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Abstract: Porous materials can be characterized by well-trained neural networks. In this study,
fibrous paper-type gas diffusion layers were trained with artificial data created by a stochastic
geometry model. The features of the data were calculated by means of transport simulations using
the Lattice–Boltzmann method based on stochastic micro-structures. A convolutional neural network
was developed that can predict the permeability and tortuosity of the material, through-plane and
in-plane. The characteristics of real data, both uncompressed and compressed, were predicted. The
data were represented by reconstructed images of different sizes and image resolutions. Image
artifacts are also a source of potential errors in the prediction. The Kozeny–Carman trend was used
to evaluate the prediction of permeability and tortuosity of compressed real data. Using this method,
it was possible to decide if the predictions on compressed data were appropriate.

Keywords: PEFCs; Lattice–Boltzmann method; stochastic modeling; machine learning

1. Introduction

Gas diffusion layers (GDLs) are porous transport layers that are used in fuel cells to
allow the transport of fluids from the flow channels to the membrane. This requires good
gas permeability in the through-plane (TP) direction. For transport under the ribs of a
flow field, a good permeability in the in-plane (IP) direction is also desired. Ye et al. [1]
investigated the effect of GDL compression on the bypass of gases below the ribs of the flow
field. A critical review of mesoscale modeling in electrochemical devices was presented
by Ryan and Mukherjee [2]. Holzer et al. [3] evaluated the permeability of dry GDLs and
several other properties of the micro-structure. The porosity and shape of the pores was
investigated by Zenyuk et al. [4]. They used X-ray tomography for the analysis of structural
properties of a GDL under compression. Meanwhile, Bao et al. [5] reconstructed fiber-based
GDLs, calculated the impact of compression on the micro-structure by means of the finite
element method (FEM), and then analyzed the compressed GDL using computational fluid
dynamics (CFD). The relevance of compression on the properties of GDLs was shown by
Bosomoiu et al. [6], who investigated the micro-structure of paper-type GDLs via X-ray
tomography. They analyzed GDLs under ribs and under the channels of a flow field,
and also analyzed them in fresh and aged states. Permeability and tortuosity were some
of the features addressed in their studies. Mukherjee et al. [7] measured the TP and IP
permeability of GDLs, with and without polytetrafluorethylene (PTFE), and with and
without micro-porous layer (MPL). In order to reduce costs, GDLs from novel materials
were developed by Leonard et al. [8]. Zhang et al. [9] analyzed GDL properties using
Lattice–Boltzmann (LB) simulations based on reconstructed micro-structures. Extending
to smaller scales and beyond permeability, Yin et al. [10] developed LB-based methods
to obtain further characteristics of porous materials even in nanoscale regions. They
identified the relevance of several mechanism on the gas transport in porous materials.
Artificial intelligence (AI) enters the picture when machine learning (ML) or the deep
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learning (DL) methods are applied in the field of electrochemical research. Ding et al. [11]
recently presented an overview of the application of ML in the field of fuel cell research,
in particular for polymer electrolyte fuel cells (PEFCs). However, the use of AI methods
is still growing and is beyond of the scope of this extensive review article. In previous
investigations, the suitability of convolutional neural networks (CNNs) was demonstrated
by Froning et al. [12] for the prediction of the TP permeability of paper-type GDLs. The
data were previously generated via LB simulations. In a similar manner, a CNN was
developed by Cawte and Bazylak [13], predicting the permeability of fibrous GDLs. In
their study, they used the pore network modeling (PNM) method to generate their data.
The accuracy of predicting the permeabilities of porous media using CNNs in the context
of LB simulations was shown by Wang et al. [14]. In turn, the relevance of investigations
in the GDL micro-structure was pointed out by Pan et al. [15], who summarized the
mechanics, techniques, and modeling approaches for GDL degradation. Using similar ML
methods, Jafarizadeh et al. [16] coupled their ML application with CFD and applied it to a
variety of metal foams. Santos et al. [17] investigated the impact of the number of hidden
layers in a CNN on the accuracy of the prediction of permeability and velocity in sphere-
based porous materials, e.g., sandstone. The data were generated using LB simulations.
Yeh et al. [18] presented a CNN in the field of signal processing that is robust against
noise added to datasets for prediction. The performance prediction of PEFCs by a neural
network (NN) was coupled to flow channel optimization by Li et al. [19]. Applied to X-ray
tomography, Shum et al. [20] used ML algorithms for the water segmentation in GDLs of
PEFCs. For high-temperature PEFCs, Zhu et al. utilized an NN to predict performance
for a variety of parameters [21], achieving a percentage accuracy compared to numerical
methods. Buchaniec et al. [22] investigated the accuracy of gray-box models and applied
this technique to the triple-phase boundaries (TPBs) in the micro-structure of a solid oxide
fuel cell (SOFC) anode. Meanwhile, Yasuda et al. [23] presented a data-driven framework
for the characterization of porous materials, coupling ML methods with genetic algorithms.
The permeability was in the focus of their recent studies. In the field of geoscience, ML and
DL methods are well-established. Arigbe et al. [24] used DL for the prediction of relative
permeability in real time. However, there are also pitfalls in the use of AI. As reported by
Hurtz [25], an AI program that declassified world-class Go players was recently defeated
by an amateur Go player, underlining the fact that any AI code is bounded by the scope of
its training data.

Although the training and classical validation was performed on artificial data, real
data from image sources can suffer from image errors, which are caused by several factors.
In Section 2, methods, both AI-related and physics-based, are briefly summarized. Fur-
thermore, several groups of image data are introduced. The preparation of the data for the
training process and the subsequent prediction are described in Section 3. The validation
in Section 4 addresses not only the validation of the artificial geometry data but also as-
pects that occurred in real data obtained from image sources. The results are presented in
Section 5. After discussing them in Section 6, the work is summarized in Section 7.

Previous work [12] was extended in order to apply its previously developed CNN to
real image data. The previously developed CNN [12] is able to predict the TP permeability
of artificial GDL structures—uncompressed and compressed (Section 4). Reconstructed
images from real GDLs, however, can suffer from image artifacts as discussed in Section 5.
This work analyzes the ability to predict the characteristics of real micro-structures using a
CNN that was trained on artificial ones, and how to decide about the consistency.

2. Methods and Data

Fibrous GDLs of the Toray type are characterized with the ML method, in particular
using a CNN presented by Froning et al. [12], as shown in Sections 2.1 and 2.2. The image
data of the micro-structure are labeled by post-processing LB simulations, as is briefly
described in Section 2.3. Subsequently, Sections 2.4 and 2.5 provide an overview on the
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data in the study. Finally, Section 2.6 introduces the physical interpretation of the results
predicted by the CNN.

2.1. An Overview on the Machine Learning Model

As outlined in Section 2.2, a CNN was developed in order to predict characteristics of
porous structures, namely the permeability and tortuosity. The geometry of the structures
is specified using black/white (BW) images. The CNN was trained using the same micro-
structures as published earlier [26]. Each data point was given by 65 images, having
dimensions of 512 × 512. The resolution of them was 1.5 µm/px. Section 2.4 summarizes
the details.

Finally, the ML model was applied to real micro-structures introduced in Section 2.5.
These data have different sizes and image resolutions than the training data. Furthermore,
imaging errors are present that were not contained in the training data.

The high-performance computer CLAIX at RWTH Aachen University was used for
the training phase. Each of the graphic nodes of this system has two graphics processing
units (GPUs) of the kind ‘Tesla V100 SXM2 32 GB’.

2.2. Convolutional Neural Network Model

The Python-based framework TensorFlow [27] was used to implement a CNN for
the prediction of the characteristics of a GDL with its fiber-based micro-structure. Its
architecture, as in previous work [12], is illustrated in Figure 1. The red-shaped layers
are also analyzed in detail. The first layer, marked as ‘0/Input’, contains the input micro-
structure of 512 × 512 × 65 dimensions. The parameters of the convolution layers were
chosen to reduce the flat shape of the 3D filters to a more regular one, from 512 × 512 × 65
on the input layer, down to, e.g., 8 × 8 × 8 in the eighth layer. Layer ‘1/Convolution’ is
the first hidden layer of the CNN. The structure shrank in both the x and y directions.
The layer ‘3/Convolution’ also shrank in two dimensions. The third dimension was not
reduced because of its flat 3D shape. The architecture shown in Figure 1 was already used
earlier [12] to predict the TP permeability of Toray GDL. The same architecture—predicting
one feature out of a stack of images—was trained separately to four features, namely TP
permeability, TP tortuosity, IP permeability, and IP tortuosity. All of these the features were
simulated earlier by means of the LB method [26].

The architecture of the presented CNN is a series of Conv3D refinements, similar to
that used by Santos et al. [17]. While Santos et al. worked with cubic samples, our basic
images have a flat shape. This led to some of our Conv3D refinements being refined only
in two dimensions instead of three.

2.3. Lattice–Boltzmann Simulations

Material characteristics have been previously obtained from fiber-based GDLs using
the technique of LB simulations [26,28,29]. The micro-structure of a porous GDL is specified
by a stack of BW images. Using a stochastic geometry model, several representations of
a paper-type GDL were constructed, being analyzed by Froning et al. [26,28]. This work
employs this method to obtain the permeability and tortuosity of Toray GDL given by a
stack of images, both TP and IP. Because of the layer-wise construction of the fibers in the
plane, the IP characteristics only needed to be determined for one direction. Another kind
of GDL, represented by a stochastic model and also as a reconstruction of real data, was
investigated by Froning et al. [29].
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Figure 1. CNN architecture of the proposed ML model.
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Transport simulations of gas flow through the porous micro-structure were calculated
in a domain defined by a series of BW images. A small free space buffer was added up-
stream and downstream of the porous media to allow for physically meaningful boundary
conditions. As was described in more detail in Froning et al. [26], a velocity boundary
was applied at the input and a constant pressure condition at the output. Wall boundary
conditions were specified at the other four sides of the simulation domain. As before, the
permeability was calculated from the resulting flow field using Darcy’s law.

κ = − q · µ
∇P

(1)

In Equation (1), the permeability κ is a function of the flux q, the dynamic viscosity µ,
and the pressure drop ∇P. The tortuosity τ was calculated by Equation (2).

τ =
〈|v|〉
〈vx〉

(2)

This is the simplest variant of a set of equations presented by Koponen et al. [30]
for the estimation of the flow-based tortuosity in porous structures. The tortuosity was
calculated as the ratio between the average values of the absolute velocity and of the x
component. The transport simulations were run on JURECA [31].

