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Abstract: Aiming at the problems of low accuracy of network attack prediction and long response
time of attack detection, bidirectional long short-term memory (BiLSTM) was used to predict network
attacks. However, BiLSTM has the problems of difficulty in parameter setting and low accuracy
of the prediction model. This paper first proposes the Improved Grey Wolf algorithm (IGWO)
to optimize the BiLSTM (IGWO-BiLSTM). First, IGWO uses Dimension Learning Hunting (DLH)
strategy to construct the wolf neighborhood. In the established wolf neighborhood, the BiLSTM
parameters are iteratively optimized to obtain a prediction model with fast convergence speed and
small reconstruction error. Secondly, the dataset is preprocessed, and the IP packet statistical signature
(IPDCF) is defined according to the characteristics of denial of service (DOS) and distributed denial
of service (DDOS) attacks. IPDCF was used to establish the time series model and network traffic
time series data were input into IGWO-BiLSTM to get the prediction results. Finally, the DOS and
DDOS network packets were input into the trained prediction model to obtain the prediction results
of attack data. By comparing the predicted values of IGWO-BiLSTM normal network packets and
attack packets, a reasonable threshold is set to provide the basis for the subsequent attack prediction.
Experiments show that the IGWO-BiLSTM can reach 99.05% of the fitting degree and accurately
distinguish network attacks from normal network demand increases.

Keywords: intrusion detection; deep learning; time series model; cyber-attacks

1. Introduction

With the development of computer technology, more and more devices are connected
to the network. Therefore, network traffic is becoming more and more complex, and the
network security problem has ushered in new challenges. Because of its unique abruptness,
network traffic requires a high prediction model. This paper mainly studies the use of
IGWO-BiLSTM to predict network attacks. In this section, we introduce motivation, related
studies and contributions.

1.1. Motivation

Network security is very important because network security includes all forms of
data security and information security. With the development of network information
technology, incidents such as information leakage and phishing continue to occur [1], there-
fore, the importance of network security is increasingly recognized. The existing security
protection schemes include firewalls, data encryption, intrusion detection system [2], etc.
Firewalls and data encryption are passive security protection technology, which can only
protect network security after a network attack occurs, while an intrusion detection system
is a proactive security protection technology. Cyber-attacks provide security managers
with response decisions.

Dos and DDos are based on time series and occur aperiodically. They produce and
send massive amounts of useless data and network bandwidth are consumed. As a result,
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the attacked host cannot communicate with the outside world. Dos and DDos include
many types such as user datagram protocol flood [3], acknowledge type, domain name
system amplification request, etc. At present, the research on defense against DoS and
DDoS mainly focuses on post-detection. However, malicious traffic is generated during
attacks [4], and any measures taken at this time are limited to mitigate the damage. The
industry [5] is improving its ability to defend against attacks by deploying more dynamic
defense systems but costs will increase accordingly. Hence, how to accurately predict DoS
and DDoS before they happen is very important.

1.2. Related Studies

Existing studies have established the time series of normal network traffic [6] and
used the time series to train the prediction model. Researchers’ prediction of time series [7]
can be divided into linear and nonlinear forecasts. Autoregressive (AR) is the simplest
linear time series prediction model, which is suitable for predicting traffic data related to its
previous period. The prediction result of AR is extremely inaccurate for traffic data greatly
affected by external factors. In literature [8], AR is introduced to predict the shear stress
of the fault zone. The method uses past data to predict future data to predict when an
earthquake will start and end. Moving average (MA) is one of the most common ways to
process time series. Autoregressive moving average (ARMA) is a combination of AR and
MA used to process stationary non-white noise time series flow data. Literature [9] used a
linear model to predict the monthly discharge of hydropower stations in Brazil and found
that ARMA had the best performance through experiments. Autoregressive integrated
moving average (ARIMA) is a combination of the ARMA model and difference operation,
which can model fit stationary and non-stationary data. Literature [10], the ARIMA model
was used to predict the daily number of COVID-19 cases in Saudi Arabia in the next four
weeks. The linear prediction model is simple and intuitive, which is suitable for stationary
time series modeling. However, most network traffic is characterized by uncertainty and
abruptness, which makes it difficult for linear prediction models to predict accurately.

