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Abstract: Many voids are produced in the mining process of ore-bearing strata. To explore the
development law of voids after mining coal-bearing strata, a theoretical model was established to
derive the overall distribution and shape of voids in the goaf. The above theory was verified using the
numerical calculation method. The turning point of the void change was found. The research results
show that the void in the goaf was widely distributed around the stope, and the overall void ratio
was affected by the mining conditions, such as the mining height and face length. While advancing
the working face, the dynamic development of the void first increased and then decreased. At first,
the distribution of the void ratio in the goaf was between 0.293 and 0.889 under specific geological
conditions, and then, with the advancement of the working face, a large void ratio was reserved at
0~40 m behind the working face. When the working face was advanced to the first roof collapse
length, the void fractures continued to decline. Using the above voids, the backfilling of solid mine
waste can be effectively realized, and the ecological environment can be protected.

Keywords: goaf; voids; numerical simulation; gangue; waste management

1. Introduction

Coal seam mining destroys the overlying strata’s original stress balance. The overlying
strata produce tensile damage, shear damage, bending, collapse, and other damage and
deformations, thus forming goaf voids and separation gaps in the strata [1–3]. These voids
are widely distributed in collapse zones and fracture zones. Due to residual voids in the
stope, water and gas gather, leading to water and gas outburst accidents [4–6]. In addition,
these voids also lead to the secondary settlement of the goaf, which leads to the settlement
of ground buildings, local cracks, tilt, and other damages [7–9]. However, using space as
an underground space resource is an environmental protection idea [10–12].

With coal mining, a large amount of solid waste, i.e., gangue, is also produced. The
emissions from gangue account for approximately 10~15% of those from coal resources.
A large amount of waste rock is directly discharged and piled up on the surface to form
a waste rock hill. While polluting and occupying land, air, and water resources, coal
mining also seriously threatens the mining area’s ecological security and the coal industry’s
sustainable development. According to China’s policy requirements for the construction of
safe and efficient green coal mines, the safe mining of deep coal resources and the large-
scale treatment of solid coal gangue waste have become important tasks for developing
coal enterprises.

Many scholars have analyzed the structure and shape of the overburden in the goaf, the
distribution of residual voids in the goaf, and the related residual settlement and stability.
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Some scholars [13–15] believe that the overburden structure of the goaf is mainly divided
into a caving zone, a fracture zone, and a bending subsidence zone. The rock structure in
the caving zone is loose, and the mining structural plane mainly exists in the form of voids,
cracks, and some large cavities. Some scholars [16–18] and other researchers have adopted
similar material simulation and numerical simulation methods to simulate the existence of
“O”-type separation fracture zones around the goaf and put forward the distribution law
of fractured rock. They believe that the fracture expansion coefficient of a fractured rock
mass is inversely proportional to its distance from the coal seam. Scholars [19–21] have
considered the influence of time and goaf span factors, and they have carried out residual
settlement predictions for old goaf.

At the same time, some scholars [22–24] have also analyzed the void ratios of stopes
using field data. Ma [25] and other scholars have analyzed the void seepage characteristics
within the fracture range of a goaf based on the actual measurements, and this provided
the equivalent area of the separation fractures after the initial fracture of the key layer.
They also analyzed the void permeability coefficients of different fracture development
areas. Wang [26] studied a drilling double-plug plugging subsection water injection test
device and a drilling television observation system, which were used to detect the overlying
rock caving in a fully mechanized mining face, and a digital analysis of the fracture dip
distribution characteristics was carried out [27–29]. The authors also used a CMS three-
dimensional laser scanning instrument to monitor goaf, and they detected that the goaf
within 10 m of the working face had a void with a diameter of 1 to 10 m, as shown in
Figure 1. However, only some of the above results could intuitively obtain the distribution
forms of goaf voids.
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Figure 1. Measurement of voids in goaf.

Based on the current research results, this article defines a void fraction as the ratio
of a void’s volume in goaf to its mining volume. The authors have put forward a concept
of the overall distribution of a goaf void, deduced the theoretical formula, and calculated
the distribution of the stope gap boundary and the central void ratio. A numerical model
was established to study the void development shape of the formed goaf and the dynamic
development of the void fraction during the process of advancing. This paper puts forward
the utilization method of the void ‘gangue fluidization filling method,’ expounds its overall
concept and system composition, and provides the theoretical basis and ideas for the
utilization of goaf gaps and the environmental control of mining areas in China.

2. Research Methods
2.1. Calculation Method for the Void Fraction

The voids produced by coal mining come from the mined volume. The voids in goaf
should be less than the extracted volume of the coal seam, and the bulking volume of the
broken direct roof and the bending deformation of the overlying rock prevent the formation
of voids. Therefore, the calculation principle of the method was proposed, which was that
the volume of voids is equal to the volume of coal seam extraction less the volume of direct
roof bulking less the volume of overlying deformation. The calculation model of a void
ratio in goaf was established, as shown in Figure 2. In the figure, the upper part of the
top plate is composed of a thin plate model, and the lower part is composed of a broken
expansion model. The total void ratio of the goaf can be obtained by combining the upper
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and lower models. The voids reduced by the deformation of the overburdened rock in the
goaf can be calculated by establishing a thin plate model. The voids formed by the broken
roof in the goaf can be calculated by establishing a broken roof expansion model.
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where w0i is the subsidence of the i-th stratum after it moves and stabilizes; li is the rock-
breaking length of the i-th stratum; ly is the length of the working face; and hi and hi+1 are 
the thicknesses of layer i and layer i + 1, respectively. 
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(1) Volume of the overlying deformation

Based on the O-ring theory [30–32], the rock strata above a roof are regarded as
thin elliptical boundary-fixed plates under the action of a uniformly distributed load.
The settlement amount (wki) of any point (x, y) on a thin plate can be calculated using
Formula (1). The coordinate system of the model is shown in Figure 2, and the calculation
to determine settlement amount wki (x, y) of any point (x, y) of any rock strata overlying a
stope is shown in Formula (2). In the process of the deformation of the overlying strata on
a roof, the void ratio of the two adjacent strata can be obtained, according to the different
deformations in each layer, as ϕi, i+1 (see Formula (3)).

wki(x, y) =
(ρigTi + q0i) cos α( 4x2

l2
x
+ 4y2

l2
y
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8Di(
48
l4
x
+ 32
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y
+ 48

l4
y
)

(1)

where ρi is the rock density of the i-th layer; Ti is the thickness of the i-th layer; q0i is the
upper load of the i-th stratum; α is the dip angle of the coal seam; lx is the strike length of
the goaf; ly is the dip width of the goaf; Di is the bending stiffness of the i-th stratum; and
Di = ETi3/(12 (1 – v2)), where E is the elastic modulus and v is Poisson’s ratio.

wki(x, y) =
w0i(1− e

− x
2li )(1− e

− ly/2−|y|
2li )

1− e
− ly

4li

(2)

and
ϕi,i+1 =

∆wkidxdy
∆ ∑ hidxdy

=
wki − wki+1

∑ hi −∑ hi+1
, (3)

where w0i is the subsidence of the i-th stratum after it moves and stabilizes; li is the rock-
breaking length of the i-th stratum; ly is the length of the working face; and hi and hi+1 are
the thicknesses of layer i and layer i + 1, respectively.

(2) Volume of voids after direct roof bulking
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The void ratio of a broken rock mass below a roof can be expressed by the broken
expansion coefficient, as shown in Formula (4):

ϕ = 1− 1
Kp

, (4)

where Kp is the coefficient of the crushing expansion of the broken rock and ϕ is the void
ratio of the broken rock.

In the x-direction, the coefficient of the void’s ratio changes in the strike direction of
the working face, which can be obtained as follows:

Kp =
hd + H − wb|(y = 0)

hd
, (5)

where wb|(y = 0)= (H-hd(Kpb−1))(1-e-x/2l).
By substituting Formula (4) into Formula (5), the void ratio of the collapse zone along

the centerline of the floor can be obtained as follows:

ϕG|(y = 0) = 1− hd
hd + H − wb|(y = 0)

, (6)

where ϕG|(y = 0) is the void’s ratio curve on the central axis of the goaf floor, hd is the direct
top thickness, H is mining height, wb|(y = 0) is the subsidence of the basic roof along the
central axis of the strike of the floor, Kpb is the residual broken expansion coefficient of the
fractured rock mass, and l is the length of the broken rock block on the basic roof.

Similarly, in the y-direction, the coefficient of the void’s ratio changes in the inclined
direction of the working face, which can be obtained as follows:

ϕG,y = 1 + e−0.15(
ly
2 −|y|). (7)

The relevant literature (Zhang, 2023) has shown that the void ratio change equation
for a fractured rock mass under an axial force is

ϕy = β1σ + β0, (8)

where ϕy is the void ratio of the loose and broken rock under axial stress, σ is the relative
axial stress (MPa), β1 is the regression coefficient, and β0 is the void ratio of the broken rock
before being subjected to axial stress. When the rock is shale, β1 = −0.0488. When the rock
is mudstone, β1 = −0.028. When the rock is sandstone, β1 = −0.0254.

The axial stress (σ) of the gangue in goaf is determined as follows:

σ =
(1− ϕG)γ(

ly
2 − |y|) sin α

σ0
, (9)

where σ is the relative compressive stress on any section (MPa), γ is the unit weight of the
falling rock (N/m3), and σ0 is equal to 1 MPa.

Then, the void ratio of the collapse zone is calculated as follows:

ϕG(x, y) = 1 +

[
1 + e−0.15(

ly
2 −|y|)

]
·
[

1− hd

hd+H−[H−hd(KPb−1)](1−e−
x
2l )

]
− 1

1 + σ−1
0 β1γ(

ly
2 − |y|) sin α

. (10)

In the “collapse zone” of a goaf, due to the high degree of rock fragmentation, the
change in the rock’s broken expansion coefficient in the vertical direction is not obvious.
It can be considered that the rock’s expansion coefficient in a “collapse zone” will remain
unchanged in the vertical direction. Therefore, it is considered that the total void ratio
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of a goaf, ϕZ (x, y), is the difference between the broken expanded void ratio and the
overburden void ratio, as shown in Formula (9).

ϕZ(x, y) =
−

n
∑

i=1
(hi+1 − hi)ϕi,i+1 + hd ϕG

n
∑

i=1
(hi+1 − hi)i + hd

. (11)

2.2. Verification Methods

(1) Verification of the numerical simulation method

We used the UDEC numerical model to verify the feasibility of the above calculation
method and the result. The advantage of numerical simulation verification is the use of
discrete element methods to truly reflect the shape of a goaf under the same geological
conditions. The design model was 300 m × 87 m (length × height). The advancing
distance of the working face was 200 m, the horizontal displacement was constrained by
the horizontal boundary around the model, the vertical displacement was constrained
by the bottom, and the upper boundary was free. The Coulomb–Moore model was used.
Table 1 shows the parameters of each layer, and Table 2 shows the joint parameters. The
above parameters were selected based on the actual test results of the adjacent working
faces of the mine. The immediate roof strata were constructed by the Voronoi unit, as it
could simulate the irregular fracture of the immediate roof.

Table 1. Parameters of the strata.

No. Strata Height Bulk (pa) Shear (pa) Tensile (pa) Cohesion (pa) Friction Density (kg ·m−3)

1 Mudstone 20 4.0 × 109 2.0 × 109 1.25 × 106 2.5 × 106 22◦ 1600
2 Coal 4 2.5 × 109 1.8 × 109 1.17 × 106 2.0 × 106 23◦ 1400
3 Sandy mudstone 2 6.0 × 109 3.0 × 109 1.5 × 106 3.0 × 106 24◦ 2000
4 Fine sandstone 3 8.0 × 109 4.0 × 109 2.0 × 106 3.5 × 106 26◦ 2500
5 Sandy mudstone 3 6.0 × 109 3.0 × 109 1.5 × 106 3.0 × 106 24◦ 2000
6 Fine sandstone 3 8.0 × 109 4.0 × 109 2.0 × 106 3.5 × 106 26◦ 2500
7 Sandy mudstone 1 4 6.0 × 109 3.0 × 109 1.5 × 106 3.0 × 106 24◦ 2000
8 Sandy mudstone 2 6 6.0 × 109 3.0 × 109 1.5 × 106 3.0 × 106 24◦ 2000
9 Fine sandstone 10 8.0 × 109 4.0 × 109 2.0 × 106 3.5 × 106 26◦ 2500

10 Medium sandstone 12 12.0 × 109 5.0 × 109 3.0 × 106 3.8 × 106 28◦ 2800
11 Coarse sandstone 20 14.0 × 109 6.0 × 109 3.2 × 106 4.0 × 106 27◦ 2600

Table 2. Joint parameters.

No. Strata Normal Stiffness
(Gpa)

Shear Stiffness
(Gpa) Cohesion (MPa) Internal Friction

Angle (◦)
Tensile Strength

(MPa)

1 Mudstone 2.5 1.5 0.6 17 0.6
2 Coal 0.4 0.2 0.3 12 0.9
3 Sandy mudstone 3.0 4.0 1.0 18 3.6
4 Fine sandstone 6.0 5.0 2.0 20 5.8
5 Sandy mudstone 3.0 4.0 1.0 18 3.6
6 Fine sandstone 6.0 5.0 2.0 20 5.8
7 Sandy mudstone 1 3.0 4.0 1.0 18 3.6
8 Sandy mudstone 2 3.0 4.0 1.0 18 3.6
9 Fine sandstone 6.0 5.0 2.0 20 5.8

10 Medium sandstone 8.0 6.0 2.3 22 7.60
11 Coarse sandstone 8.2 6.4 2.6 17 6.60

After the initial balancing of the model, an excavation was carried out every 10 m.
The overlying strata’s top and bottom displacement were monitored during the excavation.
The numerical model is shown in Figure 3. After the program was run, we used the plot
model command in UDEC to display the void space and used ImageJ software to analyze
the void ratio in the diagram. The analysis method is shown in Figure 4.
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(2) Verification of the experimental method

We further increased the similarity of the simulation validation to increase the reliabil-
ity of the method. According to the similarity simulation rules, the geometric similarity ratio
of the model was determined to be 80:1, the motion similarity ratio was 8.94:1, the stress sim-
ilarity ratio was 100:1, and the mass similarity ratio was 0.64 × 106:1, with a time similarity
ratio of 15:1. The design model was 2.5 m × 0.2 m × 0.8125 m (length × width × height),
and the specific material ratio parameters for the similarity simulation are shown in Table 3.

Table 3. Proportions of the materials.

No. Strata Ratio Number Thickness (cm) Dry Weight (kg) Sand (kg) CaCo3 (kg) Gypsum (kg)

1 Mudstone 555 12.5 182.81 152.34 15.23 15.23
2 Coal 555 25 365.63 304.69 30.47 30.47
3 Sandy mudstone 773 5 73.13 63.98 6.40 2.74
4 Fine sandstone 337 2.5 36.56 27.42 2.74 6.40
5 Sandy mudstone 337 3.75 54.84 41.13 4.11 9.60
6 Fine sandstone 455 3.75 54.84 43.88 5.48 5.48
7 Sandy mudstone 1 337 3.75 54.84 41.13 4.11 9.60
8 Sandy mudstone 2 555 5 73.13 60.94 6.09 6.09
9 Fine sandstone 555 7.5 109.69 91.41 9.14 9.14

10 Medium sandstone 337 6.25 91.41 68.55 6.86 16.00
11 Coarse sandstone 337 6.25 91.41 68.55 6.86 16.00

We conducted design experiments to verify the distribution patterns of the voids and
the formation process of the voids. A non-contact full-field strain measurement system,
MatchID-2D, was used to monitor the voids. The system used a digital image correlation
algorithm to provide displacement and strain data measurements in a two-dimensional
field of view for the experiment. Using a digital image fixed-point capture analysis to
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monitor the deformation of the physical model and taking photos every 10 min with a
high-resolution camera at a fixed angle, we calculated and analyzed the displacement of
each measuring point using image capture analysis software. The specific indicators that
were monitored were 1© the displacement changes on the surface, basic roof, and floor of
the model during the mining process and 2© the morphological changes in the development
of the goaf. The physical similarity model is shown in Figure 5. The void fraction was
calculated as the ratio of the difference in the vertical displacement between the surface
and the floor to the mining height.
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3. Results
3.1. Results of the Calculations

According to the actual geological occurrence conditions and the mining parameters
of the coal seams mined by the working face of the mine, the average thickness of the coal
seam was 4 m, the thickness of the direct roof was 5 m, and the average dip angle of the coal
seam was 2◦, which was regarded as nearly horizontal. The strike length of the working
face was 200 m, the dip width was 100 m, and the mining height was 4 m. The roof was
layered with fine sandstone and mudstone. The parameters of the rock strata are shown
in Table 4. We substituted the parameters into Equations (3), (8) and (9) to obtain the void
ratio distributions of the overburden deformation space, the collapse zone, and the total
scope at any point, as shown in Figure 6.

It can be seen in Figure 6 that the void ratio in the middle of the stope reached 44.7% at
the point close to the working face at the strike. As the rear roof was gradually compacted
and stabilized, the void ratio decreased to 27.8%. The maximum void ratio at the stope
boundary near the working face was 88.9%, and as the rear roof was gradually compacted
and stabilized, the void ratio decreased to 33.3%. The turning point of the change in
the void ratio outside the goaf was located 37 m behind the working face (the void ratio
decreased by less than 1%), where the void ratio in the goaf decreased to below 45.4%.
The turning point of the void ratio change in the middle of the goaf was 23 m behind the
working face, where the void ratio in the goaf decreased to below 40.2%. The overall void
ratio distribution of the goaf was from 27.8% to 33.3%.

In the inclined direction, the void fracture in the middle was low and high on both
sides. The void fracture decreased from 33.9% to 29.3%, and the lowest point appeared in
the middle. The void ratio of the boundary in the direction of the goaf incline showed a
trend of high, middle, and low on both sides, from 88.9% to 44.8%, and the lowest point
appeared in the middle of the goaf boundary. According to the void fracture distribution
results and the geological mining conditions, the space in the working face that was
available for filling was approximately 100,000~400,000 m3 under this condition.
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Table 4. Parameters of each overburden layer.

No. Buried Depth (m) Stratum
Thickness (m)

Distance from Stratum to
Coal Seam (m)

Residual Broken
Expansion Coefficient

Block Length of
Broken Rock (m)

1 700 5 0 1.005 -
2 708 3 8 1.007 5
3 711 3 11 1.012 8
4 715 4 15 1.024 11
5 721 6 21 1.049 12
6 731 10 31 1.078 15
7 743 12 43 1.089 18
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3.2. Results of the Verification

First, we used a numerical model to analyze the accuracy of the calculation results. The
overall void fraction of the model was 30.9%, which was within the range of 27.38–33.3%
and was consistent with the theoretical calculation results. The distribution of the void
fraction in the direction analysis model is shown in Figure 7a. This was consistent with the
distribution trend of the void fraction along the goaf strike, as shown in Figure 6c.
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In addition, the vertical displacement evolution curve of the surface of the similarity
simulation model was obtained using matchID-2D, and the evolution of the void fraction
in the goaf of the model was further obtained, as shown in Figure 7b. The total porosity of
the model was calculated to be 28.0%, distributed between 27.38% and 33.3%, verifying
the accuracy of the theoretical calculation results. It was known that as the working face
advanced, the overall void fraction gradually decreased from 98.2% to 28.2%.
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4. Discussion
4.1. Key Factors of the Overall Void Fraction