2.4. Basic Data

The training data for the ML model are referred to as basic data in this section. Each
data point consists of a stack of images constructed by a geometry model developed by
Thiedmann et al. [32] and Wang et al. [33]. They developed a fiber model of the micro-
structure of Toray 090 GDL. Their studies are based on the stochastic analysis of real fibers.
In order to achieve the porosity of the real material, they added binder material, again
using a stochastic approach. The binder model of Thiedmann et al. [32] is represented by
a width br of binder covering parts of the fibers [32]. Figure 2 illustrates this approach in
selected images.

Figure 2. Four different radii br of binder illustrated on selected representations of fibers;
(A) br = 6 µm; (B) br = 18 µm; (C) br = 30 µm; and (D) br = ∞.

The representation of a GDL section by images of size 130 × 512 × 512 was shown to
be the stochastic equivalent to real data, validated using X-ray tomographs from the BESSY
synchrotron in Berlin [32]. The underlying image resolution is 1.5 µm/px, leading to a GDL
section of 768 µm by 768 µm with a thickness of 195 µm. The data in Figure 2A–D were
published by Froning et al. [26], both uncompressed and compressed. The total number of
available data points is given by

• the number of the realizations of the fiber geometry: 25;
• the number of parameters used for different binder distributions: 4;
• the number of compression levels, where six steps from 0% (uncompressed) to 50%—in

steps of 10%—were used.

The compression levels were chosen according to the particular way of representing
the artificial structures by five identical image layers by Froning et al. [26]. A compression
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step of 10% was implemented by merging two images of adjacent fiber layers, taking
every second fiber layer interface. This procedure was repeated five times. In this way,
a total number of 25 · 4 · 6 = 600 geometries could be available. It was already stated by
Froning et al. [26] that not all of the LB simulations did converge. This was especially the
case for the higher compressed micro-structures. From this reason, only 541 data points
were available for training.

Based on Thiedmann et al. [32], the underlying fibers were also the subject of a high-
accuracy LB simulation by Lintermann and Schröder [34]. They used periodic boundary
conditions and a circular cross-section of the fibers, whereas in this work, wall boundary
conditions were used, with coarser mesh based on a quadratic cross-section of the fibers.
The reason was to obtain a better comparison with real data from X-ray tomography [32,33].

2.5. Real Data

The ML model was applied to real data from different sources.

R1 One image series of Toray GDL was reconstructed from the BESSY synchrotron, the
image source from which the GDL model of Thiedmann et al. [32] was validated. Two
images are depicted in Figure 3.

R2 Two image series were obtained from a Nano CT Zeiss Xradia Versa 420 at the IEK-14
at the Forschungszentrum Jülich, allowing a minimal voxel size of 0.5 µm. Hoppe [35]
investigated Toray TGP-H-060 GDL, one series with labels (Figure 4), and

R3 one without (Figure 5).

In 2011, series R1 was obtained from the BESSY synchrotron for validation of the
Thiedmann geometry model [32]. The gray level images were segmented into binary
BW images, but their quality was not sufficient for LB simulations. Figure 3 shows 2 of
the 200 images of dimensions 1250 × 1250. The images have a resolution of 1.5 µm/px.
That defines a square section with a side length of 1.875 mm. The porosity of the image
stack—calculated by counting pixels—is 0.782.

The resolution of the images in Figure 3 is the same as in the training data, but
the images are larger and are more than 130. This led to the opportunity to randomly
select a number of 3D sections of dimensions 130 × 512 × 512 out of the image stack of
200 × 1250 × 1250. The resulting permeabilities (TP and IP) predicted by the CNN show a
statistical variation, changing with the position of the 3D subset.

Figure 3. X-ray synchrotron images of dimensions 1250 × 1250 from Toray 090 material; (A) image
no. 56 of 200; (B) image no. 163 of 200.
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Figure 4. Images from real Toray data under a flow field with 1.0 mm channel width, series R2:
(A) 6% compression, image No. 5 of 40; (B) 6% compression, image No. 20 of 40; (C) 6% compression,
image No. 24 of 40; (D) 6% compression, image No. 26 of 40.

Figure 5. Images from real Toray data under a flow field with 0.8 mm channel width, series R3:
(A) 7% compression, image No. 1 of 40; (B) 7% compression, image No. 2 of 40; (C) 7% compression,
image No. 13 of 40; (D) 7% compression, image No. 18 of 40.

The difference between Toray 060 and 090 is only the thickness; according to the
data sheet, Toray 060 has a thickness of 190 µm, whereas Toray 090 has a thickness of
280 µm. Hoppe [35] experimentally analyzed the micro-structure of GDLs of different
types, one of them being Toray GDL under compression. Figure 6A displays schematically
the membrane electrode assembly (MEA) with a GDL on both sides in the experimental
setup of a compression device. The images of the R2 and R3 series were obtained from a
Nano CT Zeiss Xradia Versa 420. Figure 6B shows an example.

