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Abstract: Targeted sequencing has been widely utilized for genomic molecular diagnostics and the
emerging DNA data storage paradigm. However, the probe sequences used to enrich regions of
interest have different hybridization kinetic properties, resulting in poor sequencing uniformity
and setting limitations for the large-scale application of the technology. Here, a low-complexity
deep learning model is proposed for prediction of sequencing depth from probe sequences. To
capture the representation of probe and target sequences, we utilized a sequence-encoding model
that incorporates k-mer and word embedding techniques, providing a streamlined alternative to the
intricate computations involved in biochemical feature analysis. We employed bidirectional long
short-term memory (Bi-LSTM) to effectively capture both long-range and short-range interactions
within the representation. Furthermore, the attention mechanism was adopted to identify pivotal
regions in the sequences that significantly influence sequencing depth. The ratio of the predicted
sequencing depth to the actual sequencing depth was in the interval of 1/3—3 as the evaluation metric
of model accuracy. The prediction accuracy was 94.3% in the human single-nucleotide polymorphism
(SNP) panel and 99.7% in the synthetic DNA information storage sequence (SynDNA) panel. Our
model substantially reduced data processing time (from 334 min to 4 min of CPU time in the SNP
panel) and model parameters (from 300 k to 70 k) compared with the baseline model.

Keywords: targeted sequencing; sequencing depth; bidirectional long short-term memory network;
attention mechanism

1. Introduction

With the development of next-generation sequencing (NGS) technology, its massively
parallel sequencing ability and high analytical sensitivity have made it an increasingly
prevalent tool in diverse fields, such as population genomics, cancer or disease genetics,
and DNA data storage [1–4]. In the realm of genome ecology, there are three main types of
NGS sequencing, encompassing targeted sequencing, whole-exome sequencing, and whole-
genome sequencing. Targeted sequencing uses probes to enable the process of enriching
and sequencing specific regions of DNA [5], with the work flow shown in Figure 1A. In
next-generation sequencing, probe sequences enable researchers to focus their sequencing
efforts on areas of interest by targeting specific genomic regions [6], thereby reducing the
sequencing time and cost associated with analyzing the entire genome. However, the
hybridization kinetic properties of the probe structure lead to uneven enrichment efficiency,
which results in increased sequencing costs. Therefore, modeling the impact of probe
character on enrichment efficiency can aid in the design of probe sequences that ensure a
uniform coverage of sequencing depth.

In recent years, some traditional methods based on experience with DNA structure and
biochemistry have been presented to optimize probe sequences for specific hybridization
between probe and target sequences [7,8]. Several studies have shown that the traditional
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methods are labor-intensive and poorly generalized [9]. In recent years, deep learning
approaches have leveraged diverse neural network architectures to autonomously extract
weakly correlated features from large datasets, leading to significant breakthroughs in
various scientific domains, including natural language processing (NLP) and computer
vision (CV) [10–13]. The latest research indicates that deep learning has been successfully
applied in the field of bioinformatics for emerging tasks (e.g., protein structure prediction
and medical image analysis) [14–17]. In the prediction of sequencing depth for targeted
sequencing, the short-range and long-range interactions in the sequence can lead to the
formation of different secondary structures, affecting the kinetic nature of the hybridization
reaction and the efficiency of probe capture. This interaction phenomenon between different
regions can be trapped by the recurrent neural network (RNN). The large NGS dataset also
offers the possibility of using deep learning to solve this problem.
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Figure 1. Overview of targeted sequencing methods and different sequencing depth prediction mod-
els. (A) The specific process of targeted sequencing includes probe sequence design, sample library
construction, probe and sample library hybridization capture, elution, and sequencing. (B) The
proposed model is compared with the existing sequencing depth prediction model, DLM, and the pro-
posed model differs from the sequence encoding model and the sequencing depth prediction model.
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A deep learning model (DLM) was introduced to predict sequencing depth [9]. The
unpaired probability of each nucleotide in all possible secondary structures of the probe
sequence was calculated using Nupack as the local feature [18]; then, the standard free
energy of the probe sequence, the target sequence, and the molecule after hybridization of
the probe sequence were calculated as global features. The local feature of each nucleotide
with the nucleotide chemical identity (NCP) was used to complete the process of encoding
the sequence into the matrix. Four gate-recurrent units (GRUs) were utilized to process
the probe and target sequences separately. The processing results were combined with
global features and fed into the fully connected neural network to accomplish sequencing
depth prediction.

Although the existing deep learning model is effective at predicting the sequencing
depth of probe sequences, it suffers from several limitations. (1) The process of using Nu-
pack to calculate the unpaired probability of each nucleotide is time-consuming. Therefore,
it is possible to use only a few local features of the sequence, which are derived directly
from the sequence itself, avoiding the need for a complex and uncertain thermodynamic
calculation process. (2) NCP-based sequence encoding leads to less information input
because it only describes the characteristics of the sequence without considering the depen-
dence of nucleotides in the sequence. Thus, the representation of sequences can be achieved
with higher-dimensional matrices. dna2vec enables the application of NLP techniques to
DNA sequences by using sequence information to acquire the k-mer distributed representa-
tion [19]. (3) Although the attention mechanism has been widely applied in bioinformatics
and possesses a better prediction ability, it has not yet been commonly applied in the field
of sequencing depth prediction, so it can be introduced to improve the accuracy of the
sequencing depth prediction.

To overcome these limitations, we proposed a low-complexity deep learning model
to predict the sequencing depth of probe sequences in targeted sequencing. Specifically,
in this model, the target and probe sequences were first split into k-mer word vector
representations using k-mer processing. Subsequently, the association information between
different k-mer word vectors was extracted from the probe sequences using the dna2vec
model to obtain the high-dimensional vector representation of the k-mer word vectors.
The sequences were transformed into distributed representations based on the different
high-dimensional vector representation combinations. Then, the Bi-LSTM was utilized to
process the sequences sequentially according to base positions, and interactions between
adjacent bases (short-range interactions), as well as interactions between bases that were far
apart (long-range interactions), were captured as output for subsequent processing. Later,
the attention mechanism was employed to process the output of the Bi-LSTM. Its ability
to represent the different effects of nucleotides at different positions on sequencing depth
by setting different weights allowed the model to selectively focus on positions that were
more important for sequencing depth prediction. Finally, the predicted log sequencing
depth was derived through a deep neural network. Figure 1B provides an overview of the
DLM and the proposed sequencing depth prediction model.

2. Materials and Methods
2.1. Datasets

The NGS experiment generated a large number of sequencing datasets, and the
baseline dataset used in this paper was the same as the DLM, including three panels
of SNP, long non-coding RNA (lncRNA) [20], and SynDNA. The SNP panel fastq file
contained 21,857,262 reads, and the fasta file contained 39,145 probe sequences. By using
the conventional read alignment tool BWA to match the fastq file and counting the matched
values [21], a dataset of 38,040 probes was obtained after excluding 1105 probes with
zero matched reads. The lncRNA panel consisted of 1966 probes with reads secured by
using BWA to match the fastq file. The SynDNA panel included 7215 probes with reads
gained using BWA to match the fastq file. Histograms of GC content and log sequencing
depth for the three sets of probe sequences are shown in Figure 2, which shows that the
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SynDNA panel has a more concentrated GC content of around 0.5 and a tighter distribution
in sequencing depth compared with the SNP and lncRNA panels. The figure also indicates
that the distribution of GC content showed a correlation with the distribution of sequencing
depth [22,23].
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Figure 2. Histograms of the frequency distribution of GC content and log sequencing depth for
the three datasets. (A) Frequency distribution histograms of GC content for the SNP, lncRNA, and
SynDNA datasets. (B) Histogram of the frequency distribution of the log sequencing depth for the
three probe datasets.

2.2. Sequence Encoding Model

In this study, the next-generation sequencing depth was predicted using a new deep
learning approach. A flow chart of our new method is shown in Figure 3A. From the deep
learning perspective, the process of predicting the sequencing depth from probe sequences
could be regarded as a regression task. Since sequences could not be used directly as
input to a neural network, they needed to be transformed into vector representations. The
sequence encoding process is shown in Figure 3B. The input sequence and sequencing depth
were treated as

{
Xj, yj}n

j=1 using k-mer and dna2vec, where Xj represents the embedded

probe sequences, yj represents the probe sequencing depth, and n signifies the number of
sequences in the dataset.

First, the k-mer processing method, which is commonly used in sequence analysis and
processing, was selected to segment the target sequence and probe sequence, where mer
represents the monomer unit, and k indicates segmentation into k bases in length. Setting
different step sizes (s) yielded k-mer segmentation results with different intervals. Taking
a sequence as an example, the step size (s) was set as 1, and the value of k was set to 3.
Therefore, a probe sequence (D) with a length of t bp could be expressed as

D = n1n2n3 . . . nj . . . nt, (nj ∈ {A, T, C, G}), (1)

where nj represents the nucleotide in the j-th position. The k-mer processing method
was utilized to split it into t− 2 subsequences with a length of 3 mer. Then, these t− 2
subsequences were regarded as the words that made up the sentence of the DNA sequence,
which was described as

S =
{

N1, N2, . . . , Nj, . . . , Nt−2
}

, (2)

where Nj represents the subsequence at the j-th position
{

njnj+1nj+2
}

taken from {AAA},
{AAC}, {AAG}, . . . , {TTT}.

Then, the dna2vec method was applied to generate word vector representations for
each 3-mer subsequence obtained through k-mer processing. The dna2vec method is
an improvement of word2vec using skip-gram [24,25], which predicted the occurrence
probability of the target subsequence and generated its word vector based on all sequence
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correlations. Each subsequence (Nj) was transformed into a 100-dimensional vector (xj).
The sequence (D) was converted into a distributed representation (X) as follows

X =
[
x1, x2, . . . , xj, . . . , xt−2

]
, (3)

and it was used as input for the RNN module.
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Figure 3. Schematic representation of the sequence-encoding phase and the sequencing depth
prediction phase of the proposed model. (A) A flow chart demonstrating the proposed model for
generating sequencing depth prediction results from probe sequences. The light gray area represents
the sequence-encoding model, and the light yellow area represents the sequencing depth prediction
model. (B) Overview of converting sequences into a feature matrix via k-mer and dna2vec processing.
(C) Overview of the process of using the feature matrices of probe and target sequences to generate
the log sequencing depth prediction result.
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2.3. Sequencing Depth Prediction Model

Figure 3C presents the process used to predict the sequencing depth of the probe
sequence. The process took the feature matrix (X) obtained from the sequence encoding
module as input and the predicted log sequencing depth (ypred) as output, which proceeded
as follows. The RNN module employed a pair of two-layer Bi-LSTMs to capture the
forward and backward higher-order features of the target sequence and probe sequence.
Then, the attention module assigned weights to the output results of the RNN module
to improve prediction accuracy. The dense module combined the results of the attention
module with the local feature and outputted the predicted log sequencing depth of the
probe sequence.

First, in the RNN module, Bi-LSTM was chosen to implement the proposed model
because it solved the long-term dependency problem and captured the long-range inter-
actions in sentences using neurons in the hidden layer [26]. The RNN module used a
dual approach, where two sets of Bi-LSTMs with two layers were employed to process the
probe sequence and target sequence. The basic unit of each layer of the Bi-LSTM included
the forward-propagating LSTM and the backward-propagating LSTM. The LSTM unit
consisted of three crucial gates and two state vectors, which were a forget gate (fj), input
gate (ij), output gate (oj), hidden state (hj), and cell state (cj). At each time step (j), the
operation of the LSTM memory cell was formulated as

fj = σ
(

Wx f xj + Wh f hj−1 + b f

)
, (4)

ij = σ
(
Wxixj + Whihj−1 + bi

)
, (5)

cj = fj � cj−1 + ij � tanh
(
Wxcxj + Whchj−1 + bc

)
, (6)

oj = σ
(
Wxoxj + Whohj−1 + bo

)
, (7)

hj = oj � tanh
(
cj
)
, (8)

where Wx f , Wxi, Wxc, and Wxo are weight matrices for the input xj; Wh f , Whi, Whc, and
Who are the learnable weight matrices of the hidden state; b f , bi, bc, and bo are bias vectors;
σ is the sigmoid function;� denotes element-wise multiplication; and tanh is the hyperbolic
tangent function.

The output of each Bi-LSTM, including hidden-state information (hj), was the element-

wise sum of the forward-propagating output (
−→
hj ) and backward-propagating output (

←−
hj )

of each LSTM at time step j, as in

hj =
[−→

hj ⊕
←−
hj

]
, (9)

where ⊕ represents the element-wise sum. The output of the Bi-LSTM in the first layer was
used as the input of the Bi-LSTM in the second layer, and the output of the Bi-LSTM in the
second layer was used as the input of the attention module.

Secondly, the self-attention mechanism was used to construct attention modules,
which input the hidden state feature (hj) obtained from Bi-LSTM for the probe sequence
and the target sequence at each time step (j). The output was obtained by adaptively
performing weight assignments according to the importance of each time step. The attention
mechanism was the transfer of attentional behavior from human perception modality to
machine learning. At present, it is widely utilized in the fields of CV, NLP, and other
fields in which machines are trained to focus on crucial positions or extract keywords
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from sentences, ignoring other unimportant parts [27–30]. In the attention module, the
self-attention output process was as follows

H =
[
h1, h2, . . . , hj−1, hj

]
, (10)

Q = HWQ, K = HWk, V = HWV , (11)

S = softmax
(

KTQ√
dk

)
, (12)

Z = SV, (13)

where H is the output of hidden states obtained from the Bi-LSTM; WQ, Wk, anWV are
learned parameter weight matrices; queries (Q), keys (K), and values (V) are obtained from
the linear transformation of H; S is the attention weights matrix; and

√
dk is a scaling factor

to prevent the dot product from becoming too large. The softmax is a generalized logistic
function. Z is the output vector, which is the result of weighting the input (H).

Finally, the dense module included a fully connected neural network that combined
the outputs of the two attention modules. In addition to the outputs of the attention
module, the dense module also took the GC content of the probe sequence as input. A total
of 65 dimensions were used as the input of the dense module, and the network included
two hidden layers with 64 and 32 nodes, respectively. The dropout layer was set to alleviate
overfitting [31]. The root mean square error (RMSE) was used as the loss function, which
was calculated using the predicted log sequencing depth (Ypred) and the observed log
sequencing depth (Yobs) in each epoch round. The calculation process was as follows:

RMSE
(

Ypred, Yobs

)
=

√
1
m

m

∑
i=1

(
ypred − yobs

)2
, (14)

where ypred represents the predicted log sequencing depth for each sequence calculated by
the proposed model, yobs refers to the observed log sequencing depth label of the sequence,
and m represents the number of sequences in each epoch round.

3. Results

In this section, the performance of the proposed model is discussed. Similar to previous
work, the discussion is based on three benchmark datasets, lncRNA, and SynDNA, which
contain different design and application directions. We relied on these datasets as the
foundation of our research and aspired to offer guidance for future related studies.

3.1. Comparison of Sequence-Encoding Methods

To verify the advantages of dna2vec in transforming DNA subsequences into a dis-
tributed representation, a commonly used one-hot encoding method [32] was chosen for
comparison with the dna2vec method. As one-hot encoding uses the sparse feature vector
to represent each k-mer word, each k-mer word corresponds to a separate vector space,
and each separate space is linearly independent. In contrast to the dna2vec method, the
one-hot encoding method cannot infer the connections between k-mer words for deeper
association mining. The data visualization tool t-SNE was used to cluster the word vec-
tors obtained by different encoding methods. Figure 4 shows the clustering effect of the
three-mer word vectors based on dna2vec and one-hot encoding, and different three-mer
vectors according to the nucleotide species at the central position are plotted. In the figure,
the dna2vec-based encoding method better clustered similar word vectors, and their local
clusters were clustered into larger clustering groups based on the same central nucleotides.
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Figure 4. Visualization of features extracted by dna2vec and one-hot for three-mer word vectors using
t-SNE. (A) The word vector clustering result for three-mer encoding by dna2vec. The different colors
represent the different nucleotide species in the central position, where “*” represents nucleotide.
(B) The clustering result of word vector encoding by one-hot for three-mer encoding.

3.2. Parameter Optimization

The model parameters were trained using a 20-fold cross-validation method to com-
prehensively assess the proposed model. The dataset was divided into 20 folds, with
19 folds serving as the training set and 1 fold serving as the prediction set. This process
was repeated 20 times, and the results were aggregated after 20 rounds of cross-validated
predictions to obtain the prediction accuracy of our network.

To acquire the best-distributed representation of the sequences, the performance of
the proposed model was tested with different step size (s) and k values. As depicted in
Figure 5A, the performance of the model was the best when k was 3. This result can be
attributed to the fact that in biology, an amino acid comprises three bases, and the process
of segmenting a sequence into word vectors with k = 3 shares a similar characteristic
with this phenomenon. Then, k was set to 3, and the effect of different values of s on
performance was tested. As Figure 5B indicates, the model’s performance deteriorated as
the step size increased. Longer step lengths could lead to a loss of sequence information.
This might result in a degradation of prediction performance. Therefore, the values of
k and s were set to 3 and 1, respectively, during the following experiments on model
performance calculation. On an Intel(R) Xeon Gold 5220R CPU with a maximum frequency
of 2.2 GHz, the CPU times required to generate sequence representation using DLM and
the proposed model were compared. Based on the SNP dataset, the process of generating
three-mer sequence representation took only 4 min of CPU time, significantly reducing the
transformation processing time from sequence to distributed representation compared to
the DLM (334 min of CPU time).

The proposed model was completed with the PyTorch framework on an NVIDIA
A6000 GPU server [33]. The model was trained with a batch size of 2560, and the initial
learning rate was set to 0.0001. During the training process, RMSE was utilized to calculate
the loss value between the predicted results and actual labels, and the adaptive moment
estimation (Adam) algorithm was used to optimize the gradient descent [34]. The training
process of this model is illustrated in Figure 5C. By observing the change in the loss value
with the number of iterations, it was found that the loss value of the validation set started
to increase at 450 rounds or more, indicating that the overfitting phenomenon had started
to occur; therefore, the number of iterations was set to 450. Figure 5D,E illustrates the
process of setting the number of hidden nodes and layers in a Bi-LSTM network, and the
two-layer Bi-LSTM network with 32 hidden nodes is the optimal model. Setting more
hidden nodes and deeper layers in the Bi-LSTM could lead to overfitting of the model,
while a one-layer network or a smaller number of hidden nodes could lead to a lack of
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information acquisition. Compared to the four three-layer GRU networks with 128 hidden
nodes used in the DLM, the number of parameters was reduced in the proposed sequencing
depth prediction model because the sequence representation obtained through the k-mer
and dna2vec in the sequence-encoding module contained more sequence information.
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Figure 5. Optimization of different network architecture parameters. (A) Comparison of the proposed
model with different k-mer lengths on the SNP dataset under the RMSE and F2err, where F2err repre-
sents the proportion of predicted sequencing depth and observed sequencing depth errors exceeding
twofold, and RMSE represents the root mean square error across the dataset. (B) Comparison of
RMSE and F2err results for different step sizes on the SNP dataset with a length of 3 mer. (C) The
plot of loss values versus training iteration steps shows the variation of loss values with training
rounds for each fold of the proposed model in the 20-fold cross-validation run. The area between the
two lines indicates the range of loss values over the 20 training rounds. (D) Comparison of RMSE
and parameters for different hidden nodes in two-layer Bi-LSTM on the SNP dataset. (E) Comparison
of RMSE and parameters for different layers of a Bi-LSTM with 32 hidden nodes on the SNP dataset.

3.3. Predicted Results

Figure 6A–C depict a comparison of the predicted and observed sequencing depth for
the different datasets. The dark gray shading marks areas where the difference between
the predicted sequencing depth and observed actual read depth was within a multiple
of two, and the light gray indicates where the difference was within a multiple of three.
Figure 6A shows the combined results of the SNP dataset after 20-fold cross validation.
At a sequencing depth of 100 and above (i.e., log10(Depthobs) > 2), the points combining
predicted and observed depth were densely distributed in the gray area. Sequences with a
lower observed sequencing depth in the SNP dataset had a log10(Depthpred) of between 1
and 3.5, while the majority of these probes had a lower GC content (average GC content
of 0.31 for sequencing depth less than 100 and 0.45 for sequences depth greater than 100).
An explanation for this phenomenon is that probes with a lower observed sequencing
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depth (such as a lower GC content) were more affected by random fluctuations in the
experimental procedure, which could also affect the sequencing depth [9]. This also
illustrates the importance of using GC content as an input to the dense module in the
neural network.
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Figure 6. Results of 20-fold cross-validation training of the proposed model based on different
datasets. (A–C) Comparison of predicted log sequencing depth with observed log sequencing depth
for different datasets, where (A–C) are under the SNP dataset, lncRNA dataset, and SynDNA dataset,
respectively. These plots are a summary of the sequencing depth prediction results for all validation
sets in the 20-fold cross-validation training. (D) The deviation of sequencing depth between predicted
and observed depth for different datasets.

To prove the effectiveness of the model in practical application scenarios, such as using
the existing model to optimize the new probe design, the lncRNA dataset was taken as a
prediction set from the SNP dataset, and the read depth of lncRNA was predicted through
the model trained on the SNP dataset. It should be noted that although the lncRNA dataset
and the SNP dataset had similar library preparation methods in terms of experimental
work flow, hybridization temperature, and other relevant aspects, they differed in terms of
the experimental operator, instrumentation, and reagents. In this study, the model obtained
from a single fold of the 20-fold cross-validation process on the SNP dataset was employed
to directly predict the probe log sequencing depth for the lncRNA dataset. Figure 6B
displays the results of the lncRNA dataset generated from the proposed model trained
on the SNP dataset. The proportion of points within the light gray region was marginally
lower in the lncRNA compared to the SNP, and this decline might have been caused by
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the experimental changes associated with library preparation methods and other factors.
However, because the proposed model only used the model trained in one fold of the SNP
training process to predict the lncRNA log sequencing depth, this significantly reduced
the cost of the sequencing probe design and prediction. The results of the lncRNA dataset
show that the proposed model can predict the sequencing depth of probes obtained by
similar library preparation methods to enable the generalization of method availability.

Figure 6C shows the SynDNA dataset prediction results of probes applied in DNA
information storage. The points in the figure are mostly concentrated within the gray area.
The generation of these sequences by the program led to a reduction in the probability of
high or low GC content, hairpin structures, and homopolymers, which resulted in a more
focused distribution of sequencing depth and enhanced prediction performance. Figure 6D
shows the deviation between the predicted and observed log sequencing depth in different
datasets. On each box whisker plot, the bottom of the box represents the 75th percentile,
the top edge represents the 25th percentile, and the whisker length refers to the maximum
and minimum values of the difference between the observed and predicted depths.

3.4. Performance Comparison with Other Methods

To better evaluate the performance of our model, Figure 7 demonstrates a performance
comparison of different networks on three different datasets. F2err and F3err were applied
to determine the proportion of sequences for which the error between the predicted and
observed sequencing depth exceeded twofold and threefold, respectively, where RMSE
represents the root mean square error across the dataset. The DLM and the linear model
were employed for comparison with the proposed model. The DLM used the GRU network
were used to process the target and probe sequences for sequencing depth prediction. The
linear model used four biochemical features calculated by Nupack as input to predict
the sequencing depth. The sequencing depth prediction performance for all competing
methods was obtained from their respective papers.

As demonstrated in Figure 7, our model outperformed the DLM and the linear model
in terms of RMSE, F2err, and F3err metrics on both the SNP and SynDNA datasets (F2err
of 18.3%, F3err of 5.7%, and RMSE of 0.295 on the SNP dataset and F2err of 1.5%, F3err of
0.3%, and RMSE of 0.109 on the SynDNA dataset), indicating that better predictions were
achieved for different types of probes. Our model also performed slightly better than DLM
in predicting the sequencing depth of the lncRNA dataset using a onefold model trained on
the SNP dataset (F2err of 29.5%, F3err of 10.8%, and RMSE of 0.316 on the lncRNA dataset).
This suggests that it could achieve a better prediction performance for probes that use
similar library preparation methods to predict their sequencing depth. The performance
improvement can be attributed to the distributed representation of the sequence, as well as
the utilization of Bi-LSTM and attention modules, to capture the long-range and short-range
interactions in the sequences.

3.5. Ablation Experiments and Reliability Analysis

To verify the design superiority of the proposed model, two simplified models were
compared with the proposed model using ablation experiments: our model (no GC feature)
and our model (no attention). Figure 8A,B and Table 1 present the performance results
on the SNP dataset. Further analysis showed that the use of different modules resulted
in different performance improvements. The GC content increased the amount of input
information for the existing model and was related to the sequencing depth. The attention
mechanism extracted the effect of different regions of the input sequence on the sequencing
depth. Based on performance comparisons, the model using the attention mechanism with
GC content achieved the best prediction performance.