From Formulas (3) and (9), it could be seen that the key parameters of the calculation
model were the mining height, face length, number of overlying rock layers, and bulking
coefficient of the crushed direct roof. Under fixed geological conditions, the influencing
factors of face length and mining height were analyzed. The analysis was intended to
obtain the distribution of the void fracture in the stope’s strike and dip directions. We
adjusted the working face length and the mining height, i.e., the ly and H values, and
analyzed their impacts on the void ratio of the stope, as shown in Figures 8 and 9. We set ly
as 60 m, 80 m, 100 m, 120 m, and 150 m and set H as 3 m, 4 m, 5 m, and 6 m.
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The face length impacted the void ratio in the middle strike of the goaf, and the
maximum and minimum values of the void ratio in the middle gradually decreased with
the increase in the face length from 46.7% and 42.3% to 44.4% and 40.9%, respectively. The
turning point of the porosity in the middle remained unchanged at 20~23 m. The face
length impacted the distribution of the void ratio in the goaf towards the middle. With
the increase in the face length, the minimum value of the void ratio in the middle and the
minimum value at the boundary gradually decreased from 30% and 46.7% to 29.2% and
44.5%, respectively.

According to the analysis in Figure 9, the mining height affected the strike porosity
of the goaf. With the increase in mining height, the maximum porosities of the middle
and the boundary increased from 37.5% and 75.0% to 54.6% and 100%, respectively, and
the minimum porosities of the middle and the boundary were not affected. The mining
height affected the porosity tendency of the goaf, and the mining height increased. The
maximum porosities of the middle and the boundary increased from 33.7% and 75.0% to
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34.3% and 100%, respectively. The minimum values of the void fractions in the middle and
the boundary increased from 26.6% and 37.5% to 30.3% and 54.6%, respectively.

4.2. Evolution Law of the Void Fraction While Advancing

(1) Evolution of the void fraction

First, we analyzed the evolution law of the overall void when the working face
advanced from 20 m to 200 m. The development of the two zones and the voids in the
working face advancement were analyzed. The detailed changes in the void fraction during
the advancement are shown in Figure 10. With the advancement of the working face, the
void area gradually increased, and the void ratio gradually decreased from 70.1% to 25.1%.
At the beginning of the mining of the working face, there was a large void ratio behind the
working face that was close to 70%. From this analysis, it could be seen that as the working
face advanced, the overall void ratio gradually decreased, and the overall void area first
increased and then decreased.
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Figure 10. Change trend in the overall void ratio in the goaf during the process of advancing.

In addition, during the advancement of the working face, the rear void was constantly
in a changing state. For example, when the working face advanced by 50 m, the distribution
of the voids within 20 m behind the working face was completely different from when the
working face had advanced by 60 m. The following is an analysis of the distributions at
different depths inside the goaf during the advancement of the working face, as shown in
Figure 11. According to the analysis in Figure 11a, before the working face was pushed to
100 m, the overall void was relatively large. At the same advancement, the voids in the goaf
behind the working face exhibited a pattern of more voids on both sides and less voids in
the middle, similar to a U-shaped distribution. At different advancements, the maximum
value of the void appeared 20 m behind the working face, and as the distance of the
advancement increased, the void fraction at that location gradually decreased. Figure 11b
shows that after the working face was pushed to 100 m, the void behind the working face
gradually decreased.

