65 3.27 3.54 3.91 3.78 3.68 3.51

MaxShap - - - - 4.43 4.57 6.19 4.22

PosShap 2.67 2.57 1.68 2.06 2.81 2.91 3.24 2.68
1 LR—logistic regression. 2 DT—decision tree. 3 BNG—BNG_credit-a dataset. 4 Bank—Bank Marketing dataset.

4.4. Heterogenous Ensembles

The homogeneous experiment demonstrated weighting capabilities applied to using
identical types of machine learning models. In real-world applications, researchers may
prefer using different model types to increase the ensemble’s diversity and improve its
generalization, but also due to varying capabilities [61] of forming internal representations
from features available. In the following experiment, weighting strategies were applied to
heterogeneous ensembles. The logistic regression monolith model was chosen here as a
baseline due to the best performance in the homogeneous experiment.

The results for heterogeneous ensembles trained on the Bank Marketing dataset using
the Python implementation (Figure 13) were similar to the results presented in the R
implementation. The equal ensemble weighting strategy demonstrated the lowest BCE
overall with the best performance in an ensemble with 16 models that exhibited 0.233 BCE.
The maxShap weighting strategy displayed reduced performance over ensembles with
a higher number of models and exhibited the worst performance overall. The opposite
could be observed for the results of the posShap weighting strategy, although it performed
similarly to the Mono approach in ensembles with 4 and 6 members. Ensembles with 10 and
16 members outperformed the Mono approach. The posShap strategy also outperformed
Perf when the number of models in the ensemble was 16. The posShap advantage over the
Perf strategy demonstrates that Shapley values are able to measure model contribution
in greater detail. This advantage stems from the evaluation of all possible permutations
revealing combinations that cannot be considered by the simple performance metric of
a single model. The ranking of weighting strategies (Figure 14) also reveals that in this
scenario, the Equal strategy outperformed other tested approaches. The Rand approach was
ranked as second best, and Perf and posShap were ranked third and fourth, respectively.
The Mono and maxShap ensemble weighting strategies were the least performant.
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Using the same Python implementation and training the heterogeneous weighted en-
sembles on the BNG-credit_a dataset, the results (Figure 15) were similar to homogeneous
ensemble implementation (Figure 7) for the same dataset. The introduction of logistic
regression models further reduced the BCE for ensembles with applied weighting strategies
and improved the performance of ensembles. The results of the posShap weighting strategy
were the best out of all tested strategies, resulting in a median BCE of 0.312. The Perf
and Equal strategies resulted in a somewhat similar performance. The critical difference
diagram (Figure 16) did not show a statistically significant difference between these two ap-
proaches. The model ranking also revealed that the monolith strategy was ranked the
lowest, meaning that all the ensembling strategies increased their performance over their
homogeneous counterparts. For ensembles of 16 models, the performance gain over Mono
ranged from 1.3% for Equal, Perf and Rand strategies to 1.4 % for posShap strategy.

The heterogeneous ensemble results (Figure 17) for the Bank Marketing dataset using
R language implementation demonstrated that for ensembles with 10 and 16 members,
the posShap weighting strategy surpassed the performance of the monolith approach, but
the best-performing weighting strategy was Equal with 0.233 BCE. With the ensemble
consisting of 10 or more members, posShap outperformed the Perf strategy and produced
the same median as the Rand strategy of 0.235 BCE. Although the weighting performance
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gains were only 0.6%, all weighting strategies, except maxShap, outperformed the Mono
approach. The ranking of ensembles (Figure 18) revealed that the Mono strategy was
ranked as the best-performing one, with posShap and maxShap methods ranked as the
least-performing strategies.
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The results of the heterogeneous ensembles for the BNG-creadit_a dataset imple-
mented in the R language (Figure 19) reveal that all ensemble weighting strategies were
outperformed by the Mono approach. Weighting strategies performed similarly with no
statistically significant differences. Surprisingly, the best result of 0.339 BCE was achieved
by Rand weighting. As for posShap, its performance dropped when the number of mod-
els in an ensemble was 16, but when applied to ensembles with 6 and 10 members, it
exhibited the best performance. The ensemble ranking (Figure 20) also reveals that the
results for all approaches have no statistically significant difference between them, the
Mono approach ranked as the best, and other approaches performed without statistically
significant difference between their results.

The results of the heterogeneous ensemble experiment are presented in Table 5, which
demonstrated that in some cases choosing the right model type is more important than
choosing the right weighting strategy. This is especially evident from Figure 19 where
the monolithic logistic regression model outperformed the ensembles with performance
differences ranging from 1.3% to 2.2%.
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Table 5. Rank comparison from Friedman test for heterogenous experiment results with lowest rank
highlighted in bold.

Dataset BNG 1 Bank 2

Weighting Strategy

Implementation Python R Python R

Mono 5.99 1 4.89 4.04
Rand 3.54 3.79 2.96 2.79
Equal 3.26 3.88 1.82 1.75
Perf 3.20 3.53 3.91 3.65
Roz 3.09 5.50 3.81 5.74

MaxShap - - 6.23 5.97
PosShap 1.92 3.29 4.38 4.05

1 BNG—BNG_credit-a dataset. 2 Bank—Bank Marketing dataset.

One could argue that the difference between the monolith model and the weighting
strategies was caused by implementation-specific hyperparameter settings since no such
advantage of the monolith can be noticed with the Python implementation (Figure 15)
when using the BNG-Credit-A dataset.

The differences between implementations were also minimal when comparing
Figures 13 and 17. The performances of the two implementations ranged from 0.233 to 0.269
BCE and exhibited the same best-performing ensembles achieved with an equal weighting
strategy. The introduction of additional model types improved ensemble performance
in three out of four test cases. Compared to the best result produced in homogeneous
experiments, 0.236 BCE, the heterogeneous ensembles increased the performance to 0.233
BCE. Similarly, the experiment results reveal that in three out of four cases, any weighting
strategy can outperform a monolithic model, signifying the value of ensembling. PosShap
strategy outperformed the Roz strategy in all 3 tested heterogeneous experiment settings
except for Python implementation using the Bank Marketing dataset, where results were
not statistically different between the two strategies. The maxShap weighting strategy
presented the worst results overall, indicating that underlying assumptions and efforts
to account for it only deteriorated the ensemble. This was the more evident the larger
the ensemble.

5. Discussion

Even though the maxShap weighting strategy performance was the lowest when
compared to other tested approaches in both experiments, we consider that model variety
would play a bigger role in real-life applications for heterogeneous ensembles. We assume
that the cause of this phenomenon may be attributed to classifiers trained on smaller data
sets that may contain more noisy data and may result in constructing a very weak learner
upon it. Such models in real-life scenarios might be discarded as erroneous even before in-
cluding them in an ensemble. The posShap method benefited from the opposite effect when
the exclusion of poor-performing members boosted the performance of the ensemble. The
experiment results revealed that even though in some tested cases the weighting strategy
produces a positive gain in ensemble performance, it mostly depends on the used model
type and datasets characteristics. When comparing performance between implementations
in heterogeneous experiment results (Figures 15 and 19) a clear difference between the
monolith model and weighting strategies, when the Mono approach outperforms weight-
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ing strategies (Figure 19), surprisingly, only in the R implementation case. We speculate
that this disparity could be attributed to implementation-specific calculation methods of
Mono models and differences in hyperparameters, although we tried to unify those values
as much as possible.

We assume that the presented weighting strategy could be used in applications that
require high model precision such as medical research because in some other cases, the ac-
curacy gains would not be significant enough to justify the computational costs of Shapley
value exact estimation. The computational complexity of exact Shapley computations is
O(N!), whereas the expected marginal contributions [19] (EMC) approximation methods
complexity is O(N). For illustration, the runtime of Shapley calculations has been evaluated
and the results, supporting these theoretical complexities, are presented in Figure 21. The
exact Shapley computation runtime was similar for ensembles that contained 2–5 members,
but its runtime increased exponentially with higher member counts. The average calcula-
tion time for exact Shapley calculations with 13 ensemble members was 13.612 s and for
EMC approximation 0.002 s.
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This problem of increase in runtime could be addressed by estimating Shapley value
using existing approximation algorithms [62,63], as in, related Shapley vote-based strat-
egy [19] or using approaches to reduce the number of models inside the ensemble without
significantly worsening its performance [64]. However, if approximation is applied our
method would have a computational advantage over competitors’ strategy [19] because
their calculations were performed at an individual data point level, whereas we pool all the
data into a validation set and estimate prediction performance on it. The proposed strategy
could also be applied to achieve privacy preservation when applied in conjunction with
knowledge transfer architecture [17]. The strategy could provide optimal weights for an
ensemble of individually trained shared models that would result in a strong teacher model.

