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Abstract: Automatic classification of histopathological images plays an important role in computer-
aided diagnosis systems. The automatic classification model of histopathological images based on
deep neural networks has received widespread attention. However, the performance of deep models
is affected by many factors, such as training hyperparameters, model structure, dataset quality, and
training cost. In order to reduce the impact of the above factors on model training and reduce the
training and inference costs of the model, we propose a novel method based on model fusion in the
weight space, which is inspired by stochastic weight averaging and model soup. We use the cyclical
learning rate (CLR) strategy to fine-tune the ingredient models and propose a ranking strategy based
on accuracy and diversity for candidate model selection. Compared to the single model, the weight
fusion of ingredient models can obtain a model whose performance is closer to the expected value
of the error basin, which may improve the generalization ability of the model. Compared to the
ensemble model with n base models, the testing cost of the proposed model is theoretically 1/n of
that of the ensemble model. Experimental results on two histopathological image datasets show
the effectiveness of the proposed model in comparison to baseline ones, including ResNet, VGG,
DenseNet, and their ensemble versions.

Keywords: histopathological image classification; model fusion; deep neural network; weight
averaging; ensemble learning

1. Introduction

Histopathological images are digital images of tissue sections observed under a mi-
croscope, and a large number of studies have shown and verified their important value in
biomedicine [1,2]. In particular, histopathological images have been broadly used in the
screening of many cancers and are, in fact, considered the gold standard for diagnosing
a significant number of cancers. One notable feature of histopathological images is their
high information density, which may include microstructures, such as cells, nuclei, stroma,
tumors, blood vessels, glands, etc., and histopathological images can be observed at various
magnifications, allowing for a multi-scale analysis [3].

The automatic classification of histopathological images plays an important role in
computer-aided diagnosis (CAD) systems, which can reduce the burden of pathologists,
decrease the influence of human factors in diagnosis, and improve the stability of the results.
With the rapid development of deep learning theory and technology [4–7], histopatholog-
ical image classification models based on convolutional neural networks have exhibited
excellent performance in many applications. In order to improve the inference performance
of convolutional neural networks, models with a larger number of layers and channels have
been designed. For example, in the famous ImageNet image classification challenge [8],
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the number of parameters of CoAtNet-4+PT-RA-E150 [9], one of the state-of-the-art models
at present, reaches 275M. Large-scale models have high requirements when it comes to
the size of the training dataset and the capabilities of computer hardware. However, ob-
taining a large number of histopathological images is not an easy task for certain medical
departments. It is also difficult to fully satisfy the computing resources required to train
the model.

Different strategies have been proposed to solve the contradiction between the lack of
training data and computing resources and the pursuit of model performance. One widely
used strategy is transfer learning. It takes the approach of further training (fine-tuning) on
top of a well-trained model, e.g., models trained on ImageNet. A common practice is to
train only the weights of the last few fully connected layers while fixing the weights of the
remaining layers. By using a pre-trained model, one can make full use of its architecture
and weights, resulting in significant reductions in the design and training costs of the model.
This strategy has been widely used in work on histopathological image analysis [10–15].
However, setting the model hyperparameters becomes a challenge when using this strategy
to train or fine-tune the pre-trained model. Common hyperparameters include the learning
rate, weight decay rate, batch size, data augmentation strength, etc. Hyperparameters have
a direct impact on the training effect of the model. The optimal hyperparameter setting
is usually difficult to obtain. Instead, people determine hyperparameter settings based
on experience or by using a grid search on a small verification set. However, the grid
search requires a lot of computational resources and may not reach global optima. Another
strategy is model ensemble. The main idea of model ensemble is to train several base
models with diversity, and then perform majority voting or weighted voting on the output
of these models to obtain the final results. By using different training sets, changing the
training hyperparameters, using different types of optimizers, etc., the diversity between
base models can be improved. Model ensemble can combine multiple base models with
suboptimal performance into a model with strong overall performance, which can lead to
better results than a single model, provided that the diversity among the base models is
ensured. Although the model ensemble strategy avoids the computationally expensive
hyperparameter search, it greatly increases the inference cost of the model. This is because
each test sample needs to be fed to each base model for inference and, hence, the running
time is proportional to the number of base models. This limits the application scope of the
model ensemble methods, especially in low-specification terminals or mobile devices.

Recently, some studies on model fusion in the weight space have been proposed [16–19].
Researchers proposed different strategies to fuse weights of some trained/pre-trained mod-
els to form a single model. Equation (1) shows the weight average strategy for model fusion:

f f usion(x, θ) = f (x,
1
M

M

∑
k=1

θk) (1)

where F = { f (x, θ1), f (x, θ2), · · · , f (x, θM)} represents a set of trained models with the
same architecture but different weights.

In contrast, model ensemble works in the model space, meaning that it fuses the output
of the models to obtain a final result. Equation (2) shows the majority voting strategy on
the model set F:

fens(x) =
1
M

M

∑
k=1

f (x, θk) (2)

It can be seen that the inference cost of f f usion is only 1
M of that of fens while the training

costs of both are almost equivalent. The rationale for model fusion in the weight space
lies in the relationship between local minima and the global solution. Draxler et al. [20]
claimed that the loss minima of a deep neural network are not isolated in a parameter
space but rather form a connected manifold. There can be a path between two local minima
where the loss does not significantly fluctuate. Izmailov et al. [16] observed that when
training a deep neural network using a high-frequency cyclical learning rate (CLR) [21],



Appl. Sci. 2023, 13, 7009 3 of 20

the model weights corresponding to the periodic minimum learning rate are located on the
periphery of the most desirable solutions (global loss minima). Averaging these weights
may lead to a solution closer to the optimal solution than the ones located on the periphery.
Wortsman et al. [17] extended the weight-averaging method from a single training trajectory
to the context of fine-tuning models with different training hyperparameters. Their method
can also work in the transfer learning mode.

Inspired by these studies, we propose a novel model-based fusion method for
histopathological image classification tasks. Following the work of Wortsman et al. [17],
we use the term soup in this paper to refer to the models fused in the weight space, and
each model’s weights are referred to as the ingredients of the soup. We propose two
strategies for constructing soup models: the average strategy and the dominant difference
weight-averaging (DDWA) strategy. For DDWA, by drawing on the idea of the selective
ensemble [22], we select ingredient models that perform satisfactorily enough on the val-
idation set and have large differences from other models for fusion in the weight space.
Compared to the strategy of averaging the weights of all ingredient models, DDWA can pro-
duce a fusion model that achieves a loss closer to the optimal expected loss. The proposed
method can work either in the fine-tuned model mode or in the full model mode.

The contributions of this paper are two-fold:

• We introduce a weight-based model fusion strategy to solve the problem of histopatho-
logical image classification. The strategy significantly reduces the computational
complexity of model training and inference.

• We propose the DDWA method to screen the ingredient models, enabling the weight
fusion model to achieve a better approximation to the optimal value of the loss
function’s error basin, thereby improving the generalization ability of the model.

The remainder of this paper is organized as follows. We review some related and
important works in Section 2. In Section 3, we present the proposed model and its strategies.
The evaluation results are reported and discussed in Section 4. Section 5 discusses the
advantages and limitations of the proposed model. The paper is concluded in Section 6.

2. Related Works

The distribution of minima regions in the loss function of deep neural networks has
been a subject of study in recent years. Draxler et al. [20] observed that along the paths
connecting minima in the weight space, which are unrelated to each other, the training
and test loss would remain nearly equal to that of the minima, while the test error slightly
increases. Their work revealed that the distribution of local minima in the loss function
of deep neural networks has certain characteristics. Smith and Topin [23] explored the
topology of the loss function of ResNet-56 on the CIFAR-10 dataset by training with CLR
and different fixed learning rates. Their work provides theoretical support for finding
the optimal region of the loss function. Garipov et al. [24] further proposed an ensemble
framework that consisted of models along high-accuracy paths in the weight space. They
proposed a fast geometric ensemble (FGE) strategy, which first trains a model to about
80%, uses CLR or fixed learning rates for further training, records the model weights for
every m iteration, and ensembles these recorded models for final results. Izmailov et al. [16]
proposed stochastic weight averaging (SWA) by simply averaging the model weights at
each recorded point along the trajectory of a stochastic gradient descent (SGD) procedure,
with CLR or fixed learning rates. Their work is based on the observation that SGD methods
generally converge on the edge of the minima basin. In such cases, weight averaging can
lead to a better solution. Jain et al. [25] presented a theoretical analysis of tail-averaging
in machine learning models. They presented the generalization error bounds of different
weight-averaging strategies in the SGD procedure. Recently, Guo et al. [26] revisited SWA
and pointed out that its effectiveness depends on the extent to which the SGD algorithm
runs before converging. Their work indicated that fusing models in the weight space can
reduce the test variance.



Appl. Sci. 2023, 13, 7009 4 of 20

Neyshabur et al. [27] proposed that when a pre-trained model is fine-tuned on a new
training dataset using different hyperparameters, the model instances would stay in the
same loss landscape basin. Moreover, these fine-tuned instances would be similar in feature
spaces and close in parameter spaces. Based on their work, Wortsman et al. [17] proposed
model soup, which performs weight fusion over a series of fine-tuned models trained with
different hyperparameters. They designed three strategies for weight fusion: average soup,
greedy soup, and learned soup. These strategies utilize averaging, selective fusion, and
weighted combination to obtain the soup model. For the greedy soup strategy, one would
test each ingredient and keep it if its addition improves the performance of the soup model.
For the learned soup strategy, one would search for a weighted combination that makes
the model perform optimally on the test set. Inspired by their work, in this paper, we
introduce the soup model into the histopathological image analysis and propose a novel
weight fusion strategy by drawing on the idea of selective ensemble.

As an effective strategy for improving the model performance and reducing variance, en-
semble learning has been widely used in histopathological image analysis. Hameed et al. [28]
fine-tuned 4 pre-trained models based on VGG16 and VGG19. They then constructed an
ensemble model by averaging the prediction probabilities of the 4 models. The ensemble
model outperformed the individual models in terms of test loss. Sohail et al. [29] proposed
a method based on deep ensemble for the analysis of mitoses in breast histopathology
images. First, they selected candidate mitoses via an instance segmentation method based
on deep learning. Then a heterogeneous ensemble of deep CNNs was run for mitotic
nuclei classification. Kumar et al. [30] proposed the stacked generalized ensemble model
for breast cancer classification, which uses 6 deep networks as level-0 models and logistic
regression as a level-1 model. The level-1 model acts as an integrator for the outputs of
sub-models. Their model achieved competitive results in the invasive ductal carcinoma
dataset. Ref. [31] proposed a model that uses a deep transfer learning network to detect
COVID-19 from lung CT scan slices, which can make full use of the supervised information
in the dataset of the source field, and is more effective for application scenarios where
there are inadequate amounts of labeled data in the target fields. Ref. [32] used deep
neural networks with different architectures, implemented with contrast-limited adaptive
histogram equalization, to detect COVID-19 from CT lung scans. Their work demonstrates
the effectiveness of deep neural networks in detecting COVID-19. In [33], the authors
designed a weighted average-based heterogeneous network for detecting COVID-19 from
chest CT scans and chest X-ray images. They fine-tuned different deep neural networks,
such as VGG19, ResNet101, and DenseNet169, as base classifiers, and then integrated the
best-performing models to obtain the final results. This work demonstrates that ensemble
learning based on model fine-tuning is effective for COVID-19 detection.

In [28–30], it can be seen that the ensemble of different deep neural networks has been
extensively utilized in histopathological image analysis. The limitations of these works are
listed as follows: (1) They greatly increase the inference costs of the models because they
must obtain the results from each model for ensemble learning; (2) different deep neural
networks need to be carefully designed to maintain the diversity in ensemble learning,
which greatly influences the last outcome. Therefore, the DDWA model is proposed
to overcome these limitations. In addition, studies on histopathological image analysis
based on model weight fusion are rarely publicly reported. Our study can be used as a
complement to the existing work in the field of weight fusion methods for histopathological
image analysis to a certain extent.

3. Model Fusion in the Weight Space for Histopathological Image Classification
3.1. Basic Model Training

As indicated by previous studies [16,20,25,27], model fusion in the weight space works
well in models from snapshots of the trajectory of an SGD procedure, or from fine-tuned pre-
trained models with different hyperparameters. We applied both methods to generate basic
models (ingredient models for soup) in this study. Specifically, we used three famous deep
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convolutional neural network architectures, i.e., ResNet [34], VGG [35], and DenseNet [36],
for basic model training. All models were pre-trained on the ImageNet-1000 dataset [8]
and, hence, our model works in the fine-tuning mode.

The pre-trained models were fine-tuned with two training settings, i.e., the cyclical
learning rate and different training hyperparameters. We saved the model weights in both
cases as the potential ingredients for model fusion.

A. Ingredient Model Training with Cyclical Learning Rate

The main idea of the cyclical learning rate (CLR) [21,23,24], which is different from
the traditional learning rate-adjusting strategy, which decreases monotonically, is to vary
the learning rate cyclically within a proper range as the number of training epochs in-
creases. Let α1 and α2 represent the lower and upper bounds of the learning rate; the
CLR strategy changes the learning rate according to the iteration number k, as shown in
Equations (3) and (4):

α(k) = (1− tk)α1 + tkα2 (3)

tk =
mod (k− 1, c) + 1

c
(4)

In Equation (4), c represents the length of a cycle. Here, we refer to processing a
mini-batch of data at a time as an epoch. At the end of each cycle, i.e., when the learning
rate reaches the minimum, the model weights are saved as checkpoints. Note that α1, α2,
and c are hyperparameters for model training, and have a great impact on the effectiveness
of model weight averaging. The maximum learning rate α2 must be able to jump out of a
local minima basin, which determines the exploration ability of the model. In this study, we
set α2 to a slightly larger value than the initial learning rate used in the traditional learning
rate decay training strategy. The minimum learning rate α1 and the length of a cycle c are
set according to [24].

B. Ingredient Model Training with Different Training Hyperparameters

In addition to CLR, we also fine-tuned the pre-trained model with different (but
constant) learning rates with data augmentation. For constant learning rates, we set the
learning rate to 0.0001, 0.0015, and 0.0002, respectively. We used RandAugment [37] for
data augmentation, which aims to reduce the parameter space and maintain the diversity
of data (images) by using a non-parametric process instead of the learning strategy and
probability. There are only two parameters involved when using RandAugment, i.e., the
number of transformations N and the degree of augmentation distortion M. RandAugment
makes use of a linear scale to represent the intensity of each conversion. Simply put, each
transformation is in the integer range of 0 to 10, where 10 represents the maximum range
of a given transformation. The larger the values of N and M, the stronger the degree of
regularization. We set N = 9 and M = 2 in all of the experiments in this study.

C. The Effectiveness of Soup Ingredients

The effectiveness of model fusion in the weight space depends on whether the model
weights are located in the same loss basin. To show that the ingredients obtained through
our two training strategies meet the requirement of fusion in the weight space, we will first
provide a formal definition of the loss basin, and then use a linear interpolation method
for validation. We use the definition of loss basin proposed in [27], which can be formally
written as follows:

Definition 1. Let L : Rn → R+ be a loss function and S ⊆ Rn be a closed convex set, then S is a
(ε, δ)−basin for L if and only if the following holds:
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• Let US represent the uniform distribution over S, and vS,L represent the expected value of L
on samples drawn from US. Then

Ew∼US [|L(w)− vS,L|] ≤ ε (5)

• ∀w1, w2 ∈ S, define h(w1, w2) = w1 + α̃(w2−w1), where α̃ = max α|w1 + α(w2 − w1) ∈ S.
Then

Ew1,w2∼US ,p∼N (0,(δ2/n)In)
[L( f (w1, w2) + p)− vS,L] ≥ 2ε (6)

• Let κ(w1, w2, p) = f (w1, w2) +
p

|| f (w1,w2)−w1||2
( f (w1, w2)− w1). Then

Ew1,w2∼US ,p∼N (0,δ2)[L(κ(w1, w2, |p|))− vS,L] ≥ 2ε (7)

The definition of basin implies that, on the one hand, a basin should be relatively flat
(small variance), and the value of the loss function that corresponds to each point in it
should be close to the expected value. On the other hand, the value of the loss function
corresponding to the points around the basin should be higher than the expected loss.
Specifically, Equation (6) stipulates that the values of the loss function associated with the
points within the basin should be higher than the expected values when Gaussian noise is
added. Equation (7) stipulates that if a point within the basin is manually pushed away
from the basin by a short distance, the value of its loss function should increase.