(2) Evolution of the void shape

We analyzed the evolution law of the void shape in the goaf using numerical and
similarity models, as shown in Figure 12. Based on the analysis in Figures 7b and 12b,
it could be seen that when the working face advanced to the initial breaking distance of
the direct roof, a separation layer appeared, and at this time, the overall void fraction
was extremely high, ranging from 95% to 100%. Afterwards, the direct roof periodically
broke, and the void fraction decreased to below 88.9%. When the initial breaking distance
of the basic roof was reached, it was obvious that the suspended roof and the masonry
beam B block and masonry beam C block structures could be observed in the goaf. The
basic roof, the suspended roof, and the internal rock blocks intersected and overlapped
into a triangular area, forming a natural accumulation area, and the overall void fraction
further decreased to below 33.3%. After reaching the basic roof and the periodically
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breaking length, a natural accumulation area and a compaction area formed inside the goaf.
Under the gravity of the overlying rock, the internal voids in the re-compaction area were
relatively small, accounting for 33.0% of the total goaf, and the overall void fraction further
decreased to below 27.8%. As the pushing distance further increased, the length of the
natural accumulation area and the re-compaction area increased proportionally.
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Figure 11. Void distribution behind the working face. (a) Before the working face advanced 100 m.
(b) After the working face advanced 100 m.
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4.3. Divisions of the Types of Voids and Future Research

(1) Divisions of the types of voids

Based on the explorations of the void fractions and void shapes, the overburden of the
stope was vertically divided into a collapse zone, a fracture zone, and a bending subsidence
zone, and the coal seam was horizontally divided into a natural accumulation zone and
a re-compaction zone. The voids in the goaf were widely distributed in an accumulation
zone. The mining influence line bounded the void’s distribution area, namely, class I and
class II, as shown in Figure 13.
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(2) Future research

The above analysis shows that many voids existed behind the working face after
mining. Voids are a resource that can be used to treat solid wastes such as gangue. In recent
years, many scholars have proposed methods for gangue treatment to achieve green mining
and improve coal quality [33–35]. The fluidization filling method for gangue has been put
forward and was inspired by the above research. The technical concept of this method is to
separate coal gangue underground, crush the washed and excavated gangue underground,
and mix it with water to prepare fluidized gangue. The fluidized gangue is pumped to the
working face through a filling pump and a pipeline, and it is inserted into the gap in the
goaf using pipelines. Under the condition that the production efficiency of the working
face is not affected, the underground gangue treatment capacity can be maximized. The
overall concept of gangue fluid filling is shown in Figure 14. This technology can reduce
the cost of gangue treatment without affecting normal production. At the same time, it
can reduce the ecological damage and pollution of the ground environment and prevent
spontaneous combustion near the goaf and the stop line.
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5. Conclusions

This study explored the distribution law of a large number of voids generated during
coal mining, summarized the range of the voids around and in the middle of the stope,
determined the change nodes of the voids, and drew the following conclusions through
theoretical calculations and simulation verification analyses:

(1) The calculation model of the stope void was established, and it was found that the
void ratio at the stope boundary was far greater than that at the middle. The void ratio at
the stope boundary in the strike direction gradually decreased, with the maximum value
reaching 88.9% and the minimum value reaching 27.8%. The porosity at the stope boundary
in the dip direction was U-shaped, with a maximum value of 88.9% and a minimum value
of 33.3%.

(2) Numerical and similarity models were established to verify and describe the
development shape of the gap between the two zones and the dynamic development of the
void ratio during the advancement process. With the advancement of the working face, the
void ratio in the stope gradually decreased from 70.1% to 25.1%.

(3) Before the working face advanced to 100 m, the void in the goaf behind the working
face was evenly distributed, showing a pattern of having more gaps on both sides and
fewer voids in the middle. After the working face was pushed to 100 m, the overall gap
decreased. The maximum value of the void ratio occurred within 20 m behind the working
face when it was pushed only 120 m, reaching 0.37.

(4) A distribution map of the void ratio in the stope was constructed. It was found
that there were many voids in the collapse zone, with an average void ratio of nearly 40%.
A ‘gangue fluidization filling method’ has been proposed to utilize these voids.
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