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Abstract: Network security problems arise these days due to many challenges in cyberspace. The ma-
licious attacks on installed wide networks are rapidly spreading due to their vulnerability. Therefore,
the user and system information are at high risk due to network attacks. To protect networks against
these attacks, Network Intrusion Detection and Prevention Systems (NIDPS) are installed on them.
These NIDPS can detect malicious attacks by monitoring abnormal behavior and patterns in network
traffic. These systems were mainly developed using Artificial Intelligence (AI) algorithms. These
intelligent NIDPS are also able to detect the attack type while detecting network attacks. Previous
studies have proposed many NIDPS for network security. However, many challenges exist so far
such as limited available data for training AI algorithms, class imbalance problems, and automated
selection of the most important features. These problems need to be solved first, which will lead
to the precise detection of network attacks. Therefore, the proposed framework used the highly
imbalanced UNSW-NB15 dataset for binary and multiclass classification of network attacks. In this
framework, firstly dataset normalization is applied using standard deviation and the mean of feature
columns; secondly, an Improved Salp Swarm Algorithm (ISSA) is applied for automated feature
selection separately on binary and multiclass subsets. Thirdly, after applying feature selection, the
SMOTE–Tomek class balancing method is applied where at least four different ML classifiers are
used for binary and multiclass classification. The achieved results outperformed as compared to
previous studies and improved the overall performance of NIDPS.

Keywords: feature selection; minority class; network intruder detection; SMOTE; swarm intelligence

1. Introduction

Today, many anomalies are found in any systems such as in healthcare, blockchain,
cloud computing, and other networks. Any deviation from normal activity in these systems
is known as an anomaly. These anomalies are creating economic-, time-, and resources-
based problems [1]. Similarly, network security has become an open challenge to make
cyberspace stronger than ever to make it cyber-attack-free. Cybersecurity is a structure
containing certain protocols to follow such as in organizations to prevent unauthorized
use of information and communications in a network [2]. Warfare using the internet
between countries is also rising in this modern and digital era. Therefore, cybersecurity
also becomes a weapon such as to strengthen the security of national assets and to protect
citizens’ information and the confidentiality of their data [3].

However, an efficient intruder detection system is needed to detect network attacks or
anomalies found in systems. These anomalies are of two types: network- and host-based
anomalies [4]. The host-based anomalies could be detected using Host Intruder Detection
and Prevention Systems (HIDPSs), which use an application that is installed on the host
side and used to monitor the incoming traffic by monitoring abnormal activities in it [5]. It
does not provide any protection to the network on which the host is being installed. To take
action against malicious attacks on a network, a NIDPS is needed, whereas it is installed
just after the firewall is placed on the network [6].
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These NIDPSs work based upon intelligent methods provided by AI. Mainly, these
methods belong to Machine Learning (ML) and Deep Learning (DL) domains. These
algorithms took cleaned data as input by applying pre-processing operations on raw
data to develop a NIDPS [7]. These trained and classifiable methods are then installed
on a NIDPS to detect the abnormal behavior of network traffic and pop up an alert to
network engineers. The data created by internet sources and the big networks themselves
have an abundance of traffic that makes the network complex and wide. These big data
and wide networks make networks more vulnerable to malicious attacks. However, the
response against each type of network type is different. Therefore, the precise detection of
network attacks with their category is more challenging to solve. The probability to detect
attack-type affects performance as the problem becomes multiclass [8].

NIDPS problems are not only about its performance efficiency against detection of
multiple types of attacks, but it also has problems while proposing an optimal solution
using ML [9] and DL [10] methods. These problems include the selection of the most distin-
guishing features to detect network attacks. For feature selection, many methods such as
wrapper method [11], algorithm-based methods, and evolutionary computing domain [12]
pruning methods are used. Feature selection before developing NIDPS is an important
task as it reduces the feature matrix size while feeding it to classifiers. The evolutionary
computing domain-based methods are used for automatic feature selection, which leads
to full automation with a reduction of time and space complexity of NIDPS. The Particle
Swarm Optimization (PSO) method is also used for feature selection, which improved the
classification results [13], whereas this study suggested using more methods of PSO for
parameters optimization and to increase the NIDPS performance as well. Furthermore, a
survey is conducted based on the issue of the “curse of dimensionality”. It gives an in-depth
look to swarm intelligence methods for feature selection and highlights that these methods
are good for feature selection due to their simpler and potential searching nature [14].
Therefore, these methods are more useful when needed to apply to big datasets.

Furthermore, class imbalance problems arise in developing NIDPS, which is a big prob-
lem. Due to imbalanced data between attack category instances, the previously proposed
NIDPS becomes less reliable if their proposed methods do not solve the class imbalance
ratio while training ML or DL models. The class imbalance problem normally remains
ignored in many of the previously proposed NIDPS and created a big question for those
NIDPS results, which does not solve it and made a biased NIDPS [15]. A class imbalance
problem could also be defined as an improper distribution of categorical or binary data.
It usually occurs in network-attacked datasets when the instance data against positive
class exist with a lower ratio as compared to negative class data [16]. It creates a huge
problem when it is fed to ML and DL classifiers by excess training of models against a single
negative class only. The under-sampling and over-sampling are two ways to solve the class
imbalance problem. The under-sampling technique reduces the majority class samples or
instances to balance the majority and minority class instances. The over-sampling technique
increases the minority class instances to solve the class imbalance problem [17]. However,
these method needs vary from case study to case study of datasets.