To validate the effectiveness of the ingredients, we use linear interpolation between two
ingredient models parameterized by w1 and w2 to generate k middle points wi(1 ≤ i ≤ k),
where wi is given by

wi = γiw1 + (1− γi)w2 0 ≤ γi ≤ 1 (8)

If L(wi)− L(w1)+L(w2)
2 < τ holds for all wi(1 ≤ i ≤ k), in which τ is a threshold, it can

be inferred that w1 and w2 are in the same basin. We report the results of the proposed
model in Section 4.

3.2. Soup Strategies

Recent studies have shown that the way in which the model weights are generated
and the method used for weight fusion have significant impacts on the performance of the
soup model. We collectively refer to the generating and fusing of soup ingredients as soup
strategies. We implemented two strategies for building the soup model. The first strategy
was averaging the soup, which simply involves averaging the weight of each gradient in the
soup. The weight-averaging strategy was applied and proved effective in previous studies.
Since models trained using methods such as gradient descent often converge near the edge
of the error basin, the use of the averaging strategy holds promise in moving a model closer
to the center (expected value) of the error basin, which may have better generalization
ability. Fine-tuning a pre-trained model with different training hyperparameters and
recording the weights in each case would result in a set of models located in the same low-
loss basin. The second strategy involves the use of dominant difference weight averaging
(DDWA), which is motivated by the classical ensemble pruning method [38]. According to
the classification accuracy acc and diversity div, DDWA selects the ingredients with better
performance to construct the soup model. Let H = {hw1 , hw2 , · · · , hwM} represent the set of
candidate ingredients and D = {(x1, y1), (x2, y2), · · · , (xn, yN)} represent the evaluation
dataset, where xi represents the ith instance and yi represents the corresponding class label.
The ith ingredient’s acc and div are defined as Equations (9) and (10):

acci =
1
N

N

∑
j=1

L(hwi (xj), yj) (9)
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divi =

N
∑

j=1
(hwi (xj)− avgj)

2 · α

N
(10)

avgj =
1
M

M

∑
k=1

hwk (xj) (11)

where L(·, ·) is a zero-one loss function, avgj is the averaging output of all candidate
ingredients on xj, and α = 1 if hwi (xj) equals the ground truth label yj; otherwise, α = 0.
divi evaluates the difference between the ith component and the entire set under the
condition of correct classification. We sort all of the ingredients using non-dominated sort
(NDS) according to these two indices, and select the top q% of ingredients to build the soup
model, as shown in Algorithm 1.

Algorithm 1 Non-dominated sort.

Input:
rankA: acc ranking of M candidate ingredients
rankD: div ranking of M candidate ingredients
H: candidate ingredients

Output: rankNDS: NDS ranking of M candidate ingredients
1: F = ∅, rankNDS = ∅
2: for i = 1, 2, · · · , M do
3: Si = ∅ , bi = 0
4: for j = i, 2, · · · , M do
5: if hi dominates hj then
6: add hj to Si
7: else if hj dominates hi then
8: bi = bi + 1
9: end if

10: end for
11: if bi = 0 then
12: Add hi to F
13: end if
14: end for
15: Ascending sort F according to the sum of rankA and rankD
16: while F 6= ∅ do
17: Q = ∅
18: for i = 1, 2, · · · , M do
19: for all g in Si do
20: if ng 6= 0 then
21: ng = ng − 1
22: Addg to Q if ng = 0
23: end if
24: end for
25: end for
26: Ascending sort Q according to the sum of rankA and rankD
27: Add Q to rankNDS
28: end while
29: return rankNDS

NDS ensures that the selected soup ingredient models have good accuracy and are
different from each other, which is in line with the main idea of model soup. Specifically,
a higher accuracy means that the selected ingredient model is close to the error basin, while
a larger difference ensures that the spatial distribution of the component model maintains
a certain distance, both of which make the soup model more effective. Figure 1 shows the
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resulting models obtained through weight averaging in two cases. The circles represent the
performances of the ingredients for constructing the soup model. The triangle represents
the performance of the soup model. The sub-figure on the left shows the soup model
obtained by averaging 4 ingredients that are close to each other, located in the edge of the
error basin. The sub-graph on the right shows the soup model obtained by ingredients
that are close to the edge of the error basin but are apart from each other. The latter error
loss is closer to the expected value of the basin, showing that the resulting soup model is
more efficient.

Figure 1. Two cases of weight averaging of soup ingredients.

Finally, we provide a flowchart to present the main steps of the proposed model. See
Figure 2.

1 

Figure 2. Main steps of the proposed model.

4. Evaluations
4.1. Dataset Description

Two datasets are used for evaluating the proposed model. The first is the SCAN
dataset, which contains 270 H&E tissue images from 5 organs, namely the adrenal gland,
breast, colon, liver, and prostate. The resolution of each image in the SCAN dataset is
1024× 2048. Table 1 shows details of the SCAN dataset.

Table 1. Details of the SCAN dataset.

Tissue Magnifications Number of Images

adrenal 10×, 20× 50
gland 10×, 20× 50
breast 20×, 40× 40
colon 10×, 20×, 40× 60

prostate 10×, 20× 70

Figure 3 shows two examples of the SCAN dataset. The left one is a tissue image
from the breast and the right one is from the adrenal. The images in SCAN were ran-
domly cropped to 1024× 1024 and then resized to 224× 224. We combined images of
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different magnifications during model training to improve the model’s ability to obtain
scale-independent features.

Figure 3. Two examples of the SCAN dataset.

The second dataset is the BreakHis dataset. The breast cancer histopathological image
dataset (BreakHis) is composed of 9109 microscopic images, which can be divided into
2 groups: benign tumor and malignant tumor. All images in this dataset were collected
from 82 patients and the magnifying factors include 40×, 100×, 200×, and 400×. To date, it
contains 2480 benign and 5429 malignant samples. The image has a resolution of 700× 460,
with 3 RGB channels, with an 8-bit depth in each channel, and is in PNG format. His-
tologically, the term benign refers to a lesion that does not have any criteria associated
with malignancy. A malignant tumor is a synonym for cancer; the lesion can invade and
destroy adjacent structures (locally invasive) and spread to distant sites (metastasize) to
cause death. Table 2 shows the details of the BreakHis dataset.

Table 2. Details of the BreakHis dataset.

Type Magnifications Number of Images

benign tumor 10×, 20×, 30×, 40× 2480
malignant tumor 10×, 20×, 30×, 40× 5429

Figure 4 shows two examples of the BreakHis dataset. The left one is a benign tumor
and the right one is a malignant tumor. We combined images of varying magnifications
during model training. Each image is randomly cropped to 460× 460 and then resized to
224× 224.

Figure 4. Two examples of the BreakHis dataset.

4.2. Evaluation Environment and Settings

All model training and evaluations were carried out on a server equipped with an
Intel (R) Xeon (R) W-2245 CPU @ 3.90 GHz, 64 GB memory, and an NVIDIA GeForce RTX
2080 Ti 12 G graphics card. The evaluation code was implemented in Python, and PyTorch
was used to build and train the deep neural networks.

The SCAN dataset is divided into three sets: the training set, validation set, and test set,
following an 8:1:1 ratio. Since there are few pictures in the SCAN dataset, in order to fully
train the model, it was necessary to use data augmentation methods to expand the training
dataset. We used RandAugment [37] for data augmentation after the dataset division.
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The RandAugment method uses a series of operations for image data augmentation, such
as rotating, autoContrast, random cropping, adding Gaussian error, etc., and the number
and magnitude of operations for data augmentation are controlled by two parameters (M
and N). For the stability of the evaluation results, the same augmentation settings were
applied to the validation and test sets. For model training, the batch size was set to 16.
For SWA model training, we set the maximum epoch to 90 and the cyclical learning rate
(CLR) to 0.0002. AdamW was used as the optimizer for model training.

4.3. Evaluation Results

In order to evaluate the effectiveness of the proposed model, measures such as
precision, recall, accuracy, and F1score are used. The definitions of precision, recall, accuracy,
and F1score are as follows:

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

F1score =
2× recall × precision

precision + recall
(15)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.
Precision refers to the proportion of samples that the model predicts as positive examples
and that are actually positive examples. Recall refers to the proportion of samples that are
actually positive examples and are correctly predicted as positive examples by the model.
The F1 score is the harmonic mean of precision and recall, which is used to comprehensively
evaluate the performance of the model on imbalanced datasets. The range of the F1 score
is between 0 and 1, the closer to 1, the better the model performance. For a detailed
description of these evaluation indicators, please refer to [39].

Table 3 shows the precision, recall, and F1 score of the proposed method, as well as
the comparison methods, on the SCAN and BreakHis datasets.

The Model column represents the base model used to generate soup ingredients
and the Strategy column represents the strategies used for model training. LR= 0.0001
represents the results obtained by fine-tuning the model using a constant learning rate
of 0.0001. LR-ensemble represents the majority voting ensemble of models trained with
different LRs, i.e., 0.0001, 0.0015, and 0.0002. LR-Aver-Soup represents the average soup
model, where its ingredients are models trained using the aforementioned different learning
rates. CLR-Aver-Soup (SWA) represents the model obtained using the random weight-
averaging method [16]. CLR-DDWA-Ensemble represents the ensemble model, which
is obtained by selecting the checkpoint models using CLR through the DDWA strategy.
CLR-DDWA-Soup represents the average soup model, which is obtained by selecting the
checkpoint models using CLR through the DDWA strategy.

It can be seen from Table 3 that the model obtained by training with different but
fixed LR values demonstrates a relatively similar performance across each evaluation index.
Ensemble models trained by different LRs can further improve the performance, showing
that the models have diversity. LR-Aver-Soup outperforms LR-Ensemble with a precision
improvement ratio of 3.9%. When comparing CLR-Aver-Soup(SWA) and CLR-DDWA-
Soup, it can be seen that the latter has better performance, showing the effectiveness of the
proposed DDWA ingredient model selection strategy.
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Table 3. Precision, recall, and F1 score on the SCAN and BreakHis datasets.