GDLs were mechanically compressed by different levels of compression. Series R2
was from the channel side of a punch with a 1.0 mm slit, representing the 1.0 mm channel
of a flow field. Series R3 was from the block side, i.e., the flat punch vis-à-vis a punch with
a 0.8 mm slit. The images of both the R2 and R3 series spanned a region from one rib across
the channel to the other rib in the scheme of Figure 6A. Hoppe [35] observed that the entire
MEA deformed under compression, and therefore affected both GDLs. The GDL on the
channel side also intruded into the channel.

The gray level images were segmented to black/white (BW) ones in order to provide
binary micro-structures for the LB simulations as introduced by Froning et al. [26]. The
BW images in Figures 4 and 5 display similar segmentation artifacts as those from the
X-ray synchrotron in Figure 3. BW images of series R2 and R3 could only be created in thin
slices—no more than 40 images per sample—due to the low quality of the images. Because
this is too small for robust LB simulations [26], the image packs were stacked one above
the other until at least 120 images were achieved. Regarding the transport simulations, an
unrealistic periodicity was introduced into the micro-structure. Care must be taken at these
inner breaking faces, as they can possibly cause unpredictable side effects. The dimensions
of the image series are summarized in Table 1.

Table 1. Dimensions of the images series R1, R2, and R3.

Series No. Comp. % No. of Images Dimensions

R1 1 0 200 1250 × 1250

R2 1 6 40 694 × 670
2 8 22 671 × 688
3 11 27 697 × 661
4 13 40 684 × 673
5 16 22 682 × 682
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Table 1. Cont.

Series No. Comp. % No. of Images Dimensions

6 18 40 673 × 687
7 19 21 685 × 680
8 21 40 688 × 677
9 24 40 670 × 685
10 29 40 670 × 685

R3 1 7 40 760 × 310
2 10 40 760 × 310
3 11 40 760 × 310
4 14 40 760 × 310
5 18 40 760 × 310
6 19 40 760 × 310
7 24 40 760 × 310
8 28 40 760 × 310
9 30 40 760 × 310

10 31 40 760 × 310

Figure 6. Compressed images, taken from a Nano CT Zeiss Xradia Versa 420; (A) schematic arrange-
ment in the compression device with GDLs on the channel (R2) and block sides (R3), with BW image
samples (not to scale); (B) sample image from a nano CT Zeiss Xradia Versa 420 (German punctuation
in the image).

2.6. Evaluation of the Predictions

In particular, the predictions of the real data from Section 2.5 are interpreted according
to established relationships known in the characterization of porous material.

Based on the work of Tomadakis and Robertson [36], the Kozeny–Carman trend was
already successfully used by Froning et al. [26] in the description of porous material.

κ =
ε

Kc

(
Vp

Sp

)2
(3)



Appl. Sci. 2023, 13, 6981 9 of 19

With the Kozeny–Carman Equation (3), the permeability κ of a porous material is
related to morphological characteristics of the micro-structure, namely the total volume Vp
and the inner surface of the solid structure Sp. Kc is the Kozeny constant, representing the
shape of the micro-structure. Furthermore, it is known that the product of the permeability
κ and tortuosity τ is related to the fraction of the total volume and the inner surface:

κ · τ ∼ ε ·
(

Vp

Sp

)2
(4)

as long as the shape of the micro-structure does not change under compression. That allows
a Kozeny–Carman (KC) trend to be defined.

κ · τ|x% = κ · τ|ref · ε
(

Vp

Sp

)2
∣∣∣∣∣
x%

/
ε

(
Vp

Sp

)2
∣∣∣∣∣
ref

(5)

The subscript ‘ref’ in Equation (5) denotes a reference value of compression. In [26], a
value of 0% was used. With this relationship, the consistency of κ · τ, calculated for com-
pressed material (x%), can be justified. The training data (from [26]) consist of ensembles of
25 stochastic micro-structures for each pair of binder type and compression level. When
the Kozeny–Carman trend (Equation (5)) was applied to the LB simulations, the trend was
applied with ‘ref’ being the average values of 25 realizations of 0% compression for each
binder type.

3. Data Preparation
3.1. Domain Size Normalization

The training data from previous investigations [26] were also used in this study. The
micro-structures are represented by series of images of the dimensions 512 × 512 each.
The number of images is related to the amount of compression. They range from 65
in the case of 50% compression up to 130 for uncompressed micro-structures. Because
a fixed size is needed for the CNN, the data must be transformed to this domain size.
Based on the given data, the target size was chosen to be 65 × 512 × 512. For each
fiber layer, the geometry model defines five BW images in the uncompressed state [26],
all of them being identical. Compressing the images from 130 to 65 creates gray level
images in which there are intermediate gray levels where different images are merged
by the compression routine. Figure 7 illustrates intermediate gray levels on image triples
after compression, exemplifying two image series. The labels in Figures 2B,D and 7A,B
correspond to each other.

Figure 7. Demonstration of image compression: 50% compression results in pairwise merging of
two BW images to one gray level image. Three gray level images were merged from six BW images;
(A) images 23 to 28 of a stack with br = 18 µm; (B) images 23 to 28 of a stack with br = ∞, annotation
as in Figure 2.

3.2. Real Data

The image stack R1 has images larger than those of the training dataset. The image
resolution of both the training data and the R1 series is the same: 1.5 µm/px. For the
prediction, 50 sections of dimensions 130 × 512 × 512 at random positions were cut
out of the image stack of 200 × 1250 × 1250. Random positions were chosen to avoid
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any systematic influence. As a consequence, a set of 50 geometries were available for
the prediction.

The real data of series R2 and R3 introduced in Section 2.5 have images with a resolu-
tion of 1.797 µm/px, whereas the CNN was trained with image resolutions of 1.5 µm/px.
In a first step, the images were re-scaled with a correction step in the x and y directions,
which was easily accomplished with the tools of ImageMagick [37]. In the z direction, this
re-scaling must be overlaid with the compression algorithm introduced in Section 3.1. The
R2 series has images larger than 512 × 512. For the prediction, a section of 512 × 512 was
cut out of each of the R2 images. The images of R3 are smaller than 512 pixels in the y
direction, even after re-scaling. The images are first doubled, introducing a break in the
center of the images, and then a 512 × 512 section was cut out, like in R2.

4. Validation

As in previous work [12], the data were validated using five-fold cross-validation.
Fold no. 4 was selected for presenting detailed results.

The CNN was trained using 244 iterations with different labels, all of them from fold
no. 4:

(A) permeability κTP / µm2;
(B) tortuosity 10 · τTP;
(C) permeability κIP / µm2;
(D) tortuosity 10 · τIP.

It was necessary to train the tortuosity features with 10 · τ instead of τ. Five folds
were trained, each of them randomly splitting the data into training and test data in the
ratio of 80:20. The development of the MSE during the training of fold no. 4 is displayed in
Figure 8.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  50  100  150  200  250

M
S

E

iterations

In-sample, TP κ
Out-of-sample, TP κ
Out-of-sample, TP τ
Out-of-sample, IP κ
Out-of-sample, IP τ

Figure 8. Training history, fold 4.

The training history does not appear suspicious, but an overfitting effect was observed
in the IP tortuosity of the real material, series R3, where τIP < 1 was predicted. The training
was re-run with only 122 iterations, and was then used for the prediction of results. This is
also discussed in detail in Section 5.
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The three layers that were marked in red shapes in Figure 1 are visualized in Figure 9,
as suggested by Nguyen et al. [38]. The data in each layer are three-dimensional. For
visualization, only the first image of the image stack is shown. Figure 9 displays the
first image of the input data. Convolution layers, together with succeeding filters, help
to detect features of the input data. Typically, on top of the network, local features are
detected, whereas deeper in the network, more complex features are learned [39]. The
convolution creates smaller image stacks but several channels, eight in the case of the layer
‘1/Convolution’ and 16 in the case of the layer ‘3/Convolution’. In the diagram, only four
of each are displayed. The subsequent layers show the result of the convolution steps
that creates gray level images, although the visualization in Figure 9 displays different
colors. The gray level images become blurred as the size is reduced. The hidden layers
of the CNN represent parameters of the fitting procedure during the training. In the
prediction, they show a kind of shadow of the input data. With increasing depth in the
network, the shadows become increasingly blurred, mimicking more complex features of
the micro-structure.

Figure 9. Three layers of the CNN during the prediction of an image stack. The images are not
to scale.

5. Results

The CNN was trained separately with permeability κ and tortuosity 10 · τ to achieve
models to predict permeability and tortuosity. A training with τ was not successful, which
demonstrates the dependency of the method from the absolute range of the characteristics.
The accuracy of the predicted permeability and tortuosity is shown in Figure 10. The
diagrams contain the values of the uncompressed data of fold no. 4. The predictions were
obtained using separated CNN weights for permeability and tortuosity, TP and IP.
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Figure 10. Accuracy of the predicted permeability κ and tortuosity τ for different binder widths br,
uncompressed; (a) TP κ; (b) IP κ; (c) TP τ; and (d) IP τ.

The symbols in Figure 10a–c are close to the ideal line, representing a good agree-
ment between the predicted data and labeled data. The effect of the binder type on the
permeability and TP tortuosity, which was not explicitly trained, is represented by the
predicted values; the information is inherent in the trained data. The scale of Figure 10d
is different from Figure 10b, because the IP tortuosity varies in a closer range than the TP
tortuosity. This is in agreement with the original data calculated by LB simulations by
Froning et al. [26].

The real data of Toray GDL consist of 50 sub-regions randomly cut out of the image
stack of series R1, and two series R2 and R3 taken from a channel/rib assembly. The
predicted data for the cut-outs of series R1 are summarized in Table 2. The product of the
permeability κ and tortuosity τ will be used later in this section in comparison with series
R2 and R3.

In Table 2, the min/max values of the product κ · τ are different from the product of
the separate min/max values of κ and τ, because low values for the tortuosity typically
correspond to high values for the permeability and vice versa. The average values in Table 2
are close to the medians for all features. This confirms the absence of skewness in the
distributions that could occur in the systematic selection of the positions from where the
sub-sections were cut out of the R1 image stack. The average values of the predicted TP and
IP permeabilities and tortuosities are compared with the previously published [26] values,
separated according to the inherent binder model as introduced in Figure 2. The predicted
values best fit to the published values of binder models B and C, representing binder
widths of 18 µm and 30 µm. The statistical spread can be expressed by the dimensionless
variation coefficient V = σ/x̄, σ being the standard deviation and x̄ the average value. The
variation coefficient of the permeability (TP and IP) is smaller than that of the training data
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as published in [26]. The variation coefficient of the predicted tortuosities is close to that of
the predicted permeabilities. Within the training data, it was somewhat smaller.

Table 2. Tortuosity and permeability of 50 sub-sections of real data of series R1, predicted by the
CNN, were trained with fold no. 4. The physical units of the variance are the square of the units in
the column headers. The lower section shows the characteristics of the training data.

TP IP
κ τ κ · τ κ τ κ · τ

µm2 µm2 µm2 µm2

min 8.89 1.17 11.73 17.44 1.07 19.23
max 11.94 1.36 15.18 19.82 1.14 22.02
average 10.54 1.27 13.43 18.83 1.10 20.80
median 10.54 1.28 18.85 1.10
std. deviation σ 0.62 0.038 0.75 0.56 0.014 0.69
variance σ2 0.38 1.5× 10−3 0.32 1.9× 10−4

var. coeff. 5.9× 10−2 3.0× 10−2 5.58× 10−2 3.0× 10−2 1.3× 10−2 3.3× 10−2

average (B) in [26] 11.18 1.27 17.98 1.11
average (C) in [26] 10.51 1.29 17.81 1.11
favored: C B B B, C

The binder widths in variants A and D were extreme values in the original develop-
ment of the underlying binder model by Thiedmann et al. [40]. Manual measurements of
the binder width in the BW images as shown in Figure 3 are hardly representative because
of significant imaging errors. These imaging errors also inhibited a successful LB simulation
of this micro-structure.

In series R2, the GDL was embedded in an assembly with a 1.0 mm channel width and
a 0.8 mm channel width in series R3. The resolution of the images—1.797 µm/px—was
adapted to the resolution of the training data in the pre-processing step (1.5 µm/px). Table 3
summarizes the predicted permeability.

The LB simulations in the IP direction did not converge on meaningful physical
values. It is believed that the tight stacking of the images led to significant errors at the
artificial inner breaking faces. These breaking faces are closer than the minimum domain
size (100 in each coordinate direction) for these kinds of LB simulations, as identified by
Froning et al. [26].

The inner structure is characterized by the porosity and the relationship (Vp/Sp) which
is used in the Kozeny–Carman trend, Equations (4) and (5). The values for (Vp/Sp) in the
table are related to the resolution of 1.797 µm/px of the original images (see Section 3.2).

Mangal et al. [41] measured the TP permeability of Toray GDL as 10.9± 1.2 µm2, which
is closer to the results of the LB simulations in artificial structures by Froning et al. [26]
than to those from the segmentations of real data in Table 3. This indicates that the image
segmentation possibly caused larger errors than the LB ones and the ML predictions.

The IP permeability is systematically larger than the TP permeability, which is consis-
tent with systematic investigations into the artificial micro-structures of Toray GDLs [26].
The permeability of series R2 along the compression of the material is depicted in Figure 11.
Series R3 is shown in Figure 12.

Feser et al. [42] measured the IP permeability of three kinds of GDL, one of them
being Toray 060, under mechanical compression. They observed a decrease in the IP
permeability of Toray GDL by a factor of approximately two under compressions of up to
24%. Their experiments showed variances of only 10–15%. This behavior is consistent with
the predicted κML values in the IP columns of Table 3 and the corresponding symbols in
Figures 11 and 12.

The IP permeability and tortuosity were calculated in only one direction—the x
coordinate—because the geometry model of Thiedmann et al. [32] was stochastically
invariant in the plane. The real data from Hoppe [35], however, were not invariant in
its two IP directions because of the morphological changes of the micro-structure under
compression. The x coordinate is the transport direction in the IP simulations. According
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to Figure 6, this direction is across the channel in the mechanical compression setup of
Hoppe [35]. This fact may affect the LB simulations presented in Table 3 and Figure 11.

The consistency of the predicted data was evaluated via the product κ · τ. According to
Equation (4), a constant was fitted to match κ · τ with ε · (Vp/Sp)

2. The latter characterizes
the compression of the material, assuming an almost similar shape of the inner structure.
Series R3 shows some outliers of (Vp/Sp) in Table 3, namely for compression levels 24%,
28%, and 31%.

Table 3. The tortuosity and permeability of real data, predicted by the CNN, trained with fold no. 4.
The series are annotated according to Section 2.5.

Series No. Comp. Porosity Vp/Sp TP IP
τLB τML κLB κML τLB τML κLB κML

% µm µm2 µm2 µm2 µm2

R2 1 6 0.688 7.12 1.22 1.26 6.01 8.18 1.01 18.20
2 8 0.666 6.38 1.13 1.17 5.91 6.97 1.01 15.97
3 11 0.678 6.72 1.15 1.28 6.07 7.03 1.01 16.31
4 13 0.669 6.74 1.23 1.27 4.65 6.82 1.04 16.10
5 16 0.669 6.74 1.11 1.35 6.98 6.25 1.05 16.09
6 18 0.669 6.59 1.25 1.27 4.36 6.05 1.07 15.37
7 19 0.680 6.05 1.12 1.26 5.49 5.91 1.07 14.09
8 21 0.644 6.42 1.26 1.27 3.46 5.86 1.03 13.35
9 24 0.640 6.41 1.27 1.27 3.23 5.12 1.02 12.25