To solve the class imbalance problem, a few of the data and algorithm-interpreted
methods are proposed, which solved the minority class problem by oversampling their
instance numbers. They make a new dataset and give a more authentic NIDPS by solving
class imbalance problems. However, the more efficient, minority class oversampled, and
robust automated method of feature selection is needed to give a more precise, efficient,
reliable, and confident NIDPS [18,19]. Therefore, the proposed study uses a UNSW-NB15
dataset that contains a big class imbalance problem [20] against each category of network
attack data as compared to the normal category. The proposed framework contributed in
the following ways:

• A searching potential and automated method of feature selection ‘ISSA’ is applied
instead of using manual features selection, which uses hit and trial methods.
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• The class balancing is performed using majority and minority class balancing methods
via SMOTE–Tomek on the most appropriate feature subset using ISSA.

• An improved and more efficient NIDPS is developed after solving feature selection
and class balancing problems.

The rest of the article is divided into four sections. The related work, proposed
methodology, results and discussion, and conclusion at last with future directions in it.

2. Related Work

Machine-learning-based schemes and methods have been extensively adopted in dif-
ferent real-time problems. These problems include energy consumption minimization [21],
object detection [22], and more specifically the information security domain problems
such as credit card fraud detection [23], CAPTCHA solving [24] to enhance the security of
CAPTCHA-based security questions. Few of the recent studies focused on feature selection
and class imbalance problems while proposing an IDPS. A credit card fraud detection
method is proposed [25] in which firstly the outliers are removed from the dataset to
clean it, and secondly the feature ranking is performed using the Shapiro method to select
the most important features. The class oversampling is performed using the SMOTEN
method. The oversampled, feature-selected based experiment increases the performance
of classification from 0.971 AUC to 1.00. The recent studies and their applied approaches,
including their used datasets and their achieved results, are discussed in this section. A
two-phase feature selection approach is applied using (1) a filter method, which is made
up of information gain and random forest that reduces the dimensionality of the features,
(2) an applied recursive feature selection approach applied that removes the redundancy of
the feature set [26].

The UNSW-NB15 dataset [20,27,28] is used in this study, where multiclass classifica-
tion performance is increased by applying the multi-layer perceptron (MLP) method and
achieves an accuracy of 84.24%. The final selected features were 23, which were filtered
from 42 features given in the dataset. A binary classification based upon the UNSW-NB15
dataset is applied and Decision Tree (DT) was found as the best classifier among five
different applied ML classifiers [29]. The chi-square feature selection method is applied for
feature selection and then uses 5 ML classifiers to classify the UNSW-NB15 dataset. Another
study [30] uses the recursive feature selection method and gives an improved accuracy-
based result. The 20 important features are selected from UNSW-NB15 datasets, which have
42 total features in them. The test-set-based prediction assessment gave 97.34% accuracy.

S.M. Kasongo et al. [31] proposed a filter for feature selection adopted using the
XGBoost algorithm. The 19 features were filtered from 42 features whereas classical ML
methods are applied for binary and multi-class classification. The training, testing, and
validation results are reported where the best achieved multi-class testing accuracy is
77.51%, precision 79.50%, recall 77.53%, and F1-score 77.28% using Artificial Neural Net-
work (ANN). The binary-classification-based best results were achieved by Decision Tree
(DT) with 90.85% accuracy, 80.33% precision, recall 98.38%, and 88.45% F1-score. It claimed
that the feature selection approach increased the binary classification results from 88% to
more than 90%.

The multi-class and binary class classification was performed on KDDCUP99 and
UNSW-NB15 datasets [32]. A different SVM model was proposed and used for classifica-
tion. It used the non-linear behavior of data normalization instead of default linear data
normalization. The binary classification accuracy achieved 85.99%, whereas multi-class
classification accuracy reached 75.77%. The class imbalance problem is solved by a few
studies that have shown that the NIDS detection performance is improved. The two-stage
focal loss-based deep neural network (DNN) was applied to handle the imbalance class
distribution in the UNSW-NB15 dataset. The comparative analysis of multiclass classifica-
tion results showed that the proposed DL method increases the F1-score to 6.37% [33]. It
furthermore reported that their proposed focal loss-based learning improved the minority
class problem of a dataset. On the same dataset of UNSW-NB15, the class balancing was
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fulfilled via Generative Adversarial Network (GAN) by generating new instances [34]. Fur-
thermore, the chi-square method is used for feature selection and then fed to ML classifiers.
The reported results show that accuracy improvement for multiclass and binary are reached
up to 87.44% and 98.14%, respectively.

The recursive elimination method with random forest method was adopted for features
selection where many of the classical ML methods were applied on the UNSW-NB15
dataset [35]. The two-stage classification was performed where 74% accuracy was achieved
at the first stage with SVM and then its output was given to multiple classifiers and achieved
the 86% classification accuracy with 12% improvement. M. Zeeshan et al. [36] proposed
UNSW-NB15 dataset classification and BoT-IoT dataset classification on binary and three
classes (DoS, DDoS, and Normal) based multiclass classification. In this method, the authors
reported that standard features are used, which are selected as per protocol followed by
networks. The manual selection to cover class imbalance is performed by selecting equal
instances of binary and multiclass classification. An LSTM model for classification is used
where 96.3% accuracy is achieved on both types of classification.

An efficient technique to propose IDS was conducted by M. Bakro et al. [37]. It uses
a feature selection approach using four filters, chi-square, symmetric uncertainty, and
an automated method of the stacked encoder. These filters formed a new feature vector,
which fed the ensemble method of classification having LSTM, SVM, XGBoost, and FLN
methods. Further optimization of these ensemble methods is performed using the crow
search method. It validated the results on three datasets; namely, NSL-KDD, Kyoto, and
CSE-CIC-IDS-2018.

Another study [38] used SMOTE method to over-sample the minority class instances
and increase their class ratio against the normal class using three datasets: NSL-KDD,
KDD99, and UNSW-NB15. The features are selected using the Gini method, where only
24 features are selected among 41 in the KDD-99 dataset, 20 selected from NSL-KDD, and
30 from the UNSW-NB15 dataset. The weighted F1-scores reported for three datasets, the
highest weighted F1-scores for UNSW-NB15 dataset achieved by random forest and it
increased to 78% via SMOTE as compared to the original UNSW-NB15 F1-score that was
77% for multiclass. The highest binary F1-score for SMOTE-based UNSW-NB15 against
random forest was up to 88.5%. The KDD99 achieved 94% F1-score for binary class and 90
with decision tree as highest for multiclass. NSL with SMOTE achieved 72 for multiclass
with random forest and 83 highest for binary class with K-means.

The multiple deep learning models have been applied on two datasets: NSL-KDD and
UNSW-NB15 [39]. The XGboost method of feature selection was applied to reduce the
feature space. The 22 and 17 numbers of the feature have been selected from NSL-KDD and
UNSW-NB15 datasets, respectively. The applied methods include simple Recurrent Neural
Network, LSTM, and GRU models. Both binary and multiclass types of classifications are
applied, where XGBoost-LSTM achieved the highest accuracy in binary classification for
the NSL-KDD dataset, and test accuracy as 88.13% and 87.07% for the UNSW-NB15 dataset.
In multiclass classification, NSL-KDD achieved 86.93% and for the UNSW-NB15 dataset,
and it reached up to 78.40% via the XGBoost-GRU method.

The two-way minority balancing and majority creation are applied with SMOTE and
One-Sided Selection (OSS) methods [40]. In this way, a balanced dataset is produced that
reduces the training and testing time in the next stage. CNN and LSTM classifiers are
applied to extract the spatial and temporal features, respectively. The testing accuracy for
NSL-KDD% was reported as 83.58% and 77.16% for the UNSW-NB15 dataset. It mainly
focuses on hybrid approaches applied for class balancing and NIDS.

A summary of recently applied methods that most directly solved the NIDS problem
without solving the class imbalance problem and achieved classification results using
different datasets is shown in Table 1. It is also seen in the above-discussed articles that
recently many of the studies are using class imbalance problem solutions using various
methods such as SMOTE, the manual selection of equal instances from each class, etc. The
used methods are of manual adaptation while not giving a fully automated framework.
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The automation is mainly to achieve this while giving AI-based solutions. Similarly, the
feature selection before applying class imbalance could reduce the classifiers’ complexity by
reducing the feature set size. Furthermore, we could see that in the above studies, very few
of them gave a full solution, which is solving the class imbalance problem with a feature
selection solution with full automation.

Table 1. Tabular description of previously proposed NIDS studies.

Study Year Applied Methods Dataset Results

[32] 2019 Proposed SVM with non-linear
kernel behavior

UNSW-NB15 Binary Accuracy = 85.99%
Multi-class Accuracy = 75.77%

[40] 2020 OSS- and SMOTE-based class
balancing and CNN,
LSTM-based hybrid approach
for classification

UNSW-NB15 Accuracy = 77.16%

[40] 2020 OSS- and SMOTE-based class
balancing and CNN,
LSTM-based hybrid approach
for classification

NSL-KDD Accuracy = 83.58%

[31] 2020 XGBoost-method-based feature
selection and ML classifiers for
classification

UNSW-NB15 Binary Accuracy = 90.85%,
Precision = 80.33%,
Recall = 98.38%,
F1-Score = 88.45%

[31] 2020 XGBoost-method-based feature
selection and ML classifiers for
classification

UNSW-NB15 Multi-Class Accuracy = 77.51%,
Precision = 79.50%,
Recall = 77.53%,
F1-Score = 77.28%

[36] 2021 Manual selection of standard
features and LSTM-based
classification BoT-IoT

UNSW-NB15 Multi-class (3 Categories)
Accuracy = 96.32%

[26] 2022 Two phase feature selection
using filter and wrapper
methods with MLP
classification

UNSW-NB15 Multi-class Accuracy = 84.24%

[39] 2023 XGBoost-method-based feature
selection and LSTM-, RNN-,
GRU-based classification

NSL-KDD Binary Accuracy = 88.13%,
Multiclass Accuracy = 86.93%

[39] 2023 XGBoost-method-based feature
selection and LSTM-, RNN-,
GR- based classification

UNSW-NB15 Binary Accuracy = 87.07%,
Multiclass Accuracy = 78.40%

Therefore, these studies still need a robust, dynamic, and more precise framework that
not only focuses on the performance of NIDS, but also efficiently solves the minority class
problem with appropriate feature selection methods.

3. Materials and Methods

The proposed methodology consists of three major steps (feature selection, class bal-
ancing, and classification), and all of these are shown in Figure 1. The proposed framework
used the UNSW-NB15 dataset, which has a high data imbalance ratio between its classes.
Therefore, a class imbalance is also a problem before applying binary and multiclass classi-
fications. In our applied approach, firstly data preprocessing is employed, which scales
data according to a standard format. The preprocessed data are furthermore given to an
automated method of feature selection.

The previous studies mostly used manual methods of feature selection such as fixing
15 features from 42 features of the UNSW-NB15 dataset based on their ranks or scores to
feed ML classifiers. However, the proposed framework uses a dynamic method of feature
selection instead of manual methods. Automated feature selection is a way in which all
given features are fed to the method and select the most optimal ones. To employ this
dynamic feature selection, the proposed study uses the ISSA method of feature selection. It
works on a bio-inspired natural phenomenon of salps, which are sea species that remain in
search of food optimally with their chain of followers.
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Figure 1. Flowchart of the proposed methodology to detect binary and multiclass network attacks.

After the selection of features, the class imbalance problem is solved using the SMOTE–
Tomek method. After solving the class imbalance problem, two types of results are dis-
cussed in this study. Firstly, the results of classification before applying to oversample,
feature selection. Secondly, the results after applying oversampling method via SMOTE–
Tomek. Both types of results are represented and discussed in Section 4, which gives
strength to the applied methods.

3.1. Data Preprocessing

The public dataset UNSW-NB15 [20] is utilized for NIDS development. It is publicly
available on the internet such as on the Kaggle website [27] and the Australian Intelligent
Security Group (ISG) website [28]. The dataset has two types of data (binary and multiclass)
in it. The binary- and multiclass-categories-based data are extracted as two separate datasets
from the original dataset and then both of them are interpreted separately in the next steps.
The data normalization is applied using the standard scaler method of Python. The feature
columns have different ranges of values including very higher and lower values, which
badly affect machine learning results. Therefore, each feature or column value is re-scaled
as mean = 0 and standard deviation = 1. The feature normalization is performed using
Equation (1).

Z =
x− µ

σ
(1)

The x is the instance that is under processing of normalization, whereas µ is the mean
of an overall column and σ is the standard deviation that is calculated for that column.
After applying the data preprocessing step on the dataset, the feature selection is performed
to reduce the high dimensionality of the dataset. µ is the mean of an overall column and σ
is the standard deviation, which is calculated for the under-consideration column. After
applying the data preprocessing step on the dataset, the feature selection is performed to
reduce the high dimensionality of the dataset.

3.2. Feature Selection Using Improved Salp Swarm Algorithm (ISSA) Method

In the feature selection phase, previously many of the studies used wrapper and
filter methods. Those are old and manual methods based on scores and rankings of
features. Therefore, the proposed study uses an automated way of feature selection via an
evolutionary computing domain method.

Evolutionary computing domain methods are nature-inspired and have heuristic ways
to find an optimal way to fulfill their goals. These methods are considered to be more
optimal due to their heuristic and searching potential nature. It does not use any fixed
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threshold value to filter out any particular data whereas it uses a fitness function to calculate
and iterate over the whole feature space of given data. It uses multiple iterations and uses
all feature combinations throughout the input feature space. Therefore, it is considered
a more optimal solution as compared to other manual feature selection methods. For
example, sea species search around for food and have almost the same searching criteria.

Similarly, salp is a marine organism that has a shape very similar to jellyfish. It moves
and feeds through its feeding filters. It has a salp chain-like structure. While finding food,
its leader’s salp individual leads the chain and tries to find the optimal location to find
food. Once a more optimal location is found, it updates the whole salp chain after updating
the leader location into search space. The original method of SSA was developed in 2017
by Mirjalili et al. [41].

In that method, a search space is given in which a weight initialization is given to the
salp population. The weights continuously remain updated using lower and upper bound
values concerning the best position found by salp individuals. However, the improved
version for salp swarm optimization was published in 2020 by Hegazy et al. [42]. This
method uses KNN classifiers while calculating the fitness of each iteration and considers
new ones on two bases: the minimization of features and the maximization of accuracy
with the selected subset of features. The pseudo-steps for feature selection using the ISSA
method are given in Algorithm 1:

Algorithm 1 ISSA method working steps.
Step 1: Initialize and load preprocessed dataset
Step 2: Initialize all salp (indices) locations with random values
Step 3: Dedicate different feature subsets to all salps
Step 4: Check the fitness of all salps using the ISSA fitness function
Step 5: Update the positions of all salps
Step 6: if maximum iteration is reached or stopping condition is reached, stop and extract the maximum
accuracy achieved feature subset using the KNN method or if not then revise steps 1 to 5

The major steps of the ISSA feature selection method are described above that contain
6 steps mainly. As we can see in step 2, the locations of salps are initialized using random
values, and its mathematical representation is shown in Equation (2).

D1
n =

{
w ∗ Posn + r1((upn − lown)r2 + lown) if r3 >= 0
w ∗ Posn − r1((upn − lown)r2 + lown) if r3 < 0

(2)

In Equation (2), D1
n, representing the leader position of the salp chain, used an inertia

parameter w, which has [0,1] range of values where Posn is the nth position of the food
source. The r1 is a random value that also ranges between 0,1.

It balances the exploitation fact if any are found in locating the new position of the
salp leader. The (upn) and (lown) are showing the upper and lower bound positions of
search space in a given matrix of feature column values. However, after setting the leader
position in the salp chain, the followers’ positions are updated using Equation (3).

Dm
n = 1/2(Dm

n + w ∗ Dm−1
n ) (3)

In Equation (3), the Dm
n shows the position of mith position follower of the salp chain

where n is the dimension of the given feature space. However, as discussed above, ISSA
used an updated fitness function based upon the KNN classifier to update the positions of
the salp and to select the most accurately classified subset of features. The fitness function
is calculated using Equation (4).

Fitness = c1 ∗ E(C) + c2(|F|)/(|T|) (4)

The fitness is controlled by two constants known as c1 and c2. The E(C) is the error
rate of the classifier which is using the features subset |F| from the total |T| features given
in the feature set matrix. However, based upon fitness value, the selection of features is
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controlled using a single dimension vector having 0,1 binary values to show 1 for selection
of features and 0 for not selection. The mathematical representation of a singleton feature
vector for feature selection is shown in Equation (5). It is taken out from the salp population
containing feature subsets.