Nonlinear prediction is mainly based on machine learning and deep learning. Lit-
erature [11] constructed a combined model of convolutional neural network (CNN) and
recurrent neural network (RNN) and applied it to network traffic prediction. RNN is
used to solve the problem of low accuracy of CNN prediction. Although the prediction
accuracy of this model has been improved, it still cannot meet the needs of real life. Liter-
ature [12] proposes a time series prediction model that predicts elements separately and
then combines them. The gated recurrent unit (GRU) was used to predict the decomposed
components separately and then combined. Hybrid models reduce the effects of noise and
outliers in time series data and improve prediction accuracy. However, due to the complex
structure of the mixed model, the predicted reaction time is long. Literature [13–15] chooses
to use long and short-term memory (LSTM) to predict network traffic. LSTM has a new
memory module over RNN, which stores previously appeared data. Experimental results
show that the prediction accuracy of network traffic is better than that of the RNN model.
However, because the proportion of early data stored in the memory module is small, that
is, the early data has little impact on the final result. Additionally, the network traffic has
unstable characteristics and strong nonlinear characteristics. LSTM cannot capture nonlin-
ear characteristics of large-scale network traffic effectively. Literature [16] used RNN and
its variant LSTM and GRU structures to analyze and predict network traffic. This model
can capture the nonlinear relationship and long-term dependence of complex network
traffic but still does not solve the problems existing in LSTM.

BiLSTM introduces the idea of two-way learning to solve the problem that the pro-
portion of early data in LSTM is small, and also inherits the advantage of LSTM’s ability
to remember data features. Literature [17] compared the prediction effect of BiLSTM and
LSTM in time series and proved that BiLSTM can provide better prediction than LSTM.
Compared with traditional machine learning methods, deep learning has a great improve-
ment in detection performance, but it still has some shortcomings such as slow convergence
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speed and poor optimization effect. Therefore, this paper proposes to use the IGWO to
optimize the BiLSTM to solve the above problems and to improve the convergence rate of
the prediction model and the accuracy of the prediction data.

1.3. Contributions

The main contributions of this paper are as follows: (1) Use IGWO to establish a
neighborhood and optimize BiLSTM parameters in the neighborhood. IGWO can solve
the problem of poor global optimization ability of GWO. (2) Propose the IGWO-BiLSTM
network attack prediction model, DARPA99 and ec_data were used to train the IGWO-
BiLSTM prediction model, and then set a reasonable threshold based on the predicted
value and the real value. When the predicted network traffic exceeds the threshold, it can
be considered that an attack has occurred, otherwise, no attack has occurred.

2. Background
2.1. Improved Gray Wolf Optimization Algorithm

Gray wolf optimizer (GWO) simulates the predation behavior of gray wolf groups.
Gray wolf groups have a strict hierarchy and a small number of gray wolves with the
absolute right to speak lead a group of gray wolves toward their prey. GWO divides
wolves into four levels based on fitness: α, β, δ and ω. α is the optimal solution, β is the
suboptimal solution, δ is the best solution and ω is the candidate solution. The hunting
process is guided by α, β, δ and ω follows α, β, δ to the prey. The position of the prey
corresponds to the solution of the problem. GWO is superior to intelligent optimization
algorithms such as particle swarm optimization algorithms and genetic algorithms in
finding the global optimal solution. However, it is easy to fall into the local optimal
solution, resulting in low convergence accuracy. To overcome these problems, this paper
adopts the IGWO [18]. IGWO proposed a DLH to modify the search strategy associated
with the selection and update steps. DLH constructs a neighborhood for each wolf, and
wolves can share neighboring information with each other. IGWO can alleviate the lack
of population diversity, the imbalance between development and exploration and the
premature convergence of GWO algorithms. The IGWO algorithm process is shown in
Figure 1. Inside the dotted box are improvements.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 16 
 

Among them, , ( )n dX t  is a random neighbor selected from the neighborhood ( )iN t  

constructed by Equation (3), and , ( )r dX t  is a random wolf selected from Pop . 