10 29 0.640 6.41 1.27 1.28 3.23 4.59 1.04 11.05

R3 1 7 0.685 7.61 1.18 1.13 7.46 7.65 1.08 16.23
2 10 0.709 7.91 1.15 1.19 9.46 7.21 1.09 16.19
3 11 0.669 7.02 1.20 1.13 5.39 6.94 1.07 15.08
4 14 0.666 6.86 1.20 1.16 5.01 6.46 1.09 14.18
5 18 0.678 6.91 1.18 1.20 5.68 6.08 1.08 14.13
6 19 0.685 6.89 1.18 1.22 6.54 1.11 14.45
7 24 0.597 4.61 1.08 5.15 1.04 10.79
8 28 0.555 4.84 0.98 3.75 1.04 7.97
9 30 0.570 6.69 1.19 3.80 1.12 7.38

10 31 0.592 8.87 1.25 4.09 1.17 8.68

The KC trend (Equation (4)) was fitted to the predicted values for κ · τ for the real data
from series R2 and R3. According to Equation (4), a constant factor was determined that
minimized the sum of the squared errors. The resulting factor was 0.91 for the TP values and
1.77 for the IP ones. The κ · τ relationship of series R2 is shown in Figure 13. The data are
presented in relation to the compression. Therefore, the straight line from the fit procedure
follows the irregular shape of the displayed abscissa ε · (Vp/Sp)

2. The predicted values for
κ · τ show a good agreement with the Karman–Cozeny trend ε · (Vp/Sp)

2 (Equation (4)).
Although the LB simulations in the IP direction failed in most cases, the ML predictions
are also consistent in this case. The failing LB simulations may be a consequence of
the fact that the images needed to be stacked upon each other. In the IP direction, the
wrong shear layers potentially led to a different type of error than in the TP direction. For
comparison, the average of the predicted κ · τ of the R1 series was also inserted in Figure 13,
including a small error bar representing the standard deviation from Table 2. This entry for
uncompressed data does not conflict with an extrapolation of the R2 series of compressed
geometries in Figure 13.

The κ · τ relationship of series R3 is shown in Figure 14. The fitted factors for the KC
trend of this data were 0.65 for the TP direction and 1.32 for the IP one. In comparison to
Figure 13, the predicted κ · τ for the R3 series shows less agreement with ε · (Vp/Sp)

2 than
before, especially for higher compression levels. This is in accordance with the presence of
outliers in the (Vp/Sp) entries in Table 3. Furthermore, the R1 value for κ · τ is further away
from a meaningful extrapolation of the corresponding values of the compressed R3 series



Appl. Sci. 2023, 13, 6981 15 of 19

in Figure 14 than it was previously, in the R2 series. The sub-optimal agreement of the KC
trend with κ · τ along the compression indicates that the underlying micro-structure—in
this case, its representation by BW images—changes its shape under compression.
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Figure 11. Permeability of the compressed GDL, series R2, calculated with LB simulations and
predicted by the CNN.
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Figure 12. Permeability of the compressed GDL, series R3, calculated with LB simulations and
predicted by the CNN.
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The deviation in the KC trend in Figure 14 is in agreement with the observation that
the LB simulations of these micro-structures failed more often than for the R2 series.

6. Discussion

The prediction of the permeability and tortuosity of Toray GDL was successfully
applied to segmented images of the micro-structure of real data. A re-scale of different
image resolutions and domain sizes led to consistent results.

Applied to real image data with unknown errors in the segmentation, overfitting
effects were observed. In contrast to introductory examples [27], where the test dataset is
usually of the same image quality as the training dataset, overfitting was not detected in
the test data. Additional consistency checks were necessary in the case of the R3 series,
where meaningless values (τ < 1) were predicted for the IP tortuosity.

As in previous work [26], the Kozeny–Carman trend on the product κ · τ of both the
permeability and tortuosity characteristics was applied to judge the consistency of the
predicted results.

Using real data, re-sizing and re-scaling was applied to the micro-structure, because
the CNN requires a 3D input geometry of fixed size. For this purpose, two image series, R2
and R3, were available.

The re-scaling from 1.797 µm/px of the micro-structure to 1.5 µm/px of the training
data obviously did not hurt the accuracy; the features of the R2 series were satisfactorily
predicted. That was not the case with the R3 series though.

One difference between the R2 and R3 series is the small size of the sample in the y
direction. The images of both series must be stacked upon each other in the z direction
to achieve the training size. Only for the R3 series was this procedure applied also in
the y direction. The inaccuracy of the R3 series was observed in both the TP and IP
directions. Moreover, the images of R2 were taken from the channel side of the compression
device setup. The R3 images were taken from the block side. Although it was observed
by Hoppe [35] that the complete MEA was deformed under the channel, the impact of
deformation on the GDL micro-structure is expected to be lower on the block side than on
the channel one. The high relevance of the GDL deformation under compressed flow fields
was shown by Hoppe et al. [43], who investigated the GDL compression under misaligned
flow fields.

The IP characteristics of the training data were only available for one direction [26]. This
is absolutely sufficient, given of the stochastic nature of the underlying geometry model [32].
The geometries of the training data were homogeneously compressed. In contrast, the real
data of the R2 and R3 series were inhomogeneously compressed [35]; according to Figure 6,
there are regions under the channel and under the rib. In the arrangement of Figure 6, the
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IP characteristics differ, along and perpendicular to the channel. However, this cannot be
distinguished by a model that was trained for homogeneous compression.