Smn =

{
1 if Xmn >= 0.5
0 otherwise

(5)

The selected feature set (Smn) is a vector showing the value 0,1 based upon the contin-
uous position of the salp individual (Xmn) in feature space n by moving with m position.
The selection of features is based on the fitness value that is calculated from the feature
subset performance described above. In ISSA, the salp chain generation, each salp has
been assigned a different set of features and given to KNN classifiers for classification.
The selected subset of features is given to classifiers, whereas the loss of it is checked in
terms of the position of the salp individual. If the position of the salp chain leader is found
to be better based on the selected subset feature performance, then the leader and other
followers’ positions are also updated. At last, if the maximum iteration position is reached,
then the position of the best-performing subset of features is finalized and the algorithm is
terminated. This method of feature selection is dynamic, and it is applied on binary and
multiclass feature sets separately. However, to feed the big and class-balanced dataset, the
selected subset of features is given to the SMOTE–Tomek oversampling method.

3.3. SMOTE–Tomek Oversampling to Balance Class Minority

The dataset is highly imbalanced when we see multiclass instances whereas it is
less imbalanced when we see binary class distributions. SMOTE single method is used
as an oversampling technique to create instances for minority classes with the use of the
Euclidean distance method and K-nearest neighbor (KNN) method instead of using random
oversampling of the same data. The Tomek is another single method of under-sampling;
it uses minority and majority class samples to create an in-between sample selected from
minority and majority class data for a third class. However, the combination of both
methods covers the under-sampling and oversampling of both solutions. The proposed
study uses the SMOTE–Tomek method to balance the minority and majority class instances.
The combination of both of these methods works in such a way that SMOTE selects random
data from the minority class of selected features data of UNSW-NB15. Secondly, the distance
between random data and KNN-method-based neighbors is calculated. The new instance
for the minority class is inserted as a product of the different methods and calculated
in the second step. The new data are created in this way until the desired amount of
instances is reached for the newly inserted oversampled data. The Tomek method starts
working after SMOTE by calculating majority class instances; if the ratio of the majority
class already meets the required amount of data, then the new instance does not insert.
The proposed study uses a different amount of class imbalance ratio against each category
of the multiclass dataset to enhance the classification performance, but equalizes class
distributions in the binary class problems.

3.4. Classification Using ML

The automated selected features for binary class and multiclass data are separately
given to SMOTE–Tomek oversampling methods. The 2 classes-based balanced dataset
using the SMOTE–Tomek method and substituted subset of important features using ISSA
methods is fed to 4 different ML classifiers. The results before and after oversampling are
given to show the validity of selected features based on oversampled data. The results are
collected using an 80–20 dataset split of given data. The binary and multiclass classifications
are performed, where 4 types of results are shown in total. Two experiments were mainly
conducted. In the first, 42 original features exist in the UNSW-NB15 dataset and are used
for binary and multiclass classifications. Secondly, the selected features-based minority
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and majority class balanced dataset is used, and results for both binary and multiclass
classification are shown in Section 4.

4. Results and Discussion

The applied strategies on the UNSW-NB15 dataset to solve three major problems
of NIDPS development are solved and discussed in a step-wise manner. The results
for all of the applied methods are described in this section. Firstly, the feature selection
performance of the ISSA method is shown, where 14 features were selected for multiclass
classification and 15 features were selected for binary class classification. Secondly, the
dataset description is added before and after minority and majority class balancing. Lastly,
two types of experimental results are shown in which results of original data-based binary
and multiclass classifications are shown and the results after applying feature selection
and class balancing methods are shown. The validity of the results shows that better
performance is achieved while feature selection and class balancing problems are solved
before applying classification. The overall framework-based steps are described in detail in
Algorithm 2:

Algorithm 2 Proposed framework working steps.
Step 1: Initialize and load preprocessed dataset
Step 2: Perform ISSA method-based feature selection
Step 3: Separate binary and multiclass feature sets based upon network attack categories
Step 4: Apply the SMOTE–Tomek method of minority and majority class balancing
Step 5: Conduct two Experiments for classifications and calculate results
Step 6: In Experiment 1: Fed feature selected and class balanced feature matrix to 4 ML classifiers for binary
classification
Step 7: In Experiment 2: Fed feature selected and class balanced feature matrix to 4 ML classifiers for multiclass
classification
Step 8: Extract results and perform a comparison to prove better performance as compared to previous methods
based upon the applied combination of methods

There are 8 steps involved to develop the proposed NIDPS system. The preprocessed
dataset is given to reduce the features with the ISSA method of feature selection which
has chosen 14 features for multiclass and 15 features for binary classifications. Step 3
describes that the binary and multiclass categories-based feature-selected matrices are
separated. Step 4, based on minority and majority class balancing, is performed, where this
balanced dataset is fed to ML classifiers. The 2 experiments are conducted separately, on
the original dataset for binary and multiclass classification and secondly on feature-selected
and class-balanced new datasets based on binary and multiclass classifications as described
in steps 6 and 7. In step 8, the extracted results are compared with previous studies, which
showed an improvement in results.

4.1. Feature Selection Using ISSA Method

The dynamic feature selection is applied to the preprocessed dataset using the ISSA
method as explained in Section 3.2. However, stopping conditions of the ISSA method vary
for binary and multiclass feature sets to fine-tune the ISSA method while training. The
training of ISSA simply could be explained as finding the optimal and best location in the
search space of the ISSA method. However, the optimal or best search space in terms of
feature selection is known as the best and most accurate performance achieved subset of
features. This is the fitness criteria of the ISSA method, to find the best combinations of
features with the highest accuracy. To find the best subset of features from given feature
sets, the ISSA method did the training. The training graph on minimization of loss is
maintained at a maximum of 100 epochs. In binary class data, the loss does not decrease
while applying 100 epochs, therefore it stopped on 50 epochs as the optimal stopping
condition, and the result is founded. At this stage, it selected 15 features. In the case of
multiclass problems as classes were 10, the loss was also not in decimal values. Although
100 epochs are used as maximum training conditions for the ISSA method, as a result, it is



Appl. Sci. 2023, 13, 7002 10 of 18

given 14 features as optimal ones for classification. The training graphs for both binary and
multiclass classifications are shown in Figure 2.

Figure 2. Training graphs for feature selection using the ISSA method: binary data (Left) and
multiclass (Right).

The left side for feature selection-based loss value is showing that it started from 0.062
and stopped to consist of a similar value for many epochs as 0.048. The right side of the
training graph for multiclass data is showing that the loss value started from 0.2050 and
ended at 0.1850 value while the value lastly decreased when moving from 80–100 epochs. It
is observed that the binary class loss ranges in between 0.0 decimal values whereas, in the
case of multiclass, the loss ranges from 0.2 to 0.18, this is due to the multiclass and binary
class type of features data. The multiclass dataset loss fell to less low as compared to the
binary class as there are only two types of classes to distinguish. The optimal fine-tuning
parameters applied for both multiclass and binary class data feature selections are described
in Table 2.

Table 2. Optimal parameters found for feature selection using ISSA method.

Parameter Values

Salps selected for feature subset 10
Epochs 50–100
K value in KNN 5
Folds 5

Table 2 shows that 10 salp individuals are assigned to subset feature sets from the orig-
inal given features. The final selected features range changes for multiclass as 14 features
and 15 features for binary classification. The 50 and 100 values are given as maximum
epochs, where they could be changed if the dataset size and classes change. The number of
folds used while testing on KNN methods for training and testing of feature subsets with
salps is 5 and the K value as neighbor assigning is also 5.

4.2. Dataset Description before and after Applying SMOTE–Tomek Method

The features are selected at the first stage by applying standard scaling on 42 features
given in the UNSW-NB15 dataset. The ISSA feature selection method showed 14 and
15 important features while applying multiclass and binary class classification, respectively.
These two selected feature sets are given to the SMOTE–Tomek method for class balancing.
Before and after applying the SMOTE–Tomek method, class instances for binary and
multiclass datasets are shown in Figure 3.
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Figure 3. Binary and multiclass instances bar graph is shown in 4 sections: (A) binary class instances
in the original dataset, (B) multiclass instances in the original dataset, (C) class balanced instances
using SMOTE–Tomek for binary data, and (D) class balanced instances using SMOTE–Tomek for
multiclass data.

The class-wise instances in section (A) show that 164,674 instances exist in the original
dataset for class 1 and 9300 for class 0. Section (C) shows oversampling not only for class
0, but also for class 1 because the SMOTE–Tomek method is used for oversampling and
undersampling both to balance the classes whereas both classes contain 114,034 instances.
However, in multiclass class instances selection, as we can see in section (B) that class 9
has 93,000, class 5 has 58,871, class 3 has 44,525, class 4 has 24,246, class 2 has 16,353, class
6 has 13,987, class 0 has 2677, class 1 has 2329, class 7 has 1511, and class 8 has 174. If we
discuss oversampled multiclass data instances, the bar graph is shown in section (D), it
contains instances as class 9 has 91,432, class 5 has 58,689, class 3 has 44,576, class 4 has
25,957, class 2 has 20,157, class 0 has 18,997, class 1 has 14,465, class 6 has 13,776, class
8 has 9973, and class 7 has 9781. The different behavior against each class for minority
class balancing is shown where class 9 is a normal class that has 93,000 instances originally
which decreased due to the use of the Tomek method. However, based on the results before
and after applying class balancing, the results of classification for binary and multiclass are
discussed in the coming section.

4.3. ML Classification before Applying Feature Selection and Class Balancing Methods

The 4 different classifiers which were abundantly applied in previous studies are
adopted by our proposed study, where an 80 (training)–20 (testing) split of data is used.
The binary and multiclass classifications are both applied using 4 classifiers, where accuracy,
precision, recall, and F1-score metrics are used for the evaluation of binary and multiclass
data performances. Table 3 contains results for both types of classification and a visual
illustration is shown in Figure 4.
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Table 3. Binary and multiclass classification results on original UNSW-NB15 dataset before applying
feature selection and class balancing methods.

Categories Methods Accuracy Precision Recall F1-Score

Binary Random Forest 96.46 96.46 96.46 96.46
Extra Tree 96.29 96.28 96.29 96.28

Decision Tree 95.61 95.62 95.61 95.62
Gradient Descent Boost 94.16 94.14 94.16 94.14

Multiclass Random Forest 82.58 82.50 82.58 81.44
Extra Tree 82.52 82.53 82.52 81.49

Decision Tree 82.55 82.02 82.55 81.53
Gradient Descent Boost 81.42 81.31 81.42 79.02

Figure 4. Graphical illustration of 4 ML classifiers’ results before applying feature selection and data
balancing methods.

Table 3 shows binary classification results for 4 ML classifiers, where the performance
of all classifiers varies slightly from 94 to more than 96%. The best classifier remains a
random forest with 96.29% accuracy, 96.28% precision, 96.29% recall, and 96.28% F1-score.
The worst classifier remains the gradient descent-boosting classifier as its training and
testing time was also more than double and its scores remain at 94.16 accuracy and recall
with 94.14 as precision and F1-score. The two methods of decision tree and extra tree
remain in between, whereas the decision tree is outer bound to the extra tree in terms of
accuracy score and according to other metrics as well. It showed a 95.61 score, which is
lower bound to the extra tree performance score, which is 96.29%, which is nearer to the
highest score achiever method random forest.

However, if we look at multiclass classification scores, again random forest showed
82.58% accuracy and recall, 82.50% precision, and 81.44% F1-score. The worst score achiever
(gradient descent boosting) again remained in multiclass classification with 81.42% accuracy,
81.31% precision, 81.42% recall, and 79.02% F1-score. Now, we look at F1-scores, which
mainly contain the class-wise performance with class imbalance fact in it due to recall and
precision scores sum and multiplication in its formula. Due to class imbalance, F1 reduces
its score by comparing with accuracy, which is 82.58%, and F1 remains at 81.44%. Similarly,
in the case of the worst performer gradient descent-boosting method. It reduces from 81.42
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to 79.02. Therefore, class imbalance problems affect F1 scores for all classifiers, which need
to be solved to make it nearer to accuracy.

4.4. ML Classification after Applying Feature Selection and Class Balancing Methods

The feature selection using the ISSA method at first applied to all features that are 42
in number. The feature selection gives 14 multiclass important features, whereas it gives
15 feature subsets for binary class feature sets. Both selected feature subsets are given to
the SMOTE–Tomek method for minority and majority class instances balancing, which is
discussed in Section 3.3 regarding operational working and in Section 4.2, and the class-
wise increment for both binary and multiclass data is discussed. However, these feature sets
that are selected using the ISSA method and are class balanced using the SMOTE–Tomek
method are fed to four ML classifiers. Both binary and multiclass classification results are
shown in Table 4 and the graphical description is shown in Figure 5.

Table 4. Binary and multiclass classification results on original UNSW-NB15 dataset after applying
feature selection and class balancing methods.

Categories Methods Accuracy Precision Recall F1-Score

Binary Random Forest 98.03 98.03 98.03 98.03
Extra Tree 98.09 98.10 98.09 98.09

Decision Tree 97.22 97.22 97.22 97.22
Gradient Descent Boost 94.35 94.36 94.35 94.35

Multiclass Random Forest 85.15 85.79 85.15 85.31
Extra Tree 84.98 85.70 84.98 85.19

Decision Tree 83.81 84.64 83.81 84.07
Gradient Descent Boost 82.01 82.30 82.01 81.90

The binary and multiclass classification results against extra tree classifiers showed
the best performance, whereas previously it was best for random forest before applying
feature selection and class balancing methods. However, there is no big difference between
the random forest and extra tree classifier performance. The random forest showed 98.03%
accuracy, precision, recall, and F1-score, which means it remains similar in all classes even
in F1-score as well, which was lower in Table 3. The worst performing classifier again
gradient descent boosting is with 94.35% accuracy, and almost similar in all other metrics
as well.

The best performer is the extra trees method with 98.09% accuracy and recall, and
F-score with a slightly larger 98.10% precision score. The third-best performer method
is the decision tree, which is nearer to the extra tree method. It showed 97.22% accuracy,
precision, recall, and F1-score. If we look at multiclass classifiers’ performance, the results
are sufficiently increased as they increased in binary classification also. The binary class
classification results as compared to Table 3 are increased from 96.46% to 98.09% in terms
of accuracy. The best performer in multiclass classification is not changed this time as
compared to Table 3. The best performer is the random forest with 85.15% accuracy and
recall, 85.79% precision, and 85.31% F1-score. The second-best performer is an extra tree
with 84.98%, which is nearer to 85%, whereas if we look at F1-score, which is 85.19%, that is,
more importantly, good as compared to accuracy because this time this score is representing
a class imbalance problem solution. Similarly, the third-best-performing classifier decision
tree showed 83.81% accuracy with an increment of F1-score up to 84.07%. The worst
classifier is again proven as a gradient descent-boosting method, which showed 82.01%
accuracy, whereas F1-score is not increased in this case by comparing to the other three
methods, but it improved as compared to Table 3 results. The graphical representation is
shown in Figure 5.
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Figure 5. Graphical illustration of 4 ML classifier results after applying feature selection and data
balancing methods.

However, if we look at classification results before and after applying feature selec-
tion and data balancing methods, the results of all classifiers improved for both types of
classifications. Although, an important thing to notice in both types of classification is
that by resolving feature selection and class balancing problems, not only the performance
of classifiers is increased but also the score becomes consistent in all metrics including
F1-score, which is more specifically targeting the class imbalance problem.

5. Comparison

The proposed study is compared with previous studies, which used SMOTE for class
balancing and similarly other methods to solve network intrusion detection systems by
applying binary and multiclass classifications. Their achieved results and applied methods
on the UNSW-NB15 dataset are shown in Table 5. If we look at the comparison table, the
first comparison in Table 5 has shown results as binary accuracy with an 85.99% score and
multiclass accuracy as 75.77%. The UNSW-NB15 dataset is used in it. It uses the SVM
method of classification with monitoring the non-linear kernel behavior. If we look at
the second comparison, which uses SMOTE for oversampling and the OSS method for
undersampling for class balancing, after that two methods were applied in which CNN
was applied at first, which uses to extract the spatial features, and secondly, the Bi-LSTM
method is used to extract the temporal features. In this way, a deep hierarchical model of
classification is formed to give a hybrid solution. It shows a classification accuracy of 77.16%
on the UNSW-NB15 dataset. It also uses the NSL-KDD dataset on which classification
accuracy reached 83.58%. However, its performance remains lower in achieving better
scores on the UNSW-NB15 dataset as compared to the results of the proposed study.