{ },( ) ( ) | ( ( ), ( )) ( ), ( )i i d i i j i jN t X t D X t X t R t X t Pop= ≤ ∈ , (3)

( ) || ( ) ( 1) ||i i IGWOR t X t X t= − + ,  (4)

where iD  is the Euclidean distance between ( )iX t  and ( )jX t , and ( )iR t  is the radius of 
the neighborhood. DLH uses the Euclidean distance between the current position of 

( )iX t  and the candidate position ( 1)IGWOX t +  to calculate the radius of the neighbor-
hood by Equation (4). 

( 1),  ( ( )
( 1)

( 1),  (  ( )
)
)

IGWO IGWO IDLH
i

IDLH IGWO IDLH

X t if f X f X
X t

X t if f X f X

+ <
+ =

+ ≥




. (5)

Finally, compare the fitness of ( 1)IGWOX t +  and ( 1)IDLHX t +  through Equation (5) 

and select a better candidate. If the fitness of the selected candidate is less than ( )iX t , 

then update ( )iX t  with the selected candidate, otherwise ( )iX t  remains unchanged in 
Pop . After performing this process for all wolves, the iteration counter ( )iter  adds 1, and 
the search can be iterated until a predefined number of iterations ( )Maxiter  is reached. 

 
Figure 1. IGWO flowchart. 

2.2. Bidirectional Long Short-Term Memory Network 
BiLSTM considers both past and future characteristics of network traffic [19]. The 

hidden layer of BiLSTM consists of two parts: forward LSTM cell state and backward 
LSTM cell state. First, the network traffic data enters the hidden layer through the input 
layer to participate in the forward calculation and reverse calculation, respectively; Then, 
the data calculated by the hidden layer is passed to the output layer; Finally, the output 
layer fuses the forward LSTM output and the reverse LSTM output according to a certain 

Figure 1. IGWO flowchart.



Appl. Sci. 2023, 13, 6871 4 of 16

First, the parameters are initialized. N wolves are randomly distributed in the search
space. The entire population of wolves is stored in a matrix Pop that has N rows and D
columns, where D is the dimension of the problem. The position of the i-th wolf in the t-th
iteration is expressed as:

Xi(t) = {xi1, xi2, . . . , xiD}, 0 ≤ i ≤ N. (1)

Then, in the GWO search strategy, the top three wolves of Pop are considered to be
α, β and δ. When 0 ≤ i ≤ N, not all wolves in the wolf pack have been searched, the GWO
search is still carried out; when i > N, complete the GWO search to obtain the positions
Xα, Xβ and Xδ of α, β and δ wolves. The first candidate XIGWO(t + 1) for the new position
of wolf obtained by determining the prey encircle with Xα, Xβ and Xδ. The DLH search
strategy generates another candidate XIDLH(t + 1) for the new position of the wolf Xi(t) is
calculated by Equation (2).

XIDLH,d(t + 1) = Xi,d(t) + rand× (Xn,d(t)− Xr,d(t)). (2)

Among them, Xn,d(t) is a random neighbor selected from the neighborhood Ni(t)
constructed by Equation (3), and Xr,d(t) is a random wolf selected from Pop.

Ni(t) =
{

Xi,d(t)
∣∣Di(Xi(t), Xj(t)) ≤ Ri(t), Xj(t) ∈ Pop

}
, (3)

Ri(t) =||Xi(t)− XIGWO(t + 1)||, (4)

where Di is the Euclidean distance between Xi(t) and Xj(t), and Ri(t) is the radius of the
neighborhood. DLH uses the Euclidean distance between the current position of Xi(t)
and the candidate position XIGWO(t + 1) to calculate the radius of the neighborhood by
Equation (4).

Xi(t + 1) =
{

XIGWO(t + 1), i f f (XIGWO) < f (XIDLH)
XIDLH(t + 1), i f f (XIGWO) ≥ f (XIDLH)

. (5)

Finally, compare the fitness of XIGWO(t + 1) and XIDLH(t + 1) through Equation (5)
and select a better candidate. If the fitness of the selected candidate is less than Xi(t), then
update Xi(t) with the selected candidate, otherwise Xi(t) remains unchanged in Pop. After
performing this process for all wolves, the iteration counter (iter) adds 1, and the search
can be iterated until a predefined number of iterations (Maxiter) is reached.

2.2. Bidirectional Long Short-Term Memory Network

BiLSTM considers both past and future characteristics of network traffic [19]. The
hidden layer of BiLSTM consists of two parts: forward LSTM cell state and backward LSTM
cell state. First, the network traffic data enters the hidden layer through the input layer to
participate in the forward calculation and reverse calculation, respectively; Then, the data
calculated by the hidden layer is passed to the output layer; Finally, the output layer fuses
the forward LSTM output and the reverse LSTM output according to a certain weight to get
the output result. The BiLSTM network structure is shown in Figure 2, where xt represents
the input and ht represents the output of the network.
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3. BiLSTM Attack Prediction Model Based on Improved Gray Wolf Algorithm
3.1. Model

Due to the good performance of deep learning in all aspects, literature [20–22] proposes
a network attack prediction method based on deep learning. Literature [20] uses GRU to
learn the data of past network attacks to predict future networks to achieve the purpose of
network attack prediction. In this paper, the prediction model is named IGWO-BiLSTM,
and the structure of the prediction model is shown in Figure 3. Each component is a
refinement of the structure of the model. The input module processes the raw data; The
data preprocessing module performs feature extraction and normalization; The IGWO-
BiLSTM hidden layer consists of two layers of IGWO-BiLSTM and one Dropout layer, and
the hidden layer trains network traffic data; Attack data training IGWO-BiLSTM to obtain
an attack prediction model.
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The IGWO-BiLSTM attack prediction model process is as follows:

1. The characteristics of normal network traffic have a certain regularity. When the
change range of normal network traffic is abnormal, it can be judged that a network
attack has occurred at this time. Literature [23] proposed the IPDCF, sampling the
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network at a time interval of ∆t = 1min, using Equation (6) for data statistics, using
Equation (7) for normalization and other data preprocessing operations:

IPDCFi = ∑
Ti<t<Ti+1

Pt. (6)

Among them, IPDCFi is the i-th value in the time series and P is the data packet.

x̂ =
x− xmin

xmax − xmin
. (7)

Among them, x̂ is the normalized value, x is the original value, xmin is the minimum
value and xmax is the maximum value;

2. Sampling the data set at a time interval of ∆t = 1min and calculating the IPDCF value
of each sampling. After m times of sampling, time series T is obtained and Equation
(8) is used for time series modeling:

T = {IPDCFi, i = 1, 2, . . . , M}, (8)

Among them, M is the length of the data set, ∆t = 1min;
3. The raw data set is divided into a normal traffic data set and attack traffic data

set. The normal traffic data set is used for prediction model training and prediction
performance testing and the attack data set is used for attack experiments. Using
sliding window technology, a window with a length of 60 and a width of 1 is selected,
set the step size to 10 and perform sliding interception on the original network traffic
data to obtain the network traffic training set and test set;

4. Initialize the parameters of the improved gray wolf algorithm. Randomly generate
wolves, the total number N = 50, the maximum number of iterations Maxiter = 10,
the dimension D of the problem is the number of BiLSTM optimization parame-
ters D = 4, the number of hidden layer units of BiLSTM (neurons1, neurons2), the
forgetting rate (dropout) and batch size (batch_size) correspond to the parameter
coordinates of the individual positions of wolves, set the upper and lower limits
ub = [200, 200, 0.9, 10], lb = [32, 32, 0.1, 1];

5. Initialize BiLSTM parameters and select a two-layer BiLSTM network. The number of hidden
layer units (neurons1, neurons2), dropout rate (dropout) and batch size (batch_size) of
BiLSTM are initialized to neurons1 = 128, neurons2 = 64, dropout = 0.4, batch_size = 5,
the maximum number of iterations is 500 and the fitness function is the mean squared
error (MSE) between the predicted value and the real value. Equation (9) was used
to calculate the individual fitness of wolves and the fitness was returned to IGWO,

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2. (9)

Among them, Yi is the real value and Ŷi is the predicted value;
6. Normal network traffic time series input the model according to the window set in

step (3) and train the model;
7. Use Equation (9) to calculate the fitness of each gray wolf. MSE is the expected value

of the square of the difference between the real value and the predicted value. The
greater the error, the greater the value. Select the three wolves with the smallest
fitness, α, β, δ to search for GWO, update the position of other gray wolves ω to get
the first candidate XIGWO(t + 1);

8. Use Equation (2) to search for DLH and generate another candidate XIDLH(t + 1)
for the new position of wolf Xi(t). Equation (5) was used to compare the fitness of
XIGWO(t + 1) and XIDLH(t + 1) and better candidates were selected. If the fitness
of the selected candidate is less than Xi(t), update Xi(t) with the selected candidate,
otherwise Xi(t) remains unchanged in Pop;
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9. Determine whether to iterate to the maximum number of iterations. If iter > Maxiter,
execute (10), otherwise iter = iter + 1, execute (6);

10. Output the position coordinates of α, that is, the optimal parameter combination of
BiLSTM. α(neurons1, neurons2, dropout, batch_size) input IGWO-BiLSTM training,
obtain the optimized converged IGWO-BiLSTM network prediction model;

11. By inputting the network attack data into the prediction model and comparing the
normal network traffic with the attack network traffic, the attack can be predicted in a
timely and accurate manner. The flow chart of IGWO-BiLSTM is shown in Figure 4,
each component represents a specific practice in the forecasting process and together
constitutes the forecasting operation process.
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3.2. Threshold Selection

In real life, people use the Internet in roughly the same way, so there will be a large
number of users online at the same time. In this case, network congestion occurs, but the
network congestion is different from that caused by DoS and DDoS. Because the fluctuating
network traffic features extracted by IPDCF may be mistaken by the model as attack traffic,
it is particularly critical to select an appropriate threshold for a given data set. If the
threshold is too large, the DoS and DDoS alarm may be delayed or missed. If the threshold
is too small, false positives may occur.

The IPDCFs of normal and predicted values were statistically analyzed to obtain
their intervals [a, b] and [c, d]. Z is the maximum value of the IPDCF predicted value
interval [c, d], A is the average error between the predicted value and normal value, and the
threshold is U = Z + A. According to Equation (10), when the predicted value X exceeds
the preset threshold value U, it is considered abnormal traffic, and the existence of network
attack behavior can be determined. When the deviation of the predicted value is large but
does not exceed the preset threshold value U, normal network congestion except abnormal
is considered to have occurred.

f
{

X ≥ U, DOS attacks or DDOS attacks
otherwise, normal congestion

. (10)

4. Experimental Simulation and Analysis
4.1. Data Set Selection

The simulation experiment selects three representative network traffic data sets: dedi-
cated Internet service provider Internet traffic (ec_data); there are weeks of network traffic
collected by the MIT Lincoln Laboratory, 1999 (DARPA99), of which the first week and
the third week as training sample data and the second weeks as test sample data; DOS
and DDOS data set collected by the MIT Lincoln Laboratory, 2000 (DARPA00). Among
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them, the ec_data and the DARPA99 are used for training and performance comparison of
the prediction model to prove the universality of the prediction model, and the DARPA00
dataset is used for attack experiments. A detailed description of the above datasets is
shown in Table 1.

Table 1. Dataset description.

Dataset Name The Amount of Data Data Unit Statistical Interval

ec_data 14,772 Mb 5 min
DARPA99 19,800 IPDCF 1 min
DARPA00 25 IPDCF 1 min

As shown in Table 2, the ec_data has two columns. The first column is the number of
the network traffic data, and the second column is the size of the network traffic in Mb.

Table 2. ec_data dataset.

No. Network Traffic

1 3,562,279,127
2 3,710,215,571
3 3,877,469,703
4 3,876,354,871
5 4,582,542,581
6 5,016,336,869

As shown in Table 3, the DARPA99 collects TCPDUMP network connection data.
The first column is the number of the network connection, the second column is the time
when the connection occurred, the third and fourth columns are the source and destination
address of the connection, the fifth column is the network protocol used by the connection
and the sixth column is the length of the connection. The DARPA00 data set and the
DARPA99 data set have the same structure and will not be repeated here.

Table 3. DARPA99 dataset.

No. Time Source Destination Protocol Length

1 0.00000 HewlettP_61:aa:c9 HewlettP_61:aa:c9 LLC 54
2 0.346281 192.168.1.30 172.16.112.100 SNMP 146
3 0.347844 172.16.112.100 192.168.1.30 SNMP 159
4 1.499118 HewlettP_61:aa:c9 HewlettP_61:aa:c9 LLC 54
5 2.341313 192.168.1.30 172.16.112.100 SNMP 146
6 2.342837 172.16.112.100 192.168.1.30 SNMP 159

4.2. Feature Extraction and Analysis

ec_data compiled 14,772 sets of network traffic data from 6 July 2005 to 28 July 2005.
Figure 5 shows the data obtained from the ec_data sampling at 5 minutes intervals. Network
traffic in the ordinate is normalized. As can be seen from the figure, since people’s living
habits are roughly the same, network traffic data is periodic on the macro level and it is
found that network traffic data has the characteristics of frequent outbreaks on the micro
level. Therefore, it is required that the prediction model can predict the sudden outbreak of
network traffic.
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The DARPA99 is the three-week training data provided by DARPA intrusion detection
in 1999. The first and third weeks do not contain any attacks as training data and the
second week contains a subset of 1998 attacks, as well as several new attacks as test data.
DARPA99 was sampled at 1 min intervals, and the number of data packets per minute was
obtained as data characteristics. Data characteristics of 5d in the first week were shown in
Figure 6. D in the figure is the number of IP packets. It can be seen from the figure that
the data at a fixed time every day in the first week presents a relatively fixed trend, which
further proves the feasibility of prediction.

4.3. Predictive Model Performance Comparison

Different data sets used in the same prediction model can prove the universality of
the model. In this experiment, two data sets, ec_data and DARPA99, were used to evalu-
ate the performance of the prediction model, which proves that the proposed model can
be extended to different scenarios. In this paper, MSE, root mean square error (RMSE),
mean absolute error (MAE) and coefficient of determination (R2) are selected as evaluation
indexes. It is used to compare the prediction performance of the improved grey wolf opti-
mization RNN (IGWO-RNN), the improved grey wolf optimization LSTM (IGWO-LSTM),
the improved grey wolf optimization GRU (IGWO-GRU) and the improved grey wolf
optimization BiLSTM (IGWO-BiLSTM) proposed in this paper. Among them, MSE, RMSE
and MAE are as small as possible, and larger R2 indicates that the model fitting effect
is better. R2 is used to indicate the degree of correlation between the real value and the
predicted value, and the value range is 0 ∼ 1. If R2= 1, the model fitting effect is poor; if
R2 = 0, the model is perfect.
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Figure 6. Schematic diagram of DARPA99 first week 5d data features.

4.3.1. ec_data Data Set Prediction Model Performance Display

This section introduces the model’s performance on ec_data from three aspects. Firstly,
the comparison of the time consumption between the original BiLSTM and IGWO-BiLSTM.
It is found that the prediction efficiency of IGWO-BiLSTM is higher. Then, IGWO was
applied to the RNN, LSTM, GRU and BiLSTM models. The decrease trend MSE was
compared for 450 iterations, and it was found that the proposed model had the smallest
MSE. Finally, the comparison graph between the predicted value and the real value of
the IGWO-BiLSTM model is shown. Through observation, it is found that the prediction
model can capture the change rule of the real value and make an accurate prediction.

As shown in Figure 7, the time-consuming ec_data data set runs 10 times on IGWO-
LSTM and BiLSTM models. Compared with the LSTM model, IGWO-BiLSTM reduces the
total time of 10 iterations by 186s, and the average time of each iteration is reduced by 18.6s.
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The reduced time can be used to predict network trends in advance, to respond to network
attacks promptly, which is of great significance in practical applications.
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Figure 7. Time-consuming comparison of 10 iterations.

As shown in Figure 8, the MSE change trend of IGWO in the iteration of RNN, LSTM,
GRU and BiLSTM models during the training process ec_data the training process. Through
comparison, IGWO-BiLSTM was found to have the lowest MSE. The MSE eventually
stabilized, and IGWO-BiLSTM, IGWO-RNN, IGWO-LSTM and IGWO-GRU reached 0.0069,
0.0102, 0.0082 and 0.0094, respectively, and IGWO-BiLSTM decreased by 0.0033, 0.0013 and
0.0025 compared with IGWO-RNN, IGWO-LSTM and IGWO-GRU, respectively.
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Figure 8. MSE trend graph of ec_data dataset.

Figure 9 shows the local comparison between the predicted values and the real values
of ec_data on IGWO-BiLSTM. The horizontal axis is sampling time, and the vertical axis
is the network traffic data unit. It can be found that the IGWO-BiLSTM model can better
capture the changing trend of the real network flow than the BiLSTM model, and the
predicted value obtained is closer to the real value and the prediction accuracy is improved
to 98.71%.
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Figure 9. Local comparison between the real value and predicted value of ec_data.

4.3.2. DARPA99 Data Set Prediction Model Performance Display

This section describes how the model performs on DARPA99 in three ways. First,
IGWO is applied to MSE comparison between other neural network models and BiLSTM
models. Then, the comparison of the predicted value of DARPA99 with the real value on
the IGWO-BiLSTM model is displayed. Finally, RMSE, R2 and MAE of IGWO-BiLSTM
and other models are compared.

As shown in Figure 10, the trend of MSE change of IGWO during RNN, LSTM, GRU
and BiLSTM iterations during DARPA99 training. Through comparison, it was found that
IGWO-BiLSM had the smallest MSE. The MSE eventually plateaued, with IGWO-BiLSTM,
IGWO-RNN, IGWO-LSTM and IGWO-GRU reaching 0.000169, 0.0027, 0.0011 and 0.0013,
respectively.
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As shown in Figure 11, the real value of DARPA99 is compared with the predicted
value on IGWO-BiLSTM. When real network traffic suddenly breaks out, IGWO-BiLSTM
can catch the change in time and accurately output the predicted value in time. Through
experiments, it is found that the predicted value obtained by the IGWO-BiLSTM model is
closer to the real value than the predicted value obtained by the BiLSTM model, which con-
firms that the IGWO-BiLSTM model has better predictive performance, so the subsequent
attack experiment can be carried out.
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It can be seen from Table 4 that RMSE, R2 and MAE values of IGWO-BiLSTM are
optimal. Compared with IGWO-RNN, IGWO-LSTM and IGWO-GRU, R2 increased by
0.33, 0.57 and 0.06, respectively.

Table 4. Comparison of improved algorithms to optimize network performance.

Method RMSE R2 MAE

IGWO-RNN 0.0483 0.6688 0.0443
IGWO-LSTM 0.0529 0.4263 0.0326
IGWO-GRU 0.0352 0.9313 0.0259

IGWO-BiLSTM 0.0094 0.9905 0.0200

4.4. Network Attack Detection and Analysis

Network attack prediction is realized by combining network traffic prediction with
threshold setting. The current network traffic is input into IGWO-BiLSTM to get the future
network traffic and the predicted value is compared with the threshold value to judge
whether the network attack occurs. In normal cases, the IPDCF value of network traffic
is small, but in attack time, the IPDCF value of network traffic is large. By counting
the interval between normal flow and predicted characteristic values, the threshold U is
calculated to be 7184. When the predicted value exceeds 7184, a network attack can be
identified. Due to the large types of attacks and inconsistent attack judgment methods,
this paper can predict and identify the network traffic under attack by setting thresholds.
Specific categories of attacks will be realized in the next experiment.

As can be seen from Figure 12, in the 40 min, the predicted value exceeds the threshold,
which determines that a network attack occurs at this time. In the 80th to 90th minute,
although the deviation between the real value and the predicted value is large, it does
not exceed the threshold. Therefore, it is judged not as a network attack, but as the actual
network demand of users increases at this time to avoid false positives.



Appl. Sci. 2023, 13, 6871 14 of 16

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 16 
 

It can be seen from Table 4 that RMSE , 2R  and MAE  values of IGWO-BiLSTM are 
optimal. Compared with IGWO-RNN, IGWO-LSTM and IGWO-GRU, 2R  increased by 
0.33, 0.57 and 0.06, respectively. 

Table 4. Comparison of improved algorithms to optimize network performance. 