Model Strategy
SCAN BreakHis

Precision Recall F1 Score Precision Recall F1 Score

ResNet

LR = 0.0001 0.888 0.871 0.880 0.952 0.950 0.950

LR = 0.00015 0.888 0.888 0.888 0.958 0.957 0.957

LR = 0.0002 0.871 0.854 0.862 0.924 0.923 0.923

LR-Ensemble 0.877 0.871 0.874 0.958 0.957 0.957

LR-Aver-Soup 0.911 0.900 0.906 0.950 0.949 0.949

CLR-Aver-Soup(SWA) 0.901 0.896 0.898 0.957 0.956 0.956

CLR-DDWA-Ensemble 0.907 0.902 0.904 0.965 0.963 0.962

CLR-DDWA-Soup 0.929 0.926 0.931 0.979 0.978 0.978

VGG19-BN

LR = 0.0001 0.918 0.917 0.915 0.962 0.961 0.961

LR = 0.00015 0.925 0.925 0.924 0.972 0.971 0.971

LR = 0.0002 0.892 0.889 0.887 0.963 0.961 0.961

LR-Ensemble 0.923 0.921 0.921 0.979 0.978 0.978

LR-Aver-Soup 0.924 0.960 0.940 0.978 0.978 0.978

CLR-Aver-Soup(SWA) 0.914 0.948 0.929 0.970 0.969 0.969

CLR-DDWA-Ensemble 0.915 0.913 0.912 0.979 0.978 0.978

CLR-DDWA-Soup 0.947 0.969 0.958 0.985 0.984 0.984

DenseNet

LR = 0.0001 0.905 0.906 0.904 0.925 0.921 0.920

LR = 0.00015 0.916 0.917 0.915 0.918 0.917 0.917

LR = 0.0002 0.893 0.894 0.892 0.926 0.922 0.921

LR-Ensemble 0.919 0.918 0.916 0.929 0.924 0.924

LR-Aver-Soup 0.928 0.925 0.925 0.937 0.934 0.934

CLR-Aver-Soup(SWA) 0.905 0.904 0.903 0.956 0.956 0.956

CLR-DDWA-Ensemble 0.916 0.915 0.913 0.960 0.959 0.959

CLR-DDWA-Soup 0.931 0.931 0.931 0.971 0.971 0.971

Figure 5 shows the confusion matrices of the models based on ResNet.
The values on the diagonal (green) of the confusion matrix indicate the number of

correctly classified samples in each class and their proportions relative to the entire dataset.
The values in red cells represent the number of misclassified samples and their proportions
of the entire dataset. In the last row, the upper value represents the recall of each class.
The last column represents the precision corresponding to each class. The most bottom
right values represent the accuracy and error rates of the model. It can be seen that the
model does not discriminate well between class 1 and class 4 since, for each model, there
are samples from class 4 that are misclassified as class 1. Compared with the other models,
the CLR-DDWA-Soup model performs better mainly because it has better classification
performance in classes 2, 3, and 5, and fewer misclassified samples in class 1 when compared
to the other models. Compared with the constant learning rate models, the ensemble-based
model (LR-Ensemble) demonstrates a large improvement in the classification accuracy
of class 1. We can see that the ensemble model can make good use of the advantages of
the three base models. Finally, the CLR-based soup models outperform the models with
constant learning rates since their classification performances for class 1 are much better
than the other models.
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Figure 5. Confusion matrix of the models based on ResNet. (a) CLR-Aver-Soup (SWA); (b) CLR-
DDWA-Ensemble; (c) CLR-DDWA-Soup; (d) LR = 0.0001; (e) LR = 0.00015; (f) LR = 0.0002; (g) LR-
Aver-Soup; (h) LR-Ensemble.
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We also provide the top 8 ranking ingredient models as well as their accuracy and
diversity values, as shown in Table 4.

Table 4. Ranking of the ingredient models on the SCAN dataset.

Model Acc Div RankAcc RankDiv RankFinal

model_84 0.908 0.232 1 1 2
model_51 0.864 0.201 7 3 10
model_60 0.880 0.157 2 8 10
model_57 0.862 0.178 8 5 13
model_27 0.857 0.159 9 6 15
model_87 0.872 0.129 4 11 15
model_75 0.878 0.115 3 12 15
model_30 0.855 0.157 11 7 18

In Tables 4 and 5, the first column represents the names of ingredient models. The sec-
ond and third columns represent the accuracy and diversity values of each ingredient
model, respectively. Moreover, the last three columns represent the ranks of accuracy,
diversity, and the final ranking. The final ranking is obtained by simply adding RankAcc
and RankDiv. We can see from Table 4 that the proposed DDWA method selects ingredient
models based on the combination of accuracy and diversity. From the last line of Table 4, it
can be seen that even the 11th most accurate ingredient model can be selected by DDWA,
which has the advantage of approaching the optimal solution from a wider range.

Table 5. Ranking of the ingredient models on the BreakHis dataset.

Model Acc Div RankAcc RankDiv RankFinal

model_39 0.883 0.049 1 1 2
model_42 0.883 0.047 2 2 4
model_18 0.867 0.044 4 3 7
model_15 0.873 0.043 3 4 7
model_27 0.863 0.043 6 5 11
model_57 0.865 0.041 5 7 12
model_54 0.857 0.041 9 8 17
model_24 0.858 0.040 8 9 17

Figures 6 and 7 show the polylines, representing the accuracies of different models
by changing p from 6% to 10% on two datasets. It can be seen that it is not that the
more ingredients in the soup, the higher the accuracy; the best classification results can be
achieved when the components have the ability to approximate the expected value of the
error basin, as depicted in Figure 1.

