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Featured Application: 3D printing.

Abstract: Since its inception in 1984, 3D printing has revolutionized manufacturing by leveraging
the additivity principle and simple material–energy coupling. Stereolithography, as the pioneering
technology, introduced the concept of photopolymerization with a single photon. This groundbreak-
ing approach not only established the essential criteria for additive processes employing diverse
localized energies and materials, including solid, pasty, powdery, organic, and mineral substances,
but also underscored the significance of light–matter interactions in the spatial and temporal domains,
impacting various critical aspects of stereolithography’s performance. This review article primarily
focuses on exploring the intricate relationship between light and matter in stereolithography, aiming
to elucidate operational control strategies for fabrication processes, encompassing voxel size manip-
ulation. Furthermore, advancements in light excitation modes, transitioning from one-photon to
two-photon mechanisms, have unlocked new material and creative possibilities. Notable advantages
include the elimination of layering (true 3D printing) and the ability to fabricate objects using silica
glass. Although these volumetric 3D printing methods deviate from conventional additive manu-
facturing concepts and possess narrower application scopes, they offer reduced manufacturing and
design timeframes along with enhanced spatial resolution in select cases. These complex light–matter
interactions form the cornerstone of this comprehensive review, shedding light on operational control
strategies and considerations in stereolithography. By comprehensively analyzing the impact of
light–matter interactions, including the novel two-photon excitation, this review highlights the trans-
formative potential of stereolithography for rapid and precise fabrication. While these techniques
may occupy a smaller niche within the broader spectrum of 3D printing technologies, they serve as
valuable additions to the array of 3D devices available in the market.

Keywords: 3D printing; two-photon absorption; printability; chemical kinetics; materials

1. Introduction

The basic idea of additive manufacturing or 3D printing is presented in Figure 1. It
involves an energetic stimulation to create an elementary volume called a “voxel” (different
in terms of the nature of the initial material), which, when moved in space, leads to a series
of voxels that only becomes a 3D object if there is sufficient cohesion between the voxels
(notion of printability).

Because we have known for a long time how to “play” with the energy of light, it
was first possible to imagine a transformation of matter by the energy carried by light:
polymerization by electronic excitation of a resin, thermally induced polymerization, etc.
Under these conditions, we go from a fluid (the resin) to a solid voxel. In the first patent, in
1984 [1], the authors had not yet studied the evolution of the chemically-induced resolution
on the final result. Thus, the global resolution is an association between two interdependent
phenomena, one related to the light power present at a point in space, the other to the
polymerization chemistry (and especially to its exothermicity).
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Figure 1. The fundamentals of additive manufacturing.

If today there are other ways of energy stimulation (seven major families of additive
manufacturing processes) [2], the processes using light retain their interest in many areas
such as micro-fabrication, production of prototype parts, bio-printing, indirect realization of
parts in their material of use (ceramics, glasses, etc.), etc. Obviously, the performances that
are achieved depend on the methodologies that affect the spatial resolution and printability
aspects presented above.

After having reviewed the interest in photopolymerizable resins whose transformation
results from chain reactions, the focus is then put on the aspects of optical resolution
which depend on the modes of electronic excitation of photochemical initiators or on the
heat transfers for thermal initiators and depend on the resins and their possible charges.
The “printability” aspect is also discussed, as it conditions the realization of real objects.
Light can play different roles in terms of initiating chain polymerization reactions (which
in principle corresponds to an amplification process). This document considers first of
all, the initiation process, the material aspect, and the reaction schemes. A remark is
made in this part concerning a thermal initiation which allows, in particular, conditions
for the realization of 3D parts. Apart from the material aspect, the emphasis is put on
what represents the volume of interaction between the transformable matter and the
process of light excitation with one photon, or two photons absorbed simultaneously
or sequentially. These volumes are connected with the voxel forms and sizes. These
modes lead to specific performances and to the control of associated processes. Finally, in
these different presentations, the authors try not to forget that these are manufacturing
technologies with technical, financial, and optimization constraints.