Another use for this study could be developing the architecture described in [20,21] to
provide motivation and an incentive mechanism for the blockchain network participants.
Incentive mechanisms, based on Shapley value, could be used to measure a participant’s
contribution, and provide rewards for model and data sharing. The incentive mecha-
nism would evaluate all machine learning models uploaded by calculating the BCE metric
using all existing data donated to the network. This model performance results pre-
sented in BCE should then be used as an input into the Shapley function that evaluates all
possible combinations.
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6. Conclusions

The proposed weighting strategy for ensemble learning used the reciprocal of binary
cross-entropy as a model performance metric and the Shapley value estimation to enhance
performance weighting with a more global ensembling aspect: how useful the model in
question is, if we test all possible ensemble combinations both including and excluding
it, under the assumption of equal weights. Two variations of this strategy (posShap
and maxShap) were implemented and empirically compared with the monolith model
and other weighting strategies using two large banking-related datasets. A decision tree
and logistic regression were used as our base learners for constructing homogenous and
heterogeneous ensembles.

The highest performance gains over the monolith model in homogeneous ensembles
were observed for the posShap strategy, with the largest ensemble size of 13 members: 4.8%
and 1.9% for the BNG_credit-a and Bank Marketing datasets, respectively. If compared to
traditional performance-based weighting (Perf), our approach improved the performance
by 0.7%. The posShap was ranked as the best strategy, except for the case of the Python
decision tree classifier using the Bank Marketing dataset. Similarly, the posShap weight-
ing strategy in heterogeneous ensembles achieved the best performance with the largest
ensemble size of 16 members, achieving a performance gain of 1.4% over the monolith
approach using the BNG-credit-a dataset. Using the Bank Marketing dataset, posShap
featured a 0.4% gain, but the winner there was equal weighting with a 0.6% gain over the
monolith model.

From the two variants tested only posShap was successful, whereas maxShap was
outperformed by all other weighting strategies, implicating that efforts to correct model
outputs could not improve the performance of a resulting ensemble and simply eliminating
such models from the ensemble works better. While the performance of posShap differs
with respect to the dataset and the base learner used, the experiments demonstrate that it
performs better or at least similarly when compared to other weighting strategies, including
the most similar Shapley vote-based strategy (Roz).
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21. Drungilas, V.; Vaičiukynas, E.; Jurgelaitis, M.; Butkienė, R.; Čeponienė, L. Towards blockchain-based federated machine learning:
Smart contract for model inference. Appl. Sci. 2021, 11, 1010. [CrossRef]

22. Rokach, L. Ensemble Learning: Pattern Classification Using Ensemble Methods; World Scientific: Singapore, 2019.
23. Sagi, O.; Rokach, L. Ensemble learning: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [CrossRef]
24. Dogan, A.; Birant, D. A weighted majority voting ensemble approach for classification. In Proceedings of the 2019 4th International

Conference on Computer Science and Engineering UBMK, Samsun, Turkey, 11–15 September 2019; pp. 1–6.
25. Prodromidis, A.L.; Stolfo, S.J.; Chan, P.K. Effective and efficient pruning of meta-classifiers in a distributed data mining system.

Knowl. Discov. Data Min. J. 1999, 32, 1–29.
26. Shahhosseini, M.; Hu, G.; Pham, H. Optimizing ensemble weights and hyperparameters of machine learning models for regression

problems. Mach. Learn. Appl. 2022, 7, 100251. [CrossRef]
27. Štrumbelj, E.; Kononenko, I. Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst.

2014, 41, 647–665. [CrossRef]
28. Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 1–10.
29. Rozemberczki, B.; Watson, L.; Bayer, P.; Yang, H.T.; Kiss, O.; Nilsson, S.; Sarkar, R. The shapley value in machine learning. arXiv

2022, arXiv:2202.05594.
30. Tang, S.; Ghorbani, A.; Yamashita, R.; Rehman, S.; Dunnmon, J.A.; Zou, J.; Rubin, D.L. Data valuation for medical imaging using

Shapley value and application to a large-scale chest X-ray dataset. Sci. Rep. 2021, 11, 1–9. [CrossRef]
31. Wang, T.; Rausch, J.; Zhang, C.; Jia, R.; Song, D. A principled approach to data valuation for federated learning. Fed. Learn. Priv.

