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Abstract: Invoice recognition has long been an active research direction in the field of image recogni-
tion. Existing invoice recognition methods suffer from a low recognition rate for structured invoices,
a slow recognition speed, and difficulty in mobile deployment. To address these issues, we propose
an invoice-structured recognition method based on the StrucTexT model. This method uses the idea
of knowledge distillation to speed up the recognition speed and compress the model size without
reducing the model recognition rate; this is achieved using the teacher model StrucTexT to guide
the student model StrucTexT_slim. The method can effectively solve the problems of slow model
recognition speed and large model size that make mobile deployment difficult with traditional
methods. Experimental results show that the proposed model achieves an accuracy rate of over 94%
on the SROIE and FUNSD public datasets and over 95% on the self-built structured invoice dataset.
In addition, the method is 30% faster than other models (YOLOv4, LeNet-5, and Tesseract-OCR) in
terms of recognition speed, while the model size is compressed by about 20%.

Keywords: structured recognition of invoices; invoice layout analysis; pre-training; knowledge distillation

1. Introduction

Optical Character Recognition (OCR) is currently one of the most widely used visual
artificial intelligence technologies. With the rapid development of multimedia information
based on images, image text recognition technology has become an important medium
for information transmission. This technology can automatically locate, segment, and
recognize the structured text content contained in images and has important value for the
automatic understanding of image semantics, image retrieval, and indexing [1]. In the field
of office automation, the number of expense reimbursement documents processed by large
enterprises is increasing rapidly due to the rapid development of social, economic, and
business needs. Therefore, the optimal way in which we can apply advanced information
technology to handle the large number of invoices generated during daily production has
become a hot topic in the field of text recognition.

OCR technology, driven by strong market demand, has been applied in the financial
sector and has recently become a hot topic in the field of text recognition research. Research
on invoice recognition has been previously conducted in foreign countries, especially
in OCR technology research institutions in the United States, Canada, Japan, and other
countries. As research progresses, foreign scholars have also developed many practical
products. For example, MiTek Systems’ CheckQuest product has been used by banks such
as the Bank of Thayer and Mount Prospect National Bank, and A2iA’s CheckReader has
been applied to commercial banks in the United States and France.

Structured recognition of invoices has been carried out in China. Tang J. et al. [2]
proposed a method for the structured recognition of value-added tax invoice information
using HRNet and YOLOv4. The method showed strong recognition ability with value-
added tax invoices but had limitations in recognizing other types of invoices such as taxi
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receipts and flight itineraries. Yin Z. J. et al. [3] proposed an improved invoice recognition
method based on modifying the activation function and increasing the number of feature
maps in the LeNet-5 convolutional neural network to improve network performance;
however, its structured output effect is not ideal. Sun R. B. et al. [4] proposed a complex
invoice adaptive recognition method based on Tesseract-OCR, which achieved adaptive
adaptation of table headers and content through the extraction of table positions and
customized templates within a structured output. However, its adaptability to large
quantities of complex invoices is poor, as each new type of invoice requires analysis
from scratch.

In the common process of invoice reimbursement, the region of interest (ROI) that
needs to be identified on an invoice is commonly divided into four parts: purchaser
information, seller information, amount, and basic invoice information.

Figure 1 shows a value-added tax invoice in China. In the reimbursement process,
the ROIs that need to be identified are the purchaser’s name, the taxpayer’s identification
number, the invoice code, invoice number, billing date, amount, etc. Here is an example
code that illustrates how traditional invoice recognition methods store the recognized
segments as strings and then use regular expression-matching functions to obtain the
corresponding ROI segments:

re.findall (‘\d*年\d*月\d*日’,txt)
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Figure 1. A VAT invoice.

In the above code, the character “年” represents the year, the character “月” represents
the month, and the character “日” represents the day. The above code uses the regular
expression function to return the “billing date” ROI. However, there are some issues with
this approach. It is only suitable for segments such as the billing date and invoice code,
which have a fixed style and a relatively simple format. Its recognition ability is poor for
more complex segments, such as the purchaser’s address, which lack obvious formats.
In addition, it may have difficulty distinguishing between the purchaser’s and seller’s
information, thereby leading to confusion.

