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Abstract: Distribution System State Estimation (DSSE) techniques have been introduced to monitor
and control Active Distribution Networks (ADNs). DSSE calculations are commonly performed
using both conventional measurements and pseudo-measurements. Conventional measurements
are typically asynchronous and have low update rates, thus leading to inaccurate DSSE results for
dynamically changing ADNs. Because of this, smart measurement devices, which are synchronous
at high frame rates, have recently been introduced to enhance the monitoring and control of ADNs
in modern power networks. However, replacing all traditional measurement devices with smart
measurements is not feasible over a short time. Thus, an essential part of the grid modernization
process is to use both traditional and advanced measurements to improve DSSE results. In this
paper, a new method is proposed to hybridize traditional and advanced measurements using an
online machine learning model. In this work, we assume that an ADN has been monitored using
traditional measurements and the Weighted Least Square (WLS) method to obtain DSSE results, and
the voltage magnitude and phase angle at each bus are considered as state vectors. After a period of
time, a network is modified by the installation of advanced measurement devices, such as Phasor
Measurement Units (PMUs), to facilitate ADN monitoring and control with a desired performance.
Our work proposes a method for taking advantage of all available measurements to improve DSSE
results. First, a machine-learning-based regression model was trained from DSSE results obtained
using only the traditional measurements available before the installation of smart measurement
devices. After smart measurement devices were added to the network, the model predicted traditional
measurements when those measurements were not available to enable synchronization between the
traditional and smart sensors, despite their different refresh rates. We show that the regression model
had improved performance under the condition that it continued to be updated regularly as more
data were collected from the measurement devices. In this way, the training model became robust
and improved the DSSE performance, even in the presence of more Distributed Generations (DGs).
The results of the proposed method were compared to traditional measurements incorporated into
the DSSE calculation using a sample-and-hold technique. We present the DSSE results in terms of
Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) values for all approaches. The
effectiveness of the proposed method was validated using two case studies in the presence of DGs:
one using a modified IEEE 33-bus distribution system that considered loads and DGs based on a
Monte Carlo simulation and the other using a modified IEEE 69-bus system that considered actual
data for loads and DGs. The DSSE results illustrate that the proposed method is better than the
sample-and-hold method.

Keywords: distribution system state estimation; weighted least square; SCADA measurements; PMU
measurements; grid modernization; multioutput regression
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1. Introduction

Due to the scarcity of measurement devices in Distribution Networks (DNs), Distri-
bution System State Estimation (DSSE) calculation is challenging [1]. In DNs, the lack
of measurements causes issues with observability and the ability to perform DSSE com-
putations. Generating pseudo-measurements, which are acquired from load forecasting
based on Advanced Metering Infrastructure (AMI) measurements, is a common way to
address these issues [2,3]. However, the quality of the pseudo-measurements is low in both
speed and accuracy [4]. Conventional measurements from Control and Data Acquisition
(SCADA) measurements, along with pseudo-measurements, are used to perform State
Estimation (SE) calculations using low sample rates [5,6], and SCADA measurements are
asynchronous and available with a long interval time [7]. In addition, the conventional
DSSE results are not precise enough, since SCADA measurements have low accuracy and
are much higher than the pseudo-measurement [5,8]. Moreover, new features, including
DGs, two-way communications, electric vehicles, variable loads, etc., will increase the need
for accurate DSSE calculations [9,10]. Therefore, installing smart measurement devices,
such as Phasor Measurement Units (PMUs) and micro PMUs (µPMUs), currently involve
grid modernization projects to improve DSSE results [11,12]. PMUs are extensively used in
Transmission Networks (TNs) [13]. However, because DNs have different characteristics
from TNs, PMUs are not as commonly used in DNs [14]. Some DN characteristics are:

1. DNs typically have radial or weakly meshed topology.
2. The placement of measurement tools is not feasible at all buses due to economic

constraints and DN configuration with multiple buses.
3. Radial DNs have a high resistance-to-reactance ratio (r/x).

Since PMU measurements are available in a synchronous form and can achieve high
sampling rates, the incorporation of PMU measurements along with traditional measure-
ments into SE calculations improves DSSE results, as well as increases the observability,
resiliency, and reliability levels of DNs [15–17]. However, replacing conventional mea-
surement devices with advanced tools is not possible over a short period of time; it may
take several years to modernize a DN. Because of the presence of both traditional and
advanced measurement data during the modernization process, managing, controlling,
and performing SE calculations can be challenging [18].