Similarly, the third comparison uses the XGBoost method for feature selection, which
is normally the method used for classification. Furthermore, it uses ML methods for
classification on the same dataset used by the proposed study. All metrics for multiclass
classification remain nearer to 77–79%, which is lower than the proposed study-achieved
results. The fourth comparison applied a two-step method of feature selection using filter
and wrapper methods. The achieved results showed 84.24% multiclass accuracy, which is
lower than the proposed study achieved results. The fifth comparison used two datasets for
applying its framework in which he applied the XGboost method of feature selection with
GRU, LSTM, and RNN methods of classification. The binary and multiclass classification is
applied to NSL-KDD and UNSW-NB15 datasets where the UNSW-NB15 dataset is used by
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the proposed framework. Therefore, compared with the dataset results where the achieved
results by a proposed framework in the binary and multiclass category are higher. We can
say that by comparing the proposed study in terms of both classifications with selected
features and class balancing methods, the proposed framework achieved better results than
all of them. However, the performance of binary and multiclass classification is improved
due to dataset balancing and appropriate feature selection methods.

Table 5. Comparison with recently applied different studies on binary and multiclass classification
using UNSW-NB15 dataset.

Study Year Propsed Methods Results

[32] 2019 Proposed SVM with non-linear
kernel behavior

Binary Accuracy = 85.99% Multi-class
Accuracy = 75.77%

[40] 2020 OSS- and SMOTE-based class
balancing and CNN- and
LSTM-based hybrid approach for
classification

Accuracy = 77.16%

[31] 2020 XGBoost-method-based feature
selection and ML classifiers for
classification

Multi-Class Accuracy = 77.51%,
Precision = 79.50%, Recall = 77.53%,
F1-Score = 77.28%

[26] 2022 Two-phase feature selection using
filter and wrapper methods with
MLP classification

Multi-class Accuracy = 84.24%

[39] 2023 XGBoost-method-based feature
selection and LSTM-, RNN-, and
GRU-based classification

Binary Accuracy = 87.07%,
Multiclass Accuracy = 78.40%

Proposed
Framework

ISSA-method-based feature selection
and SMOTE–Tomek-based class
balancing for network intruder
detection

Binary Accuracy = 98.09%,
Precision = 98.10%, Recall = 98.09%,
F1-score = 98.09%

Multi class Accuracy = 85.15%,
Precision = 85.79%, Recall = 85.15%,
F1-score = 85.31%

Similarly, the third comparison uses the XGBoost method for feature selection, which
is normally the method used for classification. Furthermore, it uses ML methods for
classification on the same dataset used by the proposed study. All metrics for multiclass
classification remain nearer to 77–79%, which is lower than the proposed study-achieved
results. The fourth comparison applied a two-step method of feature selection using filter
and wrapper methods. The achieved results showed 84.24% multiclass accuracy, which is
lower than the proposed study achieved results. The fifth comparison used two datasets for
applying its framework in which he applied the XGboost method of feature selection with
GRU, LSTM, and RNN methods of classification. The binary and multiclass classification is
applied to NSL-KDD and UNSW-NB15 datasets where the UNSW-NB15 dataset is used by
the proposed framework. Therefore, compared with the dataset results where the achieved
results by a proposed framework in the binary and multiclass category are higher. We can
say that by comparing the proposed study in terms of both classifications with selected
features and class balancing methods, the proposed framework achieved better results than
all of them. However, the performance of binary and multiclass classification is improved
due to dataset balancing and appropriate feature selection methods.

6. Conclusions

Network security becomes a worldwide problem and many studies and solutions
have been proposed to solve such problems. These solutions still have a deficiency in them
due to many current problems. These problems are with the NIDPS system itself, and
also with the data mining domain. The development of NIDPS is mainly based on the
training of a dataset to create a machine or deep learning domain classifier. This dataset
is normally imbalanced due to the abundance of records of the normal flow of network
traffic and has very network-attacked instances. In this way, the use of these imbalanced
datasets to develop NIDPS will lead to compromising performance. Therefore, problems
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such as class imbalance and feature selection need to be solved first and then a NIDPS for
network attack detection needs to be developed. The proposed study uses a framework
in which feature set normalization is applied to class-imbalanced datasets (UNSW-NB15).
Then the dynamic or automatic selection of features is applied using the ISSA method,
whereas previous studies mostly used manual feature selection methods. The ISSA method
is from the particle swarm optimization (PSO) domain in which a swarm moves to find the
best or optimal solution. Therefore, ISSA methods are considered to be more intelligent
as compared to other feature selection methods due to their searching potential nature.
Previously applied methods of feature selection use a manual selection of features via hit
and trial methods to enhance the NIDPS detection accuracy. However, the proposed study
uses dynamic and searching-specific nature methods of feature selection for binary and
multiclass feature sets separately. The selected features are then fed to the SMOTE–Tomek
method of oversampling and under-sampling for class balancing. The class-balanced and
feature selected feature-matrices are separated and finalized for binary and multiclass
classifications. The results for binary and multiclass classifications are extracted using
four different ML classifiers. These results are collected before and after applying feature
selection and class balancing techniques. The results showed that if feature reduction is
applied at first to reduce the feature dimensionality, and class balancing is applied to balance
class instances, then the performance of binary and multiclass classification is improved.
The automated and dynamic method of feature selection made a fully automated NIDPS.
Furthermore, it reduces time and space complexity by excluding the less meaningful
features. It leads to more efficient results detection with less time and space consumption.
For future work, it is suggested to use more evolutionary computing methods for the
dynamic selection of features where more methods of minority class balancing could
be applied. The class-balanced and feature-selected datasets could increase the NIDPS
performance but also it could increase the performance of any other intruder detection
system. The time and space complexities-based analysis could be conducted to prove the
validity of the proposed framework.
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