The aforementioned invoice recognition methods may be competent for general in-
voice recognition tasks but may also reveal some problems. The first lies in the recognition
speed of the model. In daily production, the number of invoices that need to be recognized
is often huge, and the recognition speed of the model will affect its working efficiency.
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Secondly, high-precision models usually lead to a very large model size, which places great
demands on the running equipment and is not easy to deploy on a mobile device.

To address the limitations of the aforementioned methods, the article proposes a
structured invoice recognition method based on the StrucTexT model. The method builds
on open-source OCR algorithms and can output recognized information in a structured
format, solving the problem of mismatched key segments and recognition information. It
not only focuses on value-added tax invoices but also has high recognition accuracy for
other reimbursement documents such as taxi receipts and flight itineraries, solving the
problem of a limited range of recognized documents and poor usability. The model is also
optimized for size and can be deployed on edge devices, making it easier to operate on
mobile devices. The method compresses the model’s size, speeds up its recognition, and
improves its efficiency. This method achieves automatic recognition, entry, and storage
of invoice information, saving time for financial personnel and streamlining the financial
reimbursement process.

This paper is divided into four main chapters. The first section is an introduction,
which mainly analyzes the current status of invoice recognition-related research, summa-
rizes the shortcomings of existing methods, and proposes a structured recognition method
for invoices based on StrucTexT. The second section mainly introduces the base model
used, StrucTexT, and optimizes the model by knowledge distillation; the third chapter is
an experimental analysis in which the optimized model is compared with other models
on a publicly available dataset. The third section is an experimental analysis, in which
the optimized model is compared with other latest models on the public dataset, and the
identification experiments of key segments of bills are conducted on the self-built dataset
to illustrate the effectiveness and novelty of the method. Section 4 is the conclusion, which
mainly gives a summary of the work in this paper.

2. Related Models and Optimization
2.1. StrucTexT

OCR structuring technology often addresses two high-frequency application task
types: entity labeling and entity linking. Entity labeling refers to the extraction of text
content from OCR recognition results corresponding to predefined entity labels, such as
“Amount”, “Purchaser Name”, etc. Entity linking refers to analyzing the relationship
between text entities, for example, whether they can form key_value pairs or whether they
belong to the same row or column in a table.

In invoice recognition, invoices are visual, text-rich images with multiple attributes
such as text, image, and layout. Multimodal cues are used for modeling, and Chinese
and English segment-level multimodal features are incorporated into structured OCR
pre-training for feature enhancement.

Figure 2 shows a schematic diagram of the overall model framework of the model
StrucTexT [5] used in this paper. In a given input image with pre-processed OCR results
such as bounding boxes and text segment content, for example, various pieces of infor-
mation in terms of text, image, and layout are utilized through the feature-embedding
phase. The multimodal embedding is then fed back to the pre-trained transformer to
obtain rich semantic features. The transformer accomplishes cross-modal fusion by creating
interactions between different modal inputs. Figure 3 shows a diagram of the model’s
pre-training task. Finally, the structured text understanding module receives the encoded
features, performs entity recognition for entity labeling, and then performs relationship
extraction of entity connections, as shown in Figure 4.
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Given a document image I with n text segments, StrucTexT carries out open-source
OCR algorithms to obtain the i-th segment region with the top_left and bottom_right bound-
ing boxes bi = (x0, y0, x1, y1), and its corresponding text sentence ti =

{
ci

1, ci
2, . . . , ci

li

}
,
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where c is a word or character and li is the length of ti. For every segment or word,
StrucTexT uses the encoded bounding boxes as their layout information.

L = Embl(x0, y0, x1, y1, w, h) (1)

where Embl is a layout embedding layer and w and h are the shapes of the bounding box
b. It is worth mentioning that we estimate the bounding box of a word using its own text
segment, considering OCR results that lack word-level information.

Following a common method, StrucTexT utilizes WordPiece [6] to tokenize text sen-
tences. After that, all of the text sentences are gathered as a sequence S by sorting the
text segments from the top_left to the bottom_right. Intuitively, a pair of special tags
[CLS] and [SEP] are added at the beginning and end of the sequence, as t0 = {[CLS]} and
tn+1 = {[SEP]}. Thus, StrucTexT can define the language sequence S as follows:

S = {t0, t1, . . . , tn, tn+1}
=

{
[CLS], c1

1, . . . , c1
l1

, . . . , cn
1 , . . . , cn

ln , [SEP]
} (2)

Then, StrucTexT sums the embedded feature of S and the layout embedding L to
obtain the language embedding T:

T = Embt(S) + L (3)

where Embt is a text-embedding layer.
Within the model’s architecture, StrucTexT uses ResNet50 [7] with FPN [8] as the

image feature extractor to generate feature maps of I. Afterwards, the image feature of each
text segment is extracted from the CNN maps using RoIAlign [9], according to b. The visual
segment embedding V is computed as

V = Embv(ROIAlign(CNN(I), b)) + L (4)

where Embv is the visual embedding layer. Furthermore, the entire feature map of image
I is embedded as V0, in order to introduce global information into image features.

Compared with the vision_language tasks based on wild pictures, understanding the
structured document requires higher semantics to identify the ambiguous entities. Thus,
StrucTexT proposes segment ID embedding Sid to allocate a unique number to each text
segment, its image, and its text features, which will then create an explicit alignment of
cross-modality clues.

In addition, StrucTexT adds two other embeddings to the input. The position embed-
ding Pid encodes the indexes from 1 to the maximum sequence length, and the segment
embedding Mid denotes the modality for each feature. All of the above embeddings have
the same dimensions. In the end, the input of the StrucTexT model is represented as the
combination of the embeddings.

Input = Concat(T, V) + Sid + Pid + Mid (5)

Moreover, StrucTexT appends several [PAD] tags to make the short input sequence a
fixed length. An empty bounding box with zeros is assigned to the special [CLS], [SEP],
and [PAD] tags.

StrucTexT collects multi-modal information from visual segments, text sentences, and
position layouts to produce an embedding sequence. We support image_text alignment
between different granularities by leveraging the segment IDs mentioned above. At this
stage, we introduce a transformer network to encode the embedding sequence and establish
deep fusion between modalities and granularities. Crucially, during the pre-training
stage, three self-supervised tasks encode the input features to learn task-agnostic joint
representations. The details of these tasks are introduced below, and the patterns of all
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self-supervised tasks are shown in Figure 5. The Chinese characters in the Figure 5 are
visual segments in the invoice.
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In the following section, the three self-supervised tasks of masked visual language
modeling, sentence length prediction, and paired box direction are described separately.

(a) Masked visual language modeling (MVLM)
This task is used to facilitate the capture of contextual representations in terms of lan-

guage. Following the masked multimodal modeling model of ViLBERT, the model selects
about 15% of the tokens from the language sequence, masks 80% of them with [MASK] tags,
replaces 10% of them with random tokens, and keeps 10% of the tokens unchanged. The
model is required to reconstruct the corresponding notation. The model does not follow the
masking of ViLBERT’s image region precisely, but it retains all information and encourages
the model to look for cross-modal cues whenever possible.

(b) Sentence length prediction (SLP)
This task is used to mine fine-grained semantic information on the image side. SLP

requires the model to recognize the length of the segment from each visual feature. In this
way, the encoder is forced to learn image features using the same segment ID, and more
importantly, it is also forced to acquire linguistic sequence knowledge. This information
flow accelerates the deep cross-modal fusion of textual, visual, and layout information.

In addition, to avoid the interference caused by the generation of sub-words, the
model only counts the first occurrence of sub-words in order to keep the length between
the language sequence and the image fragment the same. Thus, the model simply and
efficiently creates additional alignment between the two granularities.

(c) Paired box direction (PBD)
As a third self-supervised task, PBD aims to exploit global layout information. The

purpose of the PBD task is to learn the integrated geometric topology of the document
structure by predicting the pairwise spatial relationships between text segments. First,
a 360◦ region is divided into eight identical buckets. Second, the angle θij between text
segments i and j is computed and labeled with one of the buckets. Next, subtraction is
performed between two visual features on the image side in order to obtain the result ∆V̂ij
as input to the PBD:

∆V̂ij = V̂i − V̂j (6)
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where the symbol “̂” is used to indicate the features after transformer encoding. V̂i and V̂j
express the visual features of the i-th segment and j-th segment.

Finally, PBD is defined as a classification task that uses ∆V̂ij to determine the relative
position and orientation.

2.2. Optimization

According to the pre-training task of the “masked visual language model” in the
invoice-related document images and the StrucTexT model in the domestic scene, the
pre-training task is extended to the segment level. By randomly selecting some segments
and masking all tokens in the segment, the model is required to restore these tokens in
order to learn more complex semantic information. The original model uses the masked
visual language model, which can only learn relatively simple semantic information. For
rich visual text images such as value-added tax special invoices, the semantic information is
relatively complex. By extending the pre-training task using the masked segment prediction,
the model’s understanding of complex semantic information is improved, as is its ability to
understand and recognize various pieces of complex invoice information.

Meanwhile, it should be noted in the use of the model that although the StrucTexT
model has excellent performance and a fast recognition speed for single-ticket recognition,
in practical application scenarios, said tickets are often numerous and disorderly. StrucTexT
contains 107 M parameters, and although the model’s performance is high, the complexity
of the model is also high, and the cost of applying large models in practical scenarios is
high. Considering that the final recognition result still needs to be verified by financial
personnel, the accuracy and speed of the model must be balanced; the recognition speed
should be improved without sacrificing the recognition accuracy.

To compress the model and reduce its parameter count, there are several main methods
currently available, such as pruning [10], quantization [11], knowledge distillation [12,13],
and so on. Among them, knowledge distillation uses a teacher model to guide the student
model to learn specific tasks. As a result, the student model has performance comparable
to that of the teacher model but with a significantly reduced parameter count, thereby
achieving model compression and acceleration. The method uses the StrucTexT model as
the teacher model to guide the student model, StrucTexT_slim, which is essentially mutual
supervision between the output and feature maps. The teacher model is needed to load the
pre-trained model and fix the parameters.

To obtain a softer classification output, the knowledge distillation algorithm adds a
temperature coefficient T to the softmax function in order to soften the category probability
of the target, which is calculated as shown:

qi =
exp(zi/T)

∑
j

exp(zj/T)
(7)

where zi is the content of the output layer. The temperature coefficient T is taken as 1,
which is the original softmax function. As T decreases, the relative size of the probability
of incorrect categories becomes more apparent; as T increases, the probability distribution
of the output target category becomes smoother, and the softness of the label increases.
Figure 6 shows the algorithm flowchart for knowledge distillation.
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For the same input vector xi, the predicted output of the teacher model is calculated,
divided by the temperature coefficient T, and then transformed via softmax to obtain the
soft target, i.e., the softened probability distribution. Afterwards, the predicted output of
the student model is calculated, divided by the temperature coefficient T, and transformed
via softmax, and cross-entropy loss is calculated using the soft target. The overall loss
calculation is as follows:

Losstotal = λLossso f t(ps, pt) + (1− λ)Losshard(ps, y) (8)

The overall loss, Losstotal , is divided into two parts, Lossso f t and Losshard, which are
calculated as follows:

Lossso f t(ps, pt) = −∑ pslogpt (9)

Losshard(ps, y) = −∑ pslogy (10)

where ps and pt represent the predicted output of the student model and the teacher model,
respectively; y is the true label and λ is the weighting factor. During the early stages of
training, the value of λ can be increased in order to quickly enhance the student model’s
ability to identify simple samples, ensuring that the student network can quickly acquire
the ‘knowledge’ of the teacher model. In the later stages of training, the λ value can be
appropriately reduced to improve the student model’s ability to identify difficult samples
while combining the true labels (i.e., y) to help the student model with recognition.

The final distillation training loss function contains the following five components:

(1) The CTC branch of the final output (head_out) of student and teacher, with a CTC
loss of gt, weighted by 1. Here, because both sub-networks need to update their
parameters, both have to calculate the loss using g.

(2) The SAR branch of the student’s and teacher’s final output (head_out), with a SAR
loss of gt, weighted by 1. Here, both need to calculate the loss using g, because both
sub-networks need to update their parameters.

(3) The DML loss between the CTC branches of the student’s and teacher’s final output
(head_out), with a weight of 1.

(4) The DML loss between the student and the SAR branch of the teacher’s final output
(head_out), with a weight of 0.5.

(5) The l2 loss between the student’s and teacher’s backbone network output (back-
bone_out) has a weight of 1.
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In terms of model structure, in order to add more loss functions and to ensure the
scalability of the distillation method, the output of each sub-network is saved as a dict,
which contains the sub-module outputs. In the model, the output of each sub-network is a
dict; the key contains backbone_out, neck_out, and head_out; and the value is the tensor of
the corresponding module.

For post-processing, the output of these two sub-networks is extracted and decoded
for the prediction results of the distillation model. The CTC-decoded outputs of both the
student’s and teacher’s sub-networks are computed, and a dict is returned, with the key
being the name of the sub-network used for processing and the value being the list of
sub-networks used for processing.

RecMetric is set as the base class for metric calculation, and eventually, the “acc”
metrics of the Student’s sub-network are used as the judgment metric for saving the
best model.

3. Experiment and Analysis
3.1. Dataset

The datasets used for the experiments include the public datasets SROIE and FUNSD
and self-built datasets.

SROIE is a public dataset for ticket information extraction that is provided by the
ICDAR 2019 Challenge. It contains 626 training ticket data and 347 test ticket data, each
containing the following four predefined segments: company name, date, address, and
total price.

FUNSD is a dataset for form understanding, containing 199 fully labeled scanned
images of marketing reports, advertisements, and academic reports; it is divided into
149 training sets and 50 test sets.

The self-built dataset consists of 100 VAT invoices and airline itineraries obtained from
the university’s finance office and used by individuals; it is fully labeled using open-source
dataset-labeling software.

3.2. Experimental Environment and Parameter Settings

The experimental environment is based on Win10, using an Intel i7-11800F CPU, an
NVIDIA Geforce RTX 3090 24 G GPU, 16 GB of RAM, Python 3.6 + CUDA 10.2, and the
Pycharm community IDE.

The models compared in the experiments are LayoutLM [14] and LayoutLMv2 [15],
which are pre-trained document-understanding models that act by jointly modeling the
layout and text and image multimodel information of a document using the spatial relative
attention mechanism, newly introducing text and image that are related. Among them, the
BASE model is a 12-layer transformer; each layer contains 768 implied units and 12 attention
heads, with 113 M parameters. The LARGE model is a 24-layer transformer; each layer
contains 1024 implied units and 16 attention heads, with 343 M parameters.

The experiments follow a typical pre-training and fine-tuning strategy by rescaling
and padding the images to a size of 512 × 512, with the input sequence set to a maximum
length of 512. A 12-layer transformer with 768 implicit units and 12 attention heads is
selected (the same as the BASE model of LayoutLM). The batch size is set to 4, the learning
rate is [0.0001, 0.00001], and the knowledge distillation temperature coefficient T is set to 3.

3.3. Comparison of Experimental Results

The experiments were first conducted on the SROIE public dataset, and the optimized
model StrucTexT_slim’s performance in entity labeling was compared with that of Lay-
outLM, LayoutLMv2, YOLOv4, LeNet-5, and Tesseract-OCR. The results are shown in
Table 1.
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Table 1. Model performance comparison on SROIE.

Model Precision Recall F1 Parameters Time

LayoutLM_BASE 0.944 0.944 0.944 113 M 4.5 s
LayoutLM_LARGE 0.952 0.952 0.952 343 M 2.7 s
LayoutLMv2_BASE 0.963 0.963 0.963 200 M 3.6 s
LayoutLMv2_LARGE 0.966 0.966 0.966 426 M 2.1 s

StrucTexT 0.967 0.968 0.969 107 M 6.7 s
YOLOv4 [2] 0.954 0.954 0.954 145 M 4.6 s
LeNet-5 [3] 0.941 0.942 0.941 92 M 5.6 s

Tesseract-OCR [4] 0.957 0.958 0.957 101 M 7.3 s
StrucTexT_slim 0.947 0.948 0.947 80 M 4.1 s

The time in the table indicates the average time required to recognize an image. It is
obvious from the table that the improved model StrucTexT_slim has an accuracy of 94.7%
on the SROIE dataset, which is 2% lower than that of the original model but second only to
LayoutLMv2_Large in terms of recognition time. It also has the smallest model size. The
comparison results on the FUNSD dataset are shown in Table 2.

Table 2. Model performance comparison on FUNSD.

Model Precision Recall F1 Parameters Time

LayoutLM_BASE 0.760 0.816 0.787 113 M 4.1 s
LayoutLM_LARGE 0.760 0.822 0.790 343 M 2.9 s
LayoutLMv2_BASE 0.803 0.854 0.828 200 M 3.7 s
LayoutLMv2_LARGE 0.832 0.852 0.842 426 M 2.0 s

StrucTexT 0.857 0.810 0.831 107 M 6.5 s
YOLOv4 [2] 0.837 0.852 0.841 145 M 4.8 s
LeNet-5 [3] 0.821 0.819 0.825 92 M 6.1 s

Tesseract-OCR [4] 0.836 0.841 0.837 101 M 7.5 s
StrucTexT_slim 0.835 0.796 0.816 80 M 3.9 s

In the FUNSD dataset, entities belonging to other categories were ignored, and the
average performance of the three categories (title, question, and answer) was used as
the final result. Although the StrucTexT_silm model is not optimal in all metrics, the
best-performing LayoutLMv2_LARGE model is only 2.6% higher in F1 score than the
StrucTexT_silm model. Meanwhile, the LayoutLMv2_LARGE model is larger, consisting
of a 24-layer and 16-head transformer that contains 426 M parameters. In addition, the
LayoutLMv2_LARGE model uses 11M documents for pre-training. During the product’s
actual application and deployment, StrucTexT_silm performs significantly better.

The experiments also used the self-built dataset mentioned in Section 3.1 to recognize
some keywords in VAT invoices and airline trip tickets in order to test the model’s matching
of keyword segments with the recognized information. The recognition results are shown
in Table 3, and the model performs better in recognizing tickets such as VAT invoices and
airline trip tickets.

As can be seen from the table, the recognition rate of the model for each key area of
the VAT invoices is over 95%, which meets the requirements of invoice recognition.

From the above experiments, it can be concluded that the optimized model Struc-
TexT_slim has a higher accuracy; its recognition speed is greatly accelerated, and its model
volume is compressed, which solves a series of problems (slow recognition speed, large
model volume, and difficulty of deployment within a traditional invoice recognition model).
The experiments also show that the model has high recognition accuracy in its assessment
of complex invoices, such as VAT invoices.
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Table 3. Keyword recognition performance.

Keyword Precision

Pre-tax amount 1
Tax rate 1

Tax amount 1
Name (seller) 0.98

Taxpayer identification number (seller) 0.99
Address telephone (seller) 0.94

Bank and account number (seller) 0.93
Name (purchaser) 0.98

Taxpayer identification number (purchaser) 0.99
Address telephone (purchaser) 0.94

Bank and account number (purchaser) 0.93
Invoice code 0.99

Invoice number 0.99
Date 1

Passenger name 0.95
Departure place 0.99

Destination 0.99
Flight number 0.98

E-ticket number 0.97

4. Conclusions

In this article, a structured invoice recognition method based on the StrucTexT model is
proposed. To address the issue of invoices with multiple attributes, the structured StrucTexT
model is used for recognition but is made lightweight and therefore optimized for practical
applications. The experimental results show that the proposed method achieves an accuracy
rate of over 94% on the publicly available datasets SROIE and FUNSD and an accuracy
rate of over 95% on a self-built structured invoice dataset, with a 30% decrease in average
processing time. The model’s size was reduced by 20%, making it more deployment-
friendly. The proposed method has a fast recognition speed and is highly practical, all
without sacrificing accuracy, making it applicable to production on a daily basis.
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