Figure 6. The accuracy of the polyline representing CLR-DDWA-Soup, fusing the top p% ingredient
models on the SCAN dataset.
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Figure 7. The accuracy of the polyline representing CLR-DDWA-Soup, fusing the top p% ingredient
models on the BreakHis dataset.

Figures 8 and 9 show the accuracies of the SCAN and BreakHis datasets for ensemble
and soup models based on different ingredient models, i.e., ResNet, VGG, and DenseNet.
It can be seen that no single model can achieve the best classification performance in all
ingredient models. For CLR-DDWA-Soup, the soup model based on VGG achieves the
best performance. The reason may be that the features of the training images in the SCAN
dataset are relatively salient and can be effectively extracted via a relatively standard
convolutional neural network. In addition, the soup model based on ResNet and DenseNet
demonstrates relatively close classification results, which are greatly improved compared
to the standard SWA model and the three models with constant learning rates. The highest
increase rate reached 8.78%.

Figure 8. Accuracies of different models on the SCAN dataset.

Figure 9. Accuracies of different models on the BreakHis dataset.
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Figure 10 shows the receiver operating characteristic (ROC) curves of the models on
the BreakHis dataset. It is a curve drawn according to a series of different two-classification
methods (cut-off value or determination threshold), with the true positive rate (sensitivity)
representing the ordinate and the false positive rate representing the abscissa. The ROC
curve can easily determine the ability of a model to recognize samples at a certain threshold.
We can see that CLR-DDWA-Soup achieves the largest area under the curve (AUC) among
all methods. The larger the AUC, the higher the sensitivity; the lower the misclassification
rate, the better the performance of the model.

Figure 10. ROC curves of the models on the BreakHis dataset.

As indicated by Figure 1, averaging the weights of the ingredient models that are
located on the edge of the error basin and that have large diversity can result in a model
whose loss is closer to the expected value of the error basin. We interpolate the weights of
the two ingredient models to obtain a path through the error basin according to Equation (8).
The interpolation parameter γ is set to {0, 1

4 , 1
3 , 1

2 , 2
3 , 3

4 , 1}. The accuracy of the model with
interpolated weights at each point is recorded, as shown in Figure 11. The x-axis coordinates
represent various values of γ and the y-axis coordinates represent the model accuracies.

We can see from Figure 11 that for each specific model category (ResNet, VGG,
DenseNet), the error variation of the weight interpolation model on the two datasets
is always kept within a small fluctuation range, i.e., τ ≤ 0.017. This result confirms the
conclusion that the model selected by the DDWA strategy is located at the edge of the error
basin, which shows its effectiveness.

Finally, we present the results of the Friedman test conducted to evaluate the perfor-
mance of the methods. The Friedman test [40] is a non-parametric test method that uses
rank to realize whether there are significant differences in multiple population distributions.
The principle hypothesis is that there is no significant difference in multiple population
distributions from multiple paired samples. In the field of machine learning, the Friedman
test is often used to compare the performances of multiple algorithms, which can verify
whether there are significant differences among multiple learning algorithms as a whole.
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Figure 11. Model losses with interpolated weights on the SCAN and BreakHis datasets.

Let I and J denote the numbers of methods and datasets. In the Friedman test, we first
calculate the average accuracy of each algorithm running on different datasets, denoted as
V = (vij), where vij represents the accuracy of the ith model on the jth dataset. We then sort
vij in descending order for each dataset and determine the rank values of each algorithm. So
far, the Friedman test involves converting the table representing the original experimental
results, denoted as V = (vij), into the rank table R = (rij). In this study, there are 3 base
models, 9 methods, and 2 datasets used for the evaluation. We performed the Friedman
test on each dataset with different base models. Hence, the size of the ranking matrix R
is (9, 3), i.e., I = 3× 9 and J = 2. The original hypothesis is that the performances of I
different algorithms are similar. The statistic of the Friedman test Ff is defined as follows:

Ff =
12× J

I × (I + 1)

[
I

∑
i=1

R2
i −

I × (I + 1)2

4

]
(16)

Ff asymptotically obeys the χ2 distribution with a degree of freedom I − 1 when I > 5 and
J > 10. The corresponding value of p is defined as:

p = P(χ2
I−1 ≥ Ff ) (17)

When the p-value is less than the given significance level α, we reject the original
hypothesis, meaning that the I algorithms have significant differences in the performance.
Otherwise, we accept the original hypothesis, meaning that the I algorithms have no
significant differences in performance.

Table 6 shows the ranking of the models on both datasets in a Friedman test. There
are three values in each cell, representing the average ranking of the method on the SCAN
dataset, the average ranking on the BreakHis dataset, and the average ranking of the model
on the two datasets. The last column is the total ranking, which is obtained by averaging
the rankings on two datasets and three base models. In our study, I = 3× 9 and J = 2,
meaning that the values do not meet the requirements of Equation (17). Therefore, it is
necessary to look up the table to determine the value of p. Thus, we have p = 0.006. In the
field of machine learning, we usually presuppose that α ranges from 0.05 to 0.1. Since the
p-value is less than α, we need to reject the original hypothesis, which suggests that there
are significant differences in the performances among the I algorithms being compared
across the datasets.