As shown in Table 1, there are 70 k trainable parameters in the proposed sequencing
depth prediction model, which is significantly less than the DLM (300 k in total), with the
reduction in parameters mainly stemming from optimization of the number of hidden nodes
and the number of network layers in the RNN module. The reduction in the number of
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parameters did not have a negative impact on prediction accuracy. Experiments conducted on
publicly available data illustrate that the proposed model outperformed the DLM, as described
in Figure 7. However, due to the large number of model parameters, to verify the robustness
of the model and avoid overfitting phenomena or non-reproducibility being caused by too
many parameters, several rounds of independent experiments were set up, verifying that the
prediction results were highly consistent. The proposed model training process was repeated
15 times on the SNP dataset. Each round of training started with random parameters and
stopped after 450 rounds. Figure 8C shows the comparison results of the log sequencing depth
predictions from two independent prediction rounds. As presented in Figure 8D, Pearson’s r
values for all 105 pairwise comparisons exceeded 0.970, which demonstrates that despite the
difference in parameter initialization across independent experiments, the proposed model
still generated relatively consistent prediction results.
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Figure 7. Performance comparison of our model and the competing models on different datasets.
(A,D) Comparison of our model with DLM and the linear model on the SNP dataset under the F2err,
F3err, and RMSE. (B,E) Comparison of our model with DLM on the lncRNA dataset under the F2err,
F3err, and RMSE. (C,F) Comparison of our model with DLM and the linear model on the SynDNA
dataset under the F2err, F3err, and RMSE.

Table 1. Comparison of the performance of different neural networks and the number of parameters
based on the SNP dataset.

Parameter Memory Batch Size RMSE

DLM 300 k 2369 MB 999 0.301
Our model 70 k 4055 MB 2560 0.295

Our model (no GC feature) 70 k 4027 MB 2560 0.298
Our model (no attention) 68 k 3953 MB 2560 0.299
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Figure 8. Results of the robustness analysis of the proposed model and ablation experiments based on
the SNP dataset. (A) Performance comparison of our model, our model (no GC feature), our model
(no attention), DLM, and the linear model on the SNP dataset under the RMSE. (B) Performance
comparison of different models on the SNP dataset under the F2err and F3err. (C) Comparison of
sequencing depth predictions from two independent prediction rounds. (D) Summary of 105 pairwise
comparative correlation coefficients for the results of 15 training process runs.

4. Discussion and Conclusions

Targeted high-throughput sequencing of DNA has emerged as a superior technique
in biomedical research. Although the cost of NGS has decreased exponentially over the
years, the problem of poor sequencing uniformity remains a significant issue. Inefficient
sequencing of high-depth targets and insufficient coverage of low-depth targets can result in
a wasteful use of reads. Therefore, a low-complexity targeted sequencing depth prediction
model was proposed in this paper to provide guidance for probe sequence analysis work.
In this study, we implemented the prediction function of sequencing depth prediction
using probe sequences. Our innovation can be summarized as follows. (1) A distributed
representation of k-mer was trained using the word-embedding model, and a sequence-
encoding model was constructed to realize the representation process from sequences
to feature matrices. (2) The sequencing depth prediction model based on Bi-LSTM with
ab attention mechanism was proposed to realize the sequencing depth prediction result
of generating sequences from the feature matrix representation of probe sequences. Our
model used a new sequence-encoding process that only took 4 min of CPU time for the
SNP dataset. Compared with the complex biochemical calculations in DLM, our process
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was more efficient and convenient. The network architecture was optimized, and the
parameters were reduced from 300 k to 70 k, which reduced the risk of overfitting. The
prediction accuracy was improved based on the different datasets compared with the linear
model and the DLM. The proposed model predicted the difference between predicted and
observed sequencing depths with an F3err of 5.7% for SNP and 0.3% for SynDNA.

In conclusion, our model provides a practical solution for prediction of the sequencing
depth of the probe sequence. In future work, the proposed model can be transferred
and extended to other bioinformatics tasks. For example, the proposed model can be
extended by constructing corresponding datasets and combining other types of features.
The intermolecular interactions that occur between a large number of sequences in solution
during target capture are modeled and analyzed to assess their impact on sequencing
depth. Meanwhile, we can attempt to introduce a transformer [35] to optimize the existing
sequencing depth prediction model to address the potential vanishing gradient problem of
existing RNN models when sequentially processing long sequence information.
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