Incent. 2020, 12500, 153–167.
32. Ykhlef, H.; Bouchaffra, D. Induced subgraph game for ensemble selection. Int. J. Artif. Intell. Tools 2017, 26, 1760003. [CrossRef]
33. Chen, X.; Li, S.; Xu, X.; Meng, F.; Cao, W. A novel GSCI-based ensemble approach for credit scoring. IEEE Access 2020, 8,

222449–222465. [CrossRef]
34. Dumitrescu, E.; Hué, S.; Hurlin, C.; Tokpavi, S. Machine learning for credit scoring: Improving logistic regression with non-linear

decision-tree effects. Eur. J. Oper. Res. 2022, 297, 1178–1192. [CrossRef]
35. Laaksonen, J.; Oja, E. Classification with learning k-nearest neighbors. In Proceedings of the International Conference on Neural

Networks (ICNN’96), Washington, DC, USA, 3–6 June 1996.
36. Karthik, S.; Bhadoria, R.S.; Lee, J.G.; Sivaraman, A.K.; Samanta, S.; Balasundaram, A.; Chaurasia, B.K.; Ashokkumar, S. Prognostic

kalman filter based bayesian learning model for data accuracy prediction. Comput. Mater. Contin 2022, 72, 243–259.
37. Loh, W.Y. Classification and regression trees. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 14–23. [CrossRef]

https://doi.org/10.1145/2540032
https://doi.org/10.1145/3377454
https://doi.org/10.1109/MCI.2022.3180932
https://doi.org/10.1016/j.jbi.2020.103424
https://www.ncbi.nlm.nih.gov/pubmed/32335226
https://doi.org/10.1109/TII.2019.2942190
https://doi.org/10.3390/app11031010
https://doi.org/10.1002/widm.1249
https://doi.org/10.1016/j.mlwa.2022.100251
https://doi.org/10.1007/s10115-013-0679-x
https://doi.org/10.1038/s41598-021-87762-2
https://doi.org/10.1142/S021821301760003X
https://doi.org/10.1109/ACCESS.2020.3043937
https://doi.org/10.1016/j.ejor.2021.06.053
https://doi.org/10.1002/widm.8


Appl. Sci. 2023, 13, 7010 23 of 23

38. King, J.E. Binary Logistic Regression. Best Practices in Quantitative Methods; Osborne, Ed.; Jason SAGE Publications, Inc.: Los
Angeles, CA, USA, 2008.

39. Wang, Q.; Ma, Y.; Zhao, K.; Tian, Y. A comprehensive survey of loss functions in machine learning. Ann. Data Sci. 2020, 1–26.
[CrossRef]

40. Roth, A.E. The Shapley Value: Essays in Honor of Lloyd S. Shapley; Cambridge University Press: Cambridge, UK, 1988.
41. Zhang, Z.; Ho, K.M.; Hong, Y. Machine learning for the prediction of volume responsiveness in patients with oliguric acute

kidney injury in critical care. Crit. Care 2019, 23, 112. [CrossRef] [PubMed]
42. Agarap, A.F. Deep Learning using Rectified Linear Units (ReLU). arXiv 2018, arXiv:1803.08375.
43. Sergio, M.; Laureano, R.; Cortez, P. Using Data Mining for Bank Direct Marketing: An Application of the CRISP-DM Methodology.

In Proceedings of the European Simulation and Modelling Conference-ESM’2011, Guimarães, Portugal, 24–26 October 2011.
44. Quinlan, J.R. Simplifying decision trees. Int. J. Man-Mach. Stud. 1987, 27, 221–234. [CrossRef]
45. van Rijn, J.N.; Holmes, G.; Pfahringer, B.; Vanschoren, J. Algorithm selection on data streams. In Proceedings of the Discovery

Science: 17th International Conference, Bled, Slovenia, 8–10 October 2014.
46. Hsieh, K.; Phanishayee, A.; Mutlu, O.; Gibbons, P. The non-iid data quagmire of decentralized machine learning. In Proceedings

of the International Conference on Machine Learning, Virtual Event, 12–18 July 2020.
47. Stripelis, D.; Thompson, P.M.; Ambite, J.L. Semi-synchronous federated learning for energy-efficient training and accelerated

convergence in cross-silo settings. ACM Trans. Intell. Syst. Technol. (TIST) 2022, 13, 78. [CrossRef]
48. Michieli, U.; Ozay, M. Prototype guided federated learning of visual feature representations. arXiv 2021, arXiv:2105.08982.
49. Arnold, S.; Yesilbas, D. Demystifying the effects of non-independence in federated learning. arXiv 2021, arXiv:2103.11226.
50. Wadu, M.M.; Samarakoon, S.; Bennis, M. Joint client scheduling and resource allocation under channel uncertainty in federated

learning. IEEE Trans. Commun. 2021, 69, 5962–5974. [CrossRef]
51. Wang, X.; Han, Y.; Wang, C.; Zhao, Q.; Chen, X.; Chen, M. In-edge ai: Intelligentizing mobile edge computing, caching and

communication by federated learning. IEEE Netw. 2019, 33, 156–165. [CrossRef]
52. Zhou, X.; Deng, Y.; Xia, H.; Wu, S.A.; Bennis, M. Time-triggered Federated Learning over Wireless Networks. IEEE Trans. Wirel.

Commun. 2022, 21, 11066–11079. [CrossRef]
53. Critical Difference Diagram with Wilcoxon-Holm Post-Hoc Analysis. Available online: https://github.com/hfawaz/cd-diagram

(accessed on 15 March 2023).
54. Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep learning for time series classification: A review. Data

Min. Knowl. Discov. 2019, 33, 917–963. [CrossRef]
55. Friedman, M. A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 1940, 11, 86–92.

[CrossRef]
56. Benavoli, A.; Corani, G.; Mangili, F. Should we really use post-hoc tests based on mean-ranks? J. Mach. Learn. Res. 2016, 17,

152–161.
57. Wilcoxon, F. Individual comparisons of grouped data by ranking methods. J. Econ. Entomol. 1946, 39, 269–270. [CrossRef]
58. Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 1979, 6, 65–70.
59. The Official Implementation of “The Shapley Value of Classifiers in Ensemble Games” (CIKM 2021). Available online: https:

//github.com/benedekrozemberczki/shapley (accessed on 10 May 2023).
60. Experiment Results for All Tested Ensemble Sizes and Datasets. Available online: https://github.com/HurrisLT/

ShapleyWeighting (accessed on 10 May 2023).
61. Heaton, J. An empirical analysis of feature engineering for predictive modeling. In Proceedings of the SoutheastCon, Norfolk,

VA, USA, 30 March–3 April 2016.
62. Castro, J.; Gómez, D.; Tejada, J. Polynomial calculation of the Shapley value based on sampling. Comput. Oper. Res. 2009, 36,

1726–1730. [CrossRef]
63. Maleki, S.; Tran-Thanh, L.; Hines, G.; Rahwan, T.; Rogers, A. Bounding the estimation error of sampling-based Shapley value

approximation. arXiv 2013, arXiv:1306.4265.
64. Uzunoglu, B.; Fletcher, S.J.; Zupanski, M.; Navon, I.M. Adaptive ensemble reduction and inflation. Q. J. R. Meteorol. Soc. A J.

Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2007, 133, 1281–1294. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s40745-020-00253-5
https://doi.org/10.1186/s13054-019-2411-z
https://www.ncbi.nlm.nih.gov/pubmed/30961662
https://doi.org/10.1016/S0020-7373(87)80053-6
https://doi.org/10.1145/3524885
https://doi.org/10.1109/TCOMM.2021.3088528
https://doi.org/10.1109/MNET.2019.1800286
https://doi.org/10.1109/TWC.2022.3189601
https://github.com/hfawaz/cd-diagram
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1214/aoms/1177731944
https://doi.org/10.1093/jee/39.2.269
https://github.com/benedekrozemberczki/shapley
https://github.com/benedekrozemberczki/shapley
https://github.com/HurrisLT/ShapleyWeighting
https://github.com/HurrisLT/ShapleyWeighting
https://doi.org/10.1016/j.cor.2008.04.004
https://doi.org/10.1002/qj.96

	Introduction 
	Related Work 
	Methods 
	Base Learners 
	Weighting Strategies 
	Data Preparation 
	Evaluation Scheme 
	Performance Comparison 

	Results and Analysis 
	Experimental Setup 
	Experimental Results 
	Results of Homogeneous Model Ensembles 
	Heterogenous Ensembles 

	Discussion 
	Conclusions 
	References