Appl. Sci. 2023, 13, 7009 17 of 20

Table 6. Rankings of the models on SCAN and BreakHis in a Friedman test (SCAN/BreakHis/dataset average).

Model ResNet VGG DenseNet Average

LR = 0.0001 23.0/17.0/20.0 9.5/10.5/10.0 13.0/23.0/18.0 16.0
LR = 0.00015 24.0/16.0/20.0 3.5/7.0/5.25 9.5/24.0/16.75 14.0
LR = 0.0002 21.5/21.5/21.5 16.0/10.5/13.25 15.0/20.0/17.5 17.4

LR-Ensemble 21.5/13.0/17.25 5.0/3.5/4.25 7.0/21.5/14.25 11.9
LR-Aver-Soup 19.0/18.0/18.5 6.0/3.5/4.75 3.5/19.0/11.25 11.5

CLR-Aver-Soup(SWA) 18.0/14.5/16.25 8.0/8.0/8.0 14.0/14.5/14.25 12.8
CLR-DDWA-Ensemble 20.0/9.0/14.5 12.0/3.5/7.75 11.0/12.0/11.5 11.25

CLR-DDWA-Soup 17.0/3.5/10.25 1.0/1.0/1.0 2.0/6.0/4.0 5.08

The smaller the rank value of the model, the better the classification effect. We
highlight the smallest rank value in each column in Table 6. It can be seen that the proposed
CLR-DDWA-Soup model achieves the best results, which shows its effectiveness.

4.4. Model Complexity

The computational complexity of the proposed model includes three aspects. The first
is the computational complexity of training the component models. The component model
mainly consists of ResNet50, VGG19, and DenseNet121, and the computational complexity
of fine-tuning them is related to the size of the model parameters. Please refer to [34–36]
for the model parameter information and computational complexity. The second aspect is
the computational complexity of ingredient model fusion. For a simple weight-averaging
fusion strategy, the weights of each ingredient model are simply averaged. For DDWA,
the NDS algorithm needs to be used to sort the ingredient models, resulting in a total
computational complexity of o(n log n), where n is the number of ingredient models to be
sorted. The third is the time complexity of inference. Since the model in this paper is a
single model after fusion, the computational complexity of inference remains the same as
that of a single ingredient model.

5. Discussion

Our rationale for proposing that the model performs well can be attributed to the
following factors. On the one hand, during the training of ingredient models, different
hyperparameters are fully utilized. Averaging the model weights in different training
stages can result in a model that is closer to the optimal solution. On the other hand,
using the DDWA model selection strategy to rank and select the ingredient models, we can
further improve the performance of the weight fusion model.

Compared to ensemble learning and other model fusion strategies, the proposed
model soup has the following advantages. Firstly, in terms of training and inference costs,
model soup has certain advantages. In terms of training costs, the training strategy used
by model soup is to fine-tune models with different training parameters. Each ingredient
model is further trained on a pre-trained model, so the overall training cost is much smaller
than starting from scratch. In terms of inference costs, the model soup approach involves
averaging, selectively averaging, or weighted averaging the weights of all ingredient
models, ultimately resulting in a single model. On the other hand, ensemble learning
performs voting or selectively weighting the inference results of n different models, so the
inference cost is n times that of model soup. Secondly, in terms of model interpretability,
model soup requires the weight structure of the model to be consistent, and its optimal
solution estimate is supported by the error basin theory of the loss functions, which has
good interpretability. However, for ensemble learning strategies, the component models
have different structures and mainly estimate the error bound of the ensemble model
through the diversity and accuracy of the component models, so the interpretability is not
as good as model soup.

The proposed model has the following limitations. First, the premise of merging
ingredient models in the weight space is that the weight structures of each model must be
consistent, which limits the diversity of ingredient models, including structural diversity
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and model type diversity. This kind of model diversity is good at preventing over-fitting
during training. Secondly, limited by the error basin minimization theory of the loss func-
tion, the model soup proposed in this paper seems to perform better when fine-tuning
the pre-training model, and model fine-tuning is easier to satisfy the condition that each
component model is located at the edge of the error basin; moreover, the essence of the
model soup involves the estimation of the optimal point in the error basin. For ingredient
models trained from scratch, the model soup strategy does not lead to significant perfor-
mance gains. Thirdly, in order to improve the diversity of component models, the model
fine-tuning process relies heavily on the adjustment of training parameters, such as CLR,
the type and strength of data enhancement, and the optimizer choice, which will increase
the training workload and make it challenging to achieve the best training plan.

6. Conclusions

In this paper, we propose a model fusion method in the weight space with a ranking-
based model selection strategy. The DDWA strategy selects ingredient models based on
accuracy and diversity, causing the selected models to scatter around the edge of the
error basin, which makes the weight averaging of the model more efficient. The proposed
method can be used in model training or fine-tuning tasks and is especially suitable for
medical image classification scenarios with only a small number of training samples. At the
same time, compared with ensemble models, our model has lower inference overhead,
which is especially suitable for application scenarios with limited computing resources.

Upcoming research will focus on two key areas. The initial aspect will aim to imple-
ment the ensemble strategy into the proposed weight fusion model. The second aspect will
involve the theoretical derivation of error bounds for the ensemble weight fusion model,
considering different strategies.
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