Method RMSE R2 MAE 
IGWO-RNN 0.0483 0.6688 0.0443 
IGWO-LSTM 0.0529 0.4263 0.0326 
IGWO-GRU 0.0352 0.9313 0.0259 

IGWO-BiLSTM 0.0094 0.9905 0.0200 

4.4. Network Attack Detection and Analysis 
Network attack prediction is realized by combining network traffic prediction with 

threshold setting. The current network traffic is input into IGWO-BiLSTM to get the future 
network traffic and the predicted value is compared with the threshold value to judge 
whether the network attack occurs. In normal cases, the IPDCF value of network traffic is 
small, but in attack time, the IPDCF value of network traffic is large. By counting the in-
terval between normal flow and predicted characteristic values, the threshold U  is calcu-
lated to be 7184. When the predicted value exceeds 7184, a network attack can be identi-
fied. Due to the large types of attacks and inconsistent attack judgment methods, this pa-
per can predict and identify the network traffic under attack by setting thresholds. Specific 
categories of attacks will be realized in the next experiment. 

As can be seen from Figure 12, in the 40 min, the predicted value exceeds the thresh-
old, which determines that a network attack occurs at this time. In the 80th to 90th minute, 
although the deviation between the real value and the predicted value is large, it does not 
exceed the threshold. Therefore, it is judged not as a network attack, but as the actual 
network demand of users increases at this time to avoid false positives. 

 
Figure 12. Simulation attack experiment results. 

4.5. Discussion 
The rapid development of networks leads to higher requirements for network secu-

rity. The current academic research on network attack focuses on the analysis of network 
security event logs detected by network security facilities. In addition, the network attack 
prediction technology is the most important. Therefore, this paper proposes IGWO-

0 10 20 30 40 50 60 70 80 90 100

Time

0

1000

2000

3000

4000

5000

6000

7000

8000

D

IGWO-BiLSTM-Prediction

True

normalattacknormalnormalnormal normal normal Increased user demand normalIncreased user demand

40min attack occurred

80-90min user network
demands increase, 
not an attack

Figure 12. Simulation attack experiment results.

4.5. Discussion

The rapid development of networks leads to higher requirements for network security.
The current academic research on network attack focuses on the analysis of network se-
curity event logs detected by network security facilities. In addition, the network attack
prediction technology is the most important. Therefore, this paper proposes IGWO-BiLSTM
for network attack prediction. As an intelligent optimization algorithm, IGWO can solve
engineering problems, optimization problems and applications in neural networks. Mean-
while, compared with GWO and particle swarm optimization algorithms, IGWO has the
advantages of global search and has corresponding research value.

IGWO-BiLSTM used ec_data and DARPA99 to verify the prediction effect. Firstly,
compared with BiLSTM, IGWO-BiLSTM greatly shortens the time of network traffic pre-
diction. In practical application, it can provide faster response decisions and effectively
reduce the damage to network equipment. Secondly, this model can converge earlier to
lower Loss than other models. Loss is defined by MAE, which represents the difference
between the predicted value and the true value. Compared with IGWO-RNN, IGWO-LSTM
and IGWO-GRU, IGWO-BiLSTM decreased by 0.0033, 0.0013 and 0.00255, respectively.
Finally, compared with IGWO-RNN, IGWO-LSTM and IGWO-GRU, the accuracy of IGWO-
BiLSTM is improved by 0.33, 0.57 and 0.06, respectively.

5. Conclusions

In our daily life, cyber-attacks can happen at any time and bring about serious conse-
quences. Therefore, the IGWO-BiLSTM network attack prediction model is proposed to
study the potential attack behavior in the network. Specifically, the IGWO method is used
in this paper to solve the problems of slow convergence of the original GWO, premature
loss of diversity of the population and easily falling into the local optimum. IGWO-BiLSTM
is used to predict normal network traffic and set a reasonable threshold to identify the
anomalies caused by network attacks. The experimental results show that the reconstruc-
tion error between the predicted value and the real value is minimal, and the prediction
performance of the proposed method is better than that of RNN, LSTM, GRU, etc.

IGWO has solved the problem of slow convergence and poor prediction accuracy of
BiLSTM from the parameter. However, the prediction effect of BiLSTM still has a large
room for improvement. In addition, this paper only discusses IGWO-BiLSTM’s predictive
performance on ec_data and DARPA99 and does not apply it to physical layer devices.
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Subsequent research should try to use different network models to predict network traffic
and apply them to physical layer attacks such as signal interference or resource hiding.
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