1.1. Literature Review

One of the important issues in the grid modernization process is how different mea-
surements can be incorporated correctly in a control center to perform SE calculations
accurately during high-speed operations [19,20]. Inconsistent reporting rates of measure-
ment devices, as well as different types of measurement information with various precision
levels, are two of the most critical problems for performing hybrid SE calculations from tra-
ditional and advanced measurement devices [21]. PMUs commonly provide synchrophasor
measurements at a rate of 30 samples per second as compared to SCADA measurements,
which update every 2–6 s [22,23]. Hybrid SE methods have been well established in
TNs to integrate and make use of the potential benefits of traditional and advanced mea-
surements [24,25]. Different hybrid transmission state estimation methods to combine
traditional and advanced measurements are discussed in [26]. Hybrid methods will be
helpful during the power grid modernization development while replacing all-traditional
with all-advanced measurement devices.

Machine learning techniques—including supervised, unsupervised, and reinforcement
approaches [27,28]—are applied widely in DNs for different purposes, such as generating
pseudo-measurements [29,30], SE calculation [31,32], False Data Injection Attacks (FDIAs)
detection [33,34], reliability and resiliency analysis, etc. [35,36]. In [37], a Deep Neural
Network (DNN) approach was applied for topology and SE in DNs. Machine learning
methods have also been developed to improve hybrid traditional and smart measurement
data for DN modernization. In [38], different attributes of PMU and SCADA measurements
are determined based on data accuracy, time scale, and refreshing frequency. Then, a
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specific solution is created based on the differences between measurement properties.
In [9], in order to include both SCADA and PMU measurements for DSSE calculation,
the state estimator switched between Weighted Least Square (WLS) and Weighted Least
Absolute Value (WLAV) calculations. In [39], a new hybrid SE method based on Particle
Swarm Optimization (PSO) [40] and Artificial Neural Network (ANN) approaches was
proposed to combine the different measurements. In [41], nonlinear static state estimation,
linear static state estimation, and linear dynamic state estimation were applied to hybrid
SCADA, PMU, and AMI measurements in ADNs. In [42], a new hybrid state estimator
considering a distributed state estimation method was proposed to use SCADA and µPMU
measurements in an unbalanced DN. In [43], improved robust and linear state estimators
were applied to respond to different frequency levels on measurement data from a SCADA
and PMU for medium voltage DNs. In [44], a hybrid simultaneous state estimator based
on the WLS method was proposed to incorporate both SCADA and PMU measurements.
In [45], a hybrid SE method based on WLAV estimator and Deep Neural Network (DNN)
methods was proposed to manage the unsynchronized AMI and SCADA measurements
and to monitor ADNs. In [46], SCADA, µPMU, and Smart Meter (SM) data were used for
unbalanced DNs, where Kalman smoother and Expectation Maximization (EM) methods
were used to manage the missing measurements and combine measurements in different
time samples, respectively. In [47], a static state estimator was used to perform DSSE
calculations using both SCADA and PMU measurements. When SCADA measurements
were not available, a fast state reconstruction algorithm was applied using only PMU
and pseudo-measurements. In [48], a Spatio-Temporal Estimation Generative Adversarial
Network (ST-EGAN) was proposed to generate pseudo-measurements to perform DSSE
calculations in high resolution when SCADA and PMU measurements were not available
simultaneously. In [49], an improved sequential state estimation method was proposed to
take advantage of AMI and µPMUs measurements to address the asynchronization issue
for performing DSEE calculations.

1.2. Contribution

As indicated in the previous paragraph, a number of previous studies have focused
on using traditional and smart measurements to improve DSSE results. However, they
generally have switched between two distinct SE methods considering the types of available
measurements. Moreover, the most recent studies in the hybridization of traditional and
smart measurements assume that both traditional and smart measurements are available
from the initial distribution network operation. As a result, the system cannot be effectively
modeled the moment smart measurements are available. In addition, any model training
must be redone every time a new sensor is added to the network. This makes their
methods non-applicable for grid modernization development; in the real world, advanced
measurements are not available from the initial operation of a DN; rather, they are added
gradually while considering the requirements and needs of DNs.

In contrast, this paper assumes that only SCADA measurements are available from
the beginning operation of a DN and that PMU devices are added later as part of a grid
modernization procedure.

The main contributions of this paper are summarized as follows:

1. SCADA measurements and pseudo-measurements were used to perform DSSE cal-
culations based on the WLS method before the installation of PMU devices and
additional DGs in ADNs.

2. A multi-output regression model was trained using DSSE results from SCADA and
pseudo-measurements.

3. This model predicted SCADA measurements after smart measurement devices were
added to the network, when these measurements were not available, to enable synchro-
nization between the traditional and smart sensors despite their different refresh rates.

4. As more data was collected from the measurement devices, the regression model
performance improved under the condition that the model continued to be updated
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regularly. Thus, the training model became robust and improved DSSE performance
even in the presence of more Distributed Generations (DGs) or other dynamic changes.

5. The results of the proposed method were compared to traditional measurements
incorporated into the DSSE calculation using a sample-and-hold technique. This
analysis was applied to two case studies: (1) an IEEE 33-bus case study using loads
and generation from a Monte Carlo simulation and (2) an IEEE 69-bus case study
using loads and generation from actual data.

It is worthwhile to mention that, in this work, we aimed to address the absence of
SCADA measurements between PMU measurements using a regression model instead of
switching between two different DSSE methods. The regression model was updated as
more DSSE results were obtained to improve its accuracy. Note that we did not consider
execution time in this study.

2. Traditional and Smart Measurement Devices

The penetration of DGs, EVs, and variable loads bring complex interaction characteris-
tics with high uncertainties that makes the operation, monitoring, and management of DNs
more challenging [50,51]. Control and Data Acquisition (SCADA) measurement systems
are currently applied to monitor and control DNs [52]. The information from Remote Ter-
minal Units (RTUs), which are conventional measurement devices, are installed at various
locations of DNs, which are recorded through SCADA [53]. Measurement data are unsyn-
chronized voltage and branch current magnitudes, real and reactive power injections, and
flows within a lowest refresh interval time [54]. These measurements, which are available
using SCADA systems, fail to capture the dynamic behavior of ADNs [55]; therefore, PMUs
are introduced to facilitate a suitable and reliable monitoring of ADNs in terms of higher
precision and speed [56]. Phasor Measurement Units (PMUs) are advanced measurement
devices in power grids that provide an accurate and synchronized voltage bus and branch
current phasor measurement [57]. PMUs have been widely used for wide-area monitoring,
protection, and the control of TNs [58]. However, PMUs have not been deployed widely in
ADNs due to economic constraints as well as structure of the DNs [59,60]. DN monitoring
will be enhanced by incorporating more PMUs in an ongoing modernization effort for
ADNs due to the following reasons [61,62]:

â The linear mathematical SE calculation will be formulated, since state variables could
be measured by PMUs.

â PMU measurements are available with a high precision (0.1% and 0.01 rad for magni-
tudes and phase angle, respectively); thus SE computations can be performed using
PMU measurements with high-speed processing and accuracy.

â Tracking the dynamic behaviors of ADNs could be captured using high-resolution
PMU data in DSSE calculations.

SE results will be enhanced by including different measurement data from multi-
ple measuring instruments due to redundancy [60]. However, measuring information
integration from different sources is not straightforward for two main reasons [63]:

1. The absence of unique coordination time among different measurements leads to
time-skew problems, and datasets might not be established in an exact time that is
representative in a control center. Time inconsistency might also result from the effect
of the communication delays of monitoring devices [64].

2. The precision weights of measured quantities from SCADA and PMU measurements
are different; therefore, current SE software should be altered or corrected to make all
measurement values applicable in SE algorithms [65].

The SCADA and PMU measurements, as well as their refresh samples, are shown in
Figure 1a,b respectively.



Appl. Sci. 2023, 13, 6938 5 of 17

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 17 
 

2. The precision weights of measured quantities from SCADA and PMU measurements 
are different; therefore, current SE software should be altered or corrected to make 
all measurement values applicable in SE algorithms [65]. 
The SCADA and PMU measurements, as well as their refresh samples, are shown in 

Figure 1a,b respectively. 

 
Figure 1. (a) SCADA and PMU measurements in a power network; (b) SCADA and PMU 
measurement refresh rates. 

3. Distribution System State Estimation 
SE calculation is the function of the Energy Management System (EMS) in a power 

grid. SE calculations provide a way to monitor real-time power grid operation and 
develop more power grid analysis, including power flow calculations, power dispatching, 
observability analysis, bad-data detection, reliability assessment, etc. Transmission state 
estimation techniques have been established, but these techniques cannot be applied 
directly for DNs due to the differences between transmission and distribution grids. New 
DSSE strategies should be designed according to the needs and requirements of DNs. The 
first DSSE technique was established when the SCADA system was introduced in 1990 
[66]. Traditional SE techniques are commonly performed based on conventional 
measurements, which are commonly obtained from SCADA systems [67]. However, since 
SCADA measurements are not enough to acquire SE calculations, pseudo-measurements 
are considered along with traditional measurements to make a system observable [3]. In 
order to calculate state estimation variables, the WLS method is generally applied to both 
TNs and DNs [66]. By using WLS, the state vector can be defined based on node voltage 
[68,69] or branch current variables [70,71]. When state variables are calculated, other 
network parameters can also be determined. 

In node voltage definition, bus voltage phase angle, as well as voltage magnitude, 
are considered as a state vector [72]: 𝑥 = [𝜃, |𝑉|]. 

When only conventional measurements are available, and no measurement devices 
are placed at the slack bus, the state vector is defined in polar coordination as follows: 𝑥 = [𝜃 , ⋯ , 𝜃 , 𝑉 , ⋯ , 𝑉 ], (1) 

where, 𝑁  is the number of buses. The slack bus is considered as a reference: 𝜃 = 0 . 
When a PMU is located at the slack bus, the phase angle at the slack bus is not zero, and 
it should be involved in the state vector. The state vector is represented as: 𝑥 = [𝜃 , ⋯ , 𝜃 , 𝑉 , ⋯ , 𝑉 ]. (2) 

Figure 1. (a) SCADA and PMU measurements in a power network; (b) SCADA and PMU measure-
ment refresh rates.

3. Distribution System State Estimation

SE calculation is the function of the Energy Management System (EMS) in a power grid.
SE calculations provide a way to monitor real-time power grid operation and develop more
power grid analysis, including power flow calculations, power dispatching, observability
analysis, bad-data detection, reliability assessment, etc. Transmission state estimation
techniques have been established, but these techniques cannot be applied directly for DNs
due to the differences between transmission and distribution grids. New DSSE strategies
should be designed according to the needs and requirements of DNs. The first DSSE tech-
nique was established when the SCADA system was introduced in 1990 [66]. Traditional
SE techniques are commonly performed based on conventional measurements, which are
commonly obtained from SCADA systems [67]. However, since SCADA measurements
are not enough to acquire SE calculations, pseudo-measurements are considered along
with traditional measurements to make a system observable [3]. In order to calculate state
estimation variables, the WLS method is generally applied to both TNs and DNs [66]. By
using WLS, the state vector can be defined based on node voltage [68,69] or branch current
variables [70,71]. When state variables are calculated, other network parameters can also
be determined.

In node voltage definition, bus voltage phase angle, as well as voltage magnitude, are
considered as a state vector [72]: x = [θ, |V|].

When only conventional measurements are available, and no measurement devices
are placed at the slack bus, the state vector is defined in polar coordination as follows:

x = [θ2, · · · , θN , V1, · · · , VN ], (1)

where, N is the number of buses. The slack bus is considered as a reference: θ1 = 0. When
a PMU is located at the slack bus, the phase angle at the slack bus is not zero, and it should
be involved in the state vector. The state vector is represented as:

x = [θ1, · · · , θN , V1, · · · , VN ]. (2)

The relationship between the state variables and the measurement data is called the mea-
surement function, which is represented as:

z = h(x) + e, (3)
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where z = [z1, · · · , zM]T is the measurement vector, and M is the number of measurements.
Bus voltage magnitudes, phase angles, branch current magnitudes, and phases, as well as
active and reactive power flows and injections, can be involved in the measurement vector.

For completeness of the paper, we include the equations for standard active (Pi) and
reactive (Qi) power injections at bus i:

Pi = Vi∑N
j=0 Vj

(
Gijcosθij + Bijsinθij

)
(4)

Qi = Vi∑N
j=0 Vj

(
Gijsinθij − Bijcosθij

)
. (5)

Gij and Bij are the real and imaginary part, respectively, in a nodal admittance matrix
element Yij, and θij = θi − θj is the standing phase angle difference between buses i and j.

The active (Pij) and reactive (Qij) power flows from bus i to bus j are expressed as:

Pij = ViVj
(
Gijcosθij + Bijsinθij

)
− GijV2

i (6)

Qij = ViVj
(
Gijsinθij + Bijcosθij

)
+ BijV2

i . (7)

The relationship between the measurement vector and the state variable x = [x1, · · · , xN ]
T

(N is the number of state variables) is shown by h = [h1, · · · , hM]T. h is the list of measurement
functions, which is commonly nonlinear. e = [e1, · · · , eM]T is the vector measurement error,
which follows the Gaussian distribution e ∼ N(0, W), where W is the covariance matrix of
the measurement errors W = diag

{
σ2

z1
, σ2

z2
, · · · , σ2

zm

}
and the zero mean. The WLS technique

is commonly applied to solve an SE problem. In this method, state vectors are obtained by
minimizing the sum of the residual squares as follows.

x̂ = arg min
x

J(x)

= arg min
x

((z− h(x))TW−1(z− h(x)).
(8)

the iterative Gauss–Newton numerical method is applied to solve the optimization problem
(8) with objective function J(x).

[G(xk)]∆xk = HT(xk)W−1[z− h(xk)],

xk+1 = xk + ∆xk,

G(x) = ∂J(x)
∂x = HT(x)W−1H(x),

(9)

where G is the gain matrix, and ∆xk is the updated state vector to determine a new vector
xk. The iterative calculation proceeds until the preset convergence criterion is attained. The
prefix threshold ε is compared to the largest absolute value of the updated state vector
(∆xk), and the state variables will be determined in the last iteration when max(|∆x|) < ε.

H(x) = ∂h(x)/∂(x) is the Jacobian matrix, which is derived from the function vector h(x).

H(x) =
∂h(x)
∂(x)

=



∂h1(x)
∂x1

∂h1(x)
∂x2

· · · ∂h1(x)
∂xn

∂h2(x)
∂x1

∂h2(x)
∂x1

· · · ∂h2(x)
∂xn

...
...

. . . · · ·
∂hm(x)

∂x1

∂hm(x)
∂x1

· · · ∂hm(x)
∂xn


. (10)

The measurement function definitions and the Jacobian matrix in the SE computations are
different when either traditional or smart measurements are included in the measurement
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vector [73]. In (11), the Jacobian matrix is shown when traditional ( HTraditional) and smart
( HSmart) measurements are included in the measurement vector, respectively.

HTraditional =



∂VSCADA
∂θ

∂VSCADA
∂V

∂Pinj

∂θ

∂Pinj

∂V
∂Qinj

∂θ

∂Qinj

∂V
∂Pf low

∂θ

∂Pf low

∂V
∂Q f low

∂θ

∂Q f low

∂V


HSmart =



∂VSCADA
∂θ

∂VSCADA
∂V

∂PMU
θV

∂θ

∂VPMU
∂V

∂PMU
θI

∂θ

∂IPMU
∂V

∂Iimag

∂θ

∂Iimag

∂V
∂Pinj

∂θ

∂Pinj

∂V
∂Qinj

∂θ

∂Qinj

∂V
∂Pf low

∂θ

∂Pf low

∂V
∂Q f low

∂θ

∂Q f low

∂V



(11)

4. Methodology

As mentioned earlier, SCADA measurements are commonly available from the begin-
ning operation of ADNs to perform DSSE calculations and to make them observable [74].
The installation of PMU technology has gradually been developed as parts of grid mod-
ernization projects move from traditional DNs to smart DNs [75]. Thus, DSSE results will
be improved by incorporating PMU measurements as well as SCADA measurements [67].
Unfortunately, SCADA measurements typically have a slower refresh rate compared with
the newly installed PMU measurements [76]. With smart DNs, it is important to perform
DSSE calculations as frequently as possible in order to understand the dynamic state of
the system [77]. Rather than only performing SEs as each new SCADA measurement
arrives, we want to perform DSSE calculations with every new PMU measurement. This
requires a method for interpolating SCADA measurements so they can be incorporated
into the DSSE algorithm. In this paper, we assume that we start with an ADN with SCADA
measurements. After a period of time, the ADN is updated to include PMUs as part of a
grid modernization procedure.

Figures 2 and 3 illustrate how we trained a regression model to predict future SCADA
values prior to and after installing PMUs. Regression models are a category of supervised
machine learning, where the corresponding output (y) at each input (x) is available [78].
In the training phase, a relationship between x and y is determined and expressed as f ;
i.e., y = f (x). A regression model was chosen in this study, since there were enough data
points to train a model. Note that the regression model was only used for DSSE calculations
after PMUs were installed in order to produce interpolated SCADA measurements that
could be used to perform DSSE calculations more frequently. In this work, we pre-trained a
SCADA prediction model prior to PMU installation and regularly updated the model after
PMU installation.

Prior to PMU installation, DSSE calculations based on WLS method were performed
using SCADA and pseudo-measurements. A multi-output regression model was trained
based on these DSSE results to predict an interpolated SCADA measurement, as shown in
Figure 2. The ground truth used for the interpolated SCADA measurement was obtained
using backward–forward power flow calculations. This procedure was repeated for every
SCADA measurement that arrived prior to the PMU installation.
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A different training procedure was performed after adding the PMUs to the ADN. In
the updated procedure, SCADA measurements were predicted using the most recent DSSE
calculations, which in turn depended on the most recent PMU measurement and the most
recent SCADA measurement or prediction. As shown in Figure 3, a training model was
updated every time real SCADA measurements were provided in order to improve model
performance and make it robust against dynamic changes of ADNs. For instance, when
SCADA and PMU measurements were refreshed at t1, a training model was updated from
M0 to M1.

In order to evaluate the DSSE result, the Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) are calculated using (12) and (13), respectively:

MAE =
1
N

N

∑
i=1

∣∣∣∣ x̂i − xi
xi

∣∣∣∣ (12)

RMSE =

√
∑N

i=1(x̂i − xi)
2

N
. (13)
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In the above Equations, x̂ is the estimated value, x is the actual value, and n refers to the
dataset size.

The interface between MATLAB (2022) and Anaconda Python was used to train and
update a model using the DSSE results obtained from the SCADA and PMU measurements.
All tests were performed on a desktop computer with an Intel Core i5 processor clocked at
1.60 GHz with 8.00 GB RAM.

5. Results
5.1. Case Study I

The effectiveness of the proposed method was evaluated on the modified IEEE 33 bus
distribution network as one of the case studies (shown in Figure 4). The actual values of a
DN were calculated based on power flow calculations.
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Figure 4. IEEE standard 33-bus distribution system before and after grid modernization. Prior to
modernization, there was a PV on bus 8 and SCADA units on buses 3, 8, and 21. After modernization,
an additional PV was installed on bus 29, and PMU devices were installed on buses 1, 16, and 31.

The following assumptions were made about the system prior to PMU installation:

1. Measurements were randomly calculated based on their probability density function
for each Monte Carlo trial.

2. Gaussian distribution, with 3σ = 50% of the nominal value, was considered for the
power injection on the buses [79].

3. We assumed that one Photovoltaic (PV) panel was placed on bus 8 [80] with a maximum
generation of 104 kW (The PV was modeled as a negative load), and three SCADA
devices were located at bused 3, 8, and 21. Voltage magnitudes, active and reactive
power flows, and injections were considered as real measurements (|V|3, |V|8, |V|21),
(P f low

3−4 , P f low
3−23, P f low

8−9 , P f low
21−22), (Q f low

3−4 , Q f low
3−23, Q f low

8−9 , Q f low
21−22), (Pinj

3 , Pinj
8 , Pinj

21 ), and

(Qinj
3 , Qinj

8 , Qinj
21 ) from SCADA measurements to perform DSSE calculations.

4. The pseudo-measurements of the active and reactive power injections and flows were
generated to make the system observable and to perform WLS calculations.

5. The standard deviation was considered as 50% of the nominal value for pseudo-
measurements, 2% of the voltage magnitude, and 3% of the actual value of active and
reactive power flow and injection measurements [44].

6. The voltage magnitudes and phase angles for all the buses were considered as a state
variable: x = [δ2, · · · , δN , V1, · · · , VN ], where δN , VN are the voltage phase angle and
magnitude, respectively, and N is the number of buses. It was assumed that there
were no measurement devices installed in the slack bus. As well, δ1 = 0 and V1 = 1.
The Jacobian matrix will be formed as HTraditional , which is shown in Section 3.

7. SCADA measurements were refreshed every five iterations, and DSSE calculations
were performed using SCADA and pseudo-measurements every five iterations, con-



Appl. Sci. 2023, 13, 6938 10 of 17

cluding at NMC = 5995. After this, Monte Carlo trial and PMUs were added to
the system.

8. The DSSE results would be used for training a model to interpolate the SCADA mea-
surements, as discussed in Section 4. It should be noted that the inputs were corrupted
by random Gaussian error, with 3σ = 2% and 3σ = 1 crad for the voltage magnitude
and phase angle values, respectively, before feeding to a training model. This initial
model would be used to predict the SCADA measurements after the installation of
the PMUs to enable the DSSE calculations to be performed more frequently.

9. WLS calculations were performed using MATLAB, and the iteration process was
stopped when the minimum difference between two iterations was ε = 10−6.

The following assumptions were made about the system after PMU installation:

1. Three PMUs were placed at buses 1, 16, and 31 [80], and one more PV with a maximum
generation of 80 kW was added to a DN at bus 29 at NMC = 6000 to meet the new
demands of the DNs in grid modernization development.

2. To model the uncertainty of the PMU measurements, a Gaussian error with 3σ = 1%
and 3σ = 1 crad was added to the voltage and branch current magnitudes, as well as
the voltage and branch current phase angles, respectively [81].

3. Since a PMU was installed in the slack bus, the phase angle at bus 1 was included in
the state vector, so the full state vector is defined as: x = [δ1, · · · , δN , V1, · · · , VN ].

4. We assumed that the PMU measurements were updated at each iteration, i.e.,
τSCADA = 5τPMU , and, at each iteration, the SCADA measurements were predicted
from a training model.

5. The training model was updated every time N_MC was a multiple of 20 (6020, 6040,
6060, etc.) using the DSSE results obtained from the SCADA measurements and PMU
measurements during that time.

6. In order to verify the proposed method performance, the DSSE results were compared
to when the SCADA measurements were replaced using a sample-and-hold technique.

7. The estimated value from WLS calculations and the actual value from power flow
calculations were compared using MAE and RMSE criteria and shown in Table 1.

Table 1. DSSE results of voltage magnitudes and phase angles after grid modernization.

Voltage Magnitude (p.u.) Phase Angle (rad)

Criteria Proposed Method Sample-and-hold technique Proposed Method Sample-and-hold technique

MAE 8.2× 10−4 9.7× 10−4 0.0060 0.0071

RMSE 1.02× 10−5 1.45× 10−5 7.9× 10−5 9.2× 10−5

It is clear from Table 1 that the MAE and RMSE values for the state variables (voltage
magnitude and phase angle) were improved from the proposed method compared to
the sample-and-hold technique. This means that predicting the SCADA measurements
based on updating a training model has a better performance. This was true even after
more PVs were introduced to the DN, thus showing that our method is robust in a more
dynamic environment.

5.2. Case Study II

The effectiveness of the proposed method was also evaluated using the modified IEEE
standard 69-bus distribution network (shown in Figure 5). The system is suitably adopted
to include a mix of commercial and residential loads and DGs. A set of experimental
data (available for a time period of one year), obtained from Open Energy Information
(OpenEI) [82], was utilized with the simulation time step of 1 h. The hourly data of power
generation of a photovoltaic system were computed and adopted based on the actual



Appl. Sci. 2023, 13, 6938 11 of 17

data for Bozeman, MT, USA [83,84]. Because reactive power injection is not available, the
reactive power injection at bus i with a random power factor is defined as [85]:

Qi(t) = Pi(t)

√
1− P f 2

i (t)

P fi(t)
, (14)

where P fi(t) ∼ Uni f (0.85, 0.95).
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Figure 5. IEEE standard 69-bus distribution system before and after grid modernization. Prior to
modernization, there was a PV on bus 20 and SCADA units on buses 33 and 53. After modernization,
two additional PVs were installed on bus 38 and 64, and PMU devices were installed on buses
1 and 22.

The following assumptions were made about the system prior to PMU installation:

1. We assumed that one Photovoltaic (PV) panel was placed on bus 20 [80] with a maximum
generation of 15.33 kW (The PV was modeled as a negative load), and three SCADA
devices were located at bused 6, 33, and 53. Voltage magnitudes, active and reactive
power flows, and injections were considered as real measurements (|V|6, |V|33, |V|53),
(P f low

6−7 , P f low
33−34, P f low

53−54), (Q
f low
6−7 , Q f low

33−34, Q f low
53−54), (Pinj

6 , Pinj
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53 ), and (Qinj
6 , Qinj

33 , Qinj
53 )

from SCADA measurements to perform DSSE calculations.
2. The pseudo-measurements of the active and reactive power injections and flows were

generated to make the system observable and to perform WLS calculations.
3. The standard deviation was considered as 50% of the nominal value for pseudo-

measurements, 2% of the voltage magnitude, and 3% of the actual value of the active
and reactive power flow and injection measurements [44].

4. The voltage magnitudes and phase angles for all the buses were considered as a state
variable: x = [δ2, · · · , δN , V1, · · · , VN ], where δN , VN are the voltage phase angle and
magnitude, respectively, and N is the number of buses. It was assumed that there
were no measurement devices installed in the slack bus. As well, δ1 = 0 and V1 = 1.
The Jacobian matrix will be formed as HTraditional , which is shown in Section 3.

5. The SCADA measurements were refreshed every five iterations, so DSSE calcula-
tions were performed using SCADA and pseudo-measurements every five iterations,
concluding at t = 4125. (After this time, PMUs were added to the system.)

6. The DSSE results would be used for training a model to interpolate the SCADA mea-
surements, as discussed in Section 4. This initial model would be used to predict the
SCADA measurements after the installation of the PMUs to enable DSSE calculations
to be performed more frequently.

7. The WLS calculations were performed using MATLAB, and the iteration process was
stopped when the minimum difference between two iterations was ε = 10−6.
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The following assumptions were made about the system after PMU installation:

1. Two PMUs were placed at buses 1 and 22 [80], and two more PVs were added to a DN
at buses 38 and 64 with maximum generations of 20.83 kW and 16.67 kW, respectively,
at t = 4130 to meet the new demands of the DNs in grid modernization development.

2. To model the uncertainty of the PMU measurements, a Gaussian error with 3σ = 1%
and 3σ = 1 crad was added to the voltage and branch current magnitudes, as well as
the voltage and branch current phase angles, respectively [81].

3. Since a PMU was installed in the slack bus, the phase angle at bus 1 was included in
the state vector and is defined as: x = [δ1, · · · , δN , V1, · · · , VN ].

4. We assumed that the PMU measurements were updated at each iteration, i.e.,
τSCADA = 5τPMU , and, at each iteration, the SCADA measurements were predicted
from a training model.

5. The training model was updated once or twice per day using the DSSE results obtained
from the SCADA measurements and PMU measurements during that time. The PMU
measurement resolution was 20 measurements per day, so the model was updated
every 10 (twice daily updates) or 20 (once daily updates) PMU measurements.

6. In order to verify the proposed method performance, the DSSE results were compared
when the SCADA measurements were replaced using a sample-and-hold technique.

7. The estimated value from WLS calculations and the actual value from the power flow
calculations were compared using MAE and RMSE criteria and shown in Table 2.

Table 2. DSSE results of voltage magnitudes and phase angles after grid modernization when the
training model was updated every 10 or 20 time steps (twice or once per day).

Voltage Magnitude (p.u.) Phase Angle (rad)

Criteria

Proposed Method
Sample-and-hold

technique

Proposed Method
Sample-and-hold

techniqueDaily
Update Twice Daily Update Daily

Update Twice Daily Update

MAE 0.0031 0.0023 0.0035 0.0069 0.0062 0.0071

RMSE 4.8× 10−5 3.7× 10−5 5.2× 10−5 9.1× 10−5 8.5× 10−5 9.8× 10−5

This case study was based on actual data, and it had more severe dynamic behaviors.
When the model was updated daily, the results were improved, but they were still close to
those obtained using the sample-and-hold technique. In order to improve the results, the
training model was updated twice a day to become robust against the dynamic behaviors of
a DN. As it is clear from Table 2, the MAE and RMSE values for the state variables (voltage
magnitude and phase angle) were improved using the proposed method when the model
was updated twice a day compared to the sample-and-hold technique.

In Figure 6, the estimated and actual values from the WLS and power flow calculations
at bus 20 for 145 consecutive samples and for all buses at a given time are shown.

As it is clear from a Figure 6, the estimated values from the WLS method using SCADA
measurements from the proposed method and PMU measurements correctly follow the
actual values, which were calculated from the power flow calculations.
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Figure 6. (a) Actual and estimated values of voltage magnitudes at bus 20 for 145 consecutive samples
and (b) actual value and estimated values for all buses at a given time.

6. Conclusions

In this paper, a new approach based on a regression model was proposed to utilize all
the available measurements to improve the DSSE results. The DSSE results have widely
been dependent on traditional measurements before the installation of smart measure-
ment devices in ADNs. As part of grid modernization efforts toward an advanced grid,
smart measurement devices have progressively been installed to manage and control the
dynamic behaviors of ADNs. However, all traditional measurement devices cannot be
substituted with advanced ones over a short time, and it is essential to utilize different
kinds of measurements using an appropriate method. The method we presented can be
used to effectively model distribution systems throughout a grid modernization process.
Conventional measurements have low update rates, unlike smart measurement devices,
which collect measurements at high frame rates. The difference in frame rates requires
interpolation between the traditional measurements to allow for synchronization between
the traditional and advanced sensors.

In this study, the WLS method was initially performed using traditional measurements
to calculate the state variables, i.e., the bus voltage magnitudes and phase angles. Then, a
network configuration was modified toward a modernized DN by installing smart mea-
surement devices to improve the DSSE results and observability analysis. Since traditional
and smart measurements have different sampling rates, the DSSE results using a traditional
measurement before smart measurement devices were added to the system, and their data
were used to train a machine-learning-based regression approach. This training model was
used to predict the traditional measurements when these measurements were not available
between their refreshing times after the installation of smart measurement devices.

The proposed regression method works effectively for DSSE calculations, but it re-
quires the model to be updated regularly in order to be robust in a dynamic environment.
In this work, we compared the results of the proposed method to the results obtained when
traditional measurements were incorporated into the DSSE calculation using a sample-and-
hold technique after smart measurement installation. The effectiveness of the proposed
method was validated using two case studies in the presence of DGs.

The DSSE results given in the paper illustrate that the proposed method is better
than the sample-and-hold method after advanced measurement installation. The pro-
posed method could be used in advancing distribution grid modernization to enhance DN
performance and capabilities.

In future work, we aim to focus on other aspects of grid modernization challenges,
such as how to identify and correct for False Data Injection Attacks (FDIAs) on PMU or
SCADA measurements.
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