From the application’s view, the permeability of the GDL on the flow field side, R2, is
expected to be higher than that of the GDL on the block side, R3. This is indeed predicted
by the ML model, but it must be conceded that the predictions of the R3 series possibly
cannot be trusted because of the KC trend.

Nevertheless, it must be noted that imaging errors could have occurred in different
degrees of severity in both series. In this work, the KC trend was used to justify the
consistency of the ML predictions. It may be that other methods are viable for evaluating
the accuracy of predictions in case an application were to suffer from other effects than the
training data.

This work investigated the limitation of a CNN when the predictions are applied to
images that have un-trained features. To justify the consistency of the prediction—once un-
trained features have been identified—an additional criterion is to be applied. In this work,
it was the KC trend for compressed porous material. Future work can investigate the effect
of artificial noise to the artificial micro-structures, mimicking the image artifacts on real
data. In the field of dynamic PEFC modeling, this was successfully done by Zou et al. [44].

7. Conclusions

The CNN architecture for the prediction of permeability developed in previous work
is also able to train and predict the tortuosity of paper-type GDLs. Applied to images from
a different source than those of the training set, the consistency of the prediction must be
verified by an additional criterion. The effect of compression on the characteristics of the
porous media was verified using the Kozeny–Carman trend. This relationship was also
used to identify the sub-optimal segmentation of the micro-structure, leading to a deviation
between the Kozeny–Carman equation and the product of the permeability and tortuosity.
For different situations, another criterion could possibly help justify the consistency of
the predictions.

Author Contributions: Conceptualization, D.F. and E.H.; Formal analysis and methodology, D.F.;
Investigation, D.F. and E.H.; Software, D.F.; Validation, D.F. and E.H.; Writing, D.F.; Supervision, R.P.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation)—491111487.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors gratefully acknowledge the computing time provided to them at
the NHR Center NHR4CES at RWTH Aachen University (project number p0020317), which is funded
by the Federal Ministry of Education and Research, and the state governments participating on
the basis of the resolutions of the GWK for national high-performance computing at universities
(www.nhr-verein.de/unsere-partner, accessed on 21 May 2023). The authors acknowledge the
computing time granted by the JARA Vergabegremium and provided on the JARA Partition part of
the supercomputer JURECA at Forschungszentrum Jülich.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ye, D.H.; Gauthier, E.; Cheah, M.J.; Benziger, J.; Pan, M. The Effect of Gas Diffusion Layer Compression on Gas Bypass and Water

Slug Motion in Parallel Gas Flow Channels. AIChE J. 2015, 61, 355–367. [CrossRef]
2. Ryan, E.M.; Mukherjee, P.P. Mesoscale modeling in electrochemical devices—A critical perspective. Prog. Energy Combust. Sci.

2019, 71, 118–142. [CrossRef]

www.nhr-verein.de/unsere-partner
http://doi.org/10.1002/aic.14686
http://dx.doi.org/10.1016/j.pecs.2018.11.002


Appl. Sci. 2023, 13, 6981 18 of 19

3. Holzer, L.; Pecho, O.; Schumacher, J.; Marmet, P.; Stenzel, O.; Büchi, F.; Lamibrac, A.; Münch, B. Microstructure-property
relationships in a gas diffusion layer (GDL) for Polymer Electrolyte Fuel Cells, Part I: Effect of compression and anisotropy of dry
GDL. Electrochim. Acta 2017, 227, 419–434. [CrossRef]

4. Zenyuk, I.V.; Parkinson, D.Y.; Connolly, L.G.; Weber, A.Z. Gas-diffusion-layer structural properties under compression via X-ray
tomography. J. Power Sources 2016, 328, 364–376. [CrossRef]

5. Bao, Z.; Li, Y.; Zhou, X.; Gao, F.; Du, Q.; Jiao, K. Transport properties of gas diffusion layer of proton exchange membrane fuel
cells: Effects of compression. Int. J. Heat Mass Transf. 2021, 178, 121608. [CrossRef]

6. Bosomoiu, M.; Tsotridis, G.; Bednarek, T. Study of effective transport properties of fresh and aged gas diffusion layers. J. Power
Sources 2015, 285, 568–579. [CrossRef]

7. Mukherjee, M.; Bonnet, C.; Lapique, F. Estimation of through-plane and in-plane gas permeability across gas diffusion layers
(GDLs): Comparison with equivalent permeability in bipolar plates and relation to fuel cell performance. Int. J. Hydrogen Energy
2020, 45, 13428–13440. [CrossRef]

8. Leonard, D.; Babu, S.K.; Baxter, J.; Meyer, H.M.; Cullen, D.; Borup, R. Natural fiber-derived gas diffusion layers for high
performance, lower cost PEM fuel cells. J. Power Sources 2023, 564, 232619. [CrossRef]

9. Zhang, H.; Zhu, L.; Harandi, H.B.; Duan, K.; Zeis, R.; Sui, P.C.; Chuang, P.Y.A. Microstructure reconstruction of the gas diffusion
layer and analyses of the anisotropic transport properties. Energy Convers. Manag. 2021, 241, 114293. [CrossRef]
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