2. Resins and Additive Manufacturing

With acrylic type resins, it is possible to carry out chain radical polymerizations.
However, these are protected by inhibitors, which, in continuous excitation with a photon
lead to complex polymerization kinetics that must be taken into account in the realization of
a voxel. This mechanistic aspect is the starting point of this part dedicated to the resins used
in stereolithography. Before dealing with the consequences of the light–matter relationships,
a singular point is underlined, that of the exothermicity of the polymerization reactions
which can be taken advantage of, but with the risk of a loss in spatial resolution.

In principle, it is possible to provide energy locally to carry out a chemical transforma-
tion (here, a radical chain polymerization). The chemical kinetics of radical polymerization
reactions corresponds to a nonlinear process, qualitatively presented in Figure 2 [2,3]. Pho-
tochemical radical polymerization has a threshold behavior. Under these conditions, if one
knows how to have a different light intensity from one point in space to another, or a sufficient
exposure time, or finally an inhibitor concentration from one element in space to another, etc.,
the polymerization can be spatially controlled. The weakly irradiated regions do not contribute
to the polymerization as long as one is zone I (presented in Figure 2; it corresponds to the total
non-consumption of the inhibitors of radical polymerization, in particular of oxygen).
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Figure 2. Typical polymerization kinetic curve under continuous irradiation. Phase I: very slow
kinetics related to the consumption of the inhibitor(s); phase II: radical polymerization before reaching
the gel point; phase III: cross-linking of the multifunctional monomer links.

Figure 3 [2,4] schematically represents a reaction (with its very simplified mecha-
nism) of radical chain polymerization that allows, from a free radical created by any
photonic or thermal process, the transformation of a large number of molecules (monomers
and/or oligomers).
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Figure 3. Radical mechanism of chain polymerization (A corresponds to the initiator producing free
radicals R. reacting with the monomer M under light (hν) or thermal (∆) initiation).

To store the resins, they must be stabilized with conventional free radical polymer-
ization inhibitors. Dissolved oxygen also has the same role. To those elements of the
reaction mechanism presented in Figure 3, it is necessary to add a complementary process
of consumption of the inhibitors Q (chemical rate constant kq):

R· + Q→ Consumption of Q (1)

In practice, the photochemical initiator is a conventional commercial ketone-type
initiator and the resins are typically from the multifunctional acrylic family.

2.1. Materials

Several situations have been observed since 1984 [1]:

• The photopolymer must not dissolve in the resin that gave birth to it, which requires
multifunctional monomers (see Figure 4);

• The polymer is generally denser than the initial monomer, which leads to shrinkage
(as in foundry); and if the object was not supported, it falls (Stokes’ law) to the bottom
of the reactor by being deformed;

• A complex deformation linked to the manufacturing process (anisotropy of local
tensions and global deformation);

• An obligation of post-treatment with the risk of an ageing likely to lead to the destruc-
tion in a few days of the realized object.
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Figure 4. Radical photopolymerization of acrylic resins.

On this broad basis, the materials are commercially available and are summarized in
Table 1.

Table 1. Some resins applicable in stereolithography.

Some Commercial Resins References

Monomers, initiators: Acrylic resins and photochemical
initiators (aromatic ketones). Examples: 2-hydroxyethyl
methacrylate, 1,6-hexanediol diacrylate, pentaerythritol
tetra-acrylate, etc.

Cf. Fluka; Sigma-Aldrich (St. Louis, MO, USA); Quick-Parts;
Merck; Arkema; Norland; Yosra; Nanoscribe catalogs (2022)

Specific monomer: Ionic polymerization monomer [5]

Commercial resins: Materialise, Acura AMX, Durable natural
3D printing resin (3D Systems), etc.

Materialise (2022); [6]; Additive 3D (2022); Evonik catalog; 3D
Ceram (2022)

Table 1 should be seen as a wealth of choices of resins that can be made by the experi-
menter or obtained ready-made. Thus, only a few references are presented there. Industrial
3D machine manufacturers offer the opportunity to purchase their own resin that broadly
meets the user’s specifications [7,8]. They provide the expertise and industry knowledge
necessary to accurately assess specific customer requirements and recommend/sell the
most appropriate 3D printing products. The links between the process and materials
processed in the same company give the company an unparalleled ability to provide
a “complete value chain”. This raises the difficult question of choice, which depends on the
nature of the objects to be manufactured [9].

For example, Merck [10] proposes photochemical initiators such as Irgacure (2-Hydroxy-
4′-(2-hydroxyethoxy)-2-methylpropiophenone) or ketone compounds of the same family,
Von Raumer et al. [11] benzophenone, and Sigma-Aldrich [12] thermal initiators such as
AIBN (2,2′-Azobis(2-methylpropionitrile)) and benzoyl peroxide [13].

2.2. Polymerization

In the presence of light, free radicals are produced; they consume the inhibitors
and then react with the monomers to create macro-radicals which grow by reaction with
“fresh” monomers with the risk of trapping free radicals in the polymer matrix. Given the
concentration of monomers (quasi-pure monomer medium at the time of initiation), the
polymerization takes place from close to close, on a molecular scale as shown in Figure 5.
In addition, if multifunctional monomers are available, the polymer that is built up is
normally insoluble in the monomer that gave rise to it [14].
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Figure 5. Spatial proximity polymerization (hν represents the energy of the photon, where ν is the
frequency of the radiation and h is Planck’s constant, for a one-photon initiation). The red discs
represent the elements that have reacted to form a polymer and M represents a monomer molecule.

From a chemical kinetics point of view, the transformation follows a sigmoidal law, as
presented in Figure 2, with an initially slow kinetics linked to the consumption of reaction
inhibitors (hydroquinone for example to allow the conservation of monomers, oxygen in
solution, etc.), i.e., a “free” polymerization reaction, but increasingly hindered by the three-
dimensional polymer that forms, which limits the space available for the reaction of macro-
radicals with the remaining monomers and thus the reaction kinetics [15]. Experimentally,
it is possible to show that then free radicals are present but are trapped in the polymeric
matrix. To summarize, there are essentially three zones in such polymerization kinetics:

• a zone (I) with very slow kinetics where the free radicals formed in the initiation step
consume the inhibitors (oxygen);

• the zone (II) of the polymerization itself;
• the terminal step, linked to the imprisonment of the free macro-radicals which can no

longer reach the reactive bonds of the remaining monomers because of the passage
from a fluid material to a highly polymerized entity in which the diffusion of the
reactive species is strongly hindered (cf. Figure 5).

From an epoxy composition (cationic monomer) and a photo-initiator, polymerization
under light irradiation leads to the desired liquid/solid transformation. Some compositions
suitable for one-photon additive manufacturing are commercially available. These com-
positions include monomers, typically epoxies, and the initiator. In addition to the epoxy
family of compounds, a large number of monomers are described synthetically in [16,17].

2.3. Exothermicity

Polymerization reactions are generally exothermic and there can be a local (and
temporary) rise in temperature which can induce a change in the refractive index of the
polymerizable liquid and then of the solid state polymer. Depending on the transparency
of the resin, it is practically no longer possible to consider that the path of the light follows
a straight line beyond several centimeters (loss in resolution or transformation). Under these
conditions, it is necessary to build forms of object adapted to avoid the problems mentioned
above or to work under spatial and/or chemical conditions where these phenomena are
not preponderant or likely to be masked. This goal can be obviously achieved if one wants
to create, for example, small objects, which is well suited for commercial picosecond lasers
and microscopes.

There exists a critical distance for thermal polymerization. To take into account the
phenomena involved, it is possible to consider a spherical structure consisting of a polymer
at a temperature T1, bathed in a liquid medium containing the monomer and its thermal
initiator at a temperature T2, lower than T1. Initiation by AIBN or benzoyl peroxide starts
at a temperature between T1 and T2. If the radius of the sphere is small, with a high surface
to volume ratio, the heat from the sphere must dissipate before the thermal initiator has
time to produce free radicals. On the other hand, for high values of this radius, the heat
transfer has time to generate free radicals and provide additional heat energy that drives
the polymerization from the edges of the sphere into the space accessible for the reaction.
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We can therefore imagine the existence of a critical radius that corresponds to the escape of
the reaction from the space that was intended for it. Moreover, from one voxel to another,
the reaction medium heats up, which can lead to minor or major losses of resolution.

Then, choosing a space of spherical symmetry and an initial temperature θ0 = 50 ◦C,
Figure 6 plots the spatial variations in temperature as a function of dimensionless time τ
(equal to the product of time times the thermal diffusion coefficient divided by the spot of
the squared radius R of an electromagnetic wave). With a thermal initiator such as benzoyl
peroxide or AIBN [18], after a dimensionless time on the order of unity, the heat, initially
carried uniformly in the sphere of radius R, can be considered dissipated throughout the
reactant fluid. The polymerization reaction could have started, but stops by quenching
(hence no loss in spatial resolution).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 27 
 

2.3. Exothermicity 

Polymerization reactions are generally exothermic and there can be a local (and tem-

porary) rise in temperature which can induce a change in the refractive index of the 

polymerizable liquid and then of the solid state polymer. Depending on the transparency 

of the resin, it is practically no longer possible to consider that the path of the light follows 

a straight line beyond several centimeters (loss in resolution or transformation). Under 

these conditions, it is necessary to build forms of object adapted to avoid the problems 

mentioned above or to work under spatial and/or chemical conditions where these phe-

nomena are not preponderant or likely to be masked. This goal can be obviously achieved 

if one wants to create, for example, small objects, which is well suited for commercial pi-

cosecond lasers and microscopes. 

There exists a critical distance for thermal polymerization. To take into account the 

phenomena involved, it is possible to consider a spherical structure consisting of a poly-

mer at a temperature T1, bathed in a liquid medium containing the monomer and its ther-

mal initiator at a temperature T2, lower than T1. Initiation by AIBN or benzoyl peroxide 

starts at a temperature between T1 and T2. If the radius of the sphere is small, with a high 

surface to volume ratio, the heat from the sphere must dissipate before the thermal initia-

tor has time to produce free radicals. On the other hand, for high values of this radius, the 

heat transfer has time to generate free radicals and provide additional heat energy that 

drives the polymerization from the edges of the sphere into the space accessible for the 

reaction. We can therefore imagine the existence of a critical radius that corresponds to 

the escape of the reaction from the space that was intended for it. Moreover, from one 

voxel to another, the reaction medium heats up, which can lead to minor or major losses 

of resolution.  

Then, choosing a space of spherical symmetry and an initial temperature θ0 = 50 °C, 

Figure 6 plots the spatial variations in temperature as a function of dimensionless time τ 

(equal to the product of time times the thermal diffusion coefficient divided by the spot of 

the squared radius R of an electromagnetic wave). With a thermal initiator such as benzoyl 

peroxide or AIBN [18], after a dimensionless time on the order of unity, the heat, initially 

carried uniformly in the sphere of radius R, can be considered dissipated throughout the 

reactant fluid. The polymerization reaction could have started, but stops by quenching 

(hence no loss in spatial resolution). 

These results can be obtained from the chemical kinetics data of references [16,19–

22]. 

 

Figure 6. Temperature variations during the dimensionless polymerization time for θ0 = 50 °C. Rel-

ative temperature (φ) beyond θ0 is represented on the ordinate; on the abscissa, 100 units represent 

5 × R (i.e., in our conditions, 0.5 mm). 1: τ = 0.01; 2: τ = 0.1; 3: τ = 1; 4: τ = 2; 5: τ = 3; 6: τ = 5. 

At the same time, it is possible to represent, all other things being equal, the conver-

sion rate, as a function of time and space, of the monomer (Figure 7). This figure illustrates 

Figure 6. Temperature variations during the dimensionless polymerization time for θ0 = 50 ◦C.
Relative temperature (ϕ) beyond θ0 is represented on the ordinate; on the abscissa, 100 units represent
5 × R (i.e., in our conditions, 0.5 mm). 1: τ = 0.01; 2: τ = 0.1; 3: τ = 1; 4: τ = 2; 5: τ = 3; 6: τ = 5.

These results can be obtained from the chemical kinetics data of references [16,19–22].
At the same time, it is possible to represent, all other things being equal, the conversion

rate, as a function of time and space, of the monomer (Figure 7). This figure illustrates that
a limit is reached as soon as the dimensionless time is of the order of one unit (see above).
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1: τ = 0.01; 2: τ = 0.1; 3: τ = 1; 4: τ = 2; 5: τ = 3; 6: τ = 5.

It is with a thermal effect of this type that it is possible to produce 3D objects using
infrared (CO2) lasers [23,24] from a layered process allowing heat transfer outside the
polymerization zones. However, by seeking to polymerize voxels larger than about 1 cm,
the heat-producing polymerization reaction results in polymerization of the entire resin
content of the reactor, as shown in Figure 8.
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Figure 8. Thermally cured part in a conductive sleeve. All the material accessible to the exothermic
reaction is transformed into the polymer (see photograph on the right).

What these simplified models and experiments with thermal initiators show, is that the
theoretical space corresponding to the light–matter interaction can be deeply perturbed by
exogenous elements: the presence of an inhibitor, consumption of the quencher, thermal effects,
etc. These elements must be taken into account to define robust stereolithography processes.

2.4. Resolution

Provided that a reaction is not degenerate (see Figure 8), i.e., limited to initiation,
with chain lengths of about 100 and monomer size of 5 nm, it is under the best possible
conditions conceivable to occupy an approximate volume of 100 × 125 nm3, corresponding
to a cubic voxel size of the order of 20–25 nm on a side. On this basis, it is not the chemistry
that limits the spatial resolution.

2.5. Initiation Time

Assuming a time-independent rate of chain-bearing radical production (R0), the Q
inhibitors are in a situation where their concentration decreases before cancelling out,
corresponding to:

R0 = 2kt·(R·)2, (2)

After some mathematical manipulations, the mechanism proposed in Figure 3 and its
kinetic consequences lead to a characteristic time T1, defined by:

T1 = ((2kt/R0)1/2)/kq (3)

This result shows that T1 is lower the higher R0 is. This is the same for kq. We will
come back later to the importance of the excitation modes of the initiators and their spatial
distribution on T1.

2.6. Composites

The additive manufacturing discussed here results from a transformation of a liquid
into a solid under the action of electromagnetic radiation. The fillers that can be included
in the monomer must be small [25] for various reasons, at least one of which is related to
Stokes’ law, associated with the size of particles subject to the gravitational effect. With
large particles, with passive and long-term storage of reagents, all charges can be at the
bottom of the fabrication device. We also suppress shadow effects that can be detrimental
to the mechanical quality of 3D objects thus realized. If the effect associated with Stokes’
law is present in the layers (initial process of stereolithography), the 3D object will have
strongly anisotropic mechanical properties. Indeed, additive manufacturing (AM) refers to
“a process in which materials are assembled, usually layer by layer, to make an object that
conforms to the 3D data that model it” [2,17].

A structural composite material is generally composed of a reinforcement and a ma-
trix. The reinforcement, most often in fibrous or filamentary form, provides the essential
mechanical properties [26]. However, in another context, when it comes to “green” parts,
for example in ceramic production, it is not the mechanical strength that is strictly sought
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but the possibility of a part with little deformation that, by various operations (de-binding,
sintering), will lead to the final usable part. The matrix plays the role of binder to protect
the reinforcement from the environment, to maintain it in its initial position, and to ensure
the transmission of forces. Composite materials can be classified according to the nature of
their matrix: organic matrix, ceramic matrix, or metal matrix composite material. In fact, as
indicated by [27], all powdered materials can be considered, even lunar dust.

This context, as defined above, is based on the principle of printability (deep asso-
ciation of voxels as shown in Figure 1 by adherence), and thus raises the question of the
quantity of filler that will allow the desired performance to be obtained in the composite.
What happens when the fillers are no longer fully associated with their carrier polymer?
With mono-dispersed spheres (simplifying assumption), the interparticle porosity ε repre-
sents the fraction of the volumes between spheres relative to the volume of the considered
set. If ρapp and ρsol represent the bulk and bulk solid densities, then:

ε = 1 − ρapp/ρsol (4)

This depends on the organization of the spheres and is of the order of 45%. For
mono-dispersed hard spheres, the space can be filled with a variable number of spheres, as
shown in Figure 9. In fact, between materials and their shapes, there are, independently
of the stimulation modes, an infinite number of possibilities. Hence, the interest in using
a more poly-dispersed population to improve on this aspect which, obviously, will result in
a consequent volume shrinkage [2]: the small particles can fill the spaces between the larger
ones, which decreases ε. Beyond a certain threshold, this advantage disappears, to recover,
for an infinite dilution of the large ones, the initial value of ε [28]. It is possible to find
size distributions so that the space is maximally occupied. However, it is not practically
possible to achieve, with divided solids, the compactness of a massive solid [29,30].
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Figure 9. Density linked to regular stacks of spheres (according to http://villemin.gerard.free.fr/
Wwwgvmm/Geometri/SpheEmpi.htm, accessed on 22 March 2023)—with the possibility of linking
the spheres representing the charges by capillarity and polymerization.

Granular materials pile up on top of each other and self-lock to the point where they
sometimes experience a vault effect that stops all flow [31]. To break this vault, a vibration
can sometimes be enough. Compacted to the maximum, the granular materials retain
a void between them representing about 25% of the total volume. Figure 10 represents the
ideal case of “Apollonian” stacking (Apollonius of Perges having lived in the 2nd century
BC), which is far from reality which must take into account the morphology of the powders.
For a situation of this type, the behavior of the stacking is practically that of a massive
solid, which can pose issues of realization of the layers of particles necessary to the 3D
process. The viscosity of the resin–filler couple is an increasing function of the quantity
of the filler. Independently of this physical aspect, the surface condition of the particles
can have a determining role on the stacking. This can depend on the storage with possible
surface oxidations, the effect of humidity, etc. [32]. This is important because it can have
an effect on the quality of objects made from certain powdered materials.

http://villemin.gerard.free.fr/Wwwgvmm/Geometri/SpheEmpi.htm
http://villemin.gerard.free.fr/Wwwgvmm/Geometri/SpheEmpi.htm
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Figure 10. Apollonian stacking.

However, in the case of Figure 10, the assembly is basically that of a solid. The classical
one-photon stereolithography process is a layer-by-layer process. It is therefore necessary
to find compromises between the density of the charge ε and the time required to set up
the layers.

It is thus understood that there is no simple way to easily suppress the trapping of
bubbles in the sintered or molten material since the total compactness cannot be theoretically
reached. On the other hand, these phenomena do not occur, or only to a limited extent, with
a charge-liquid resin mixture. In any case, the shrinkage aspects are part of the issues to be
addressed in terms of programming the manufacture of the object (reverse engineering),
but in the case treated, if the resin has a shrinkage, the passive fillers limit the effect.

2.7. Conclusions

If resins, in particular of the acrylic family, are good candidates for stereolithography,
their transformation from fluid to solid (independently of the rheological aspects of the layer
process) follows complex reaction kinetics, depending on the number of photons absorbed
locally. Apart from problems related to the exothermic conditions of the polymerization
reactions, this chemical process has no major effect on the 3D resolution, which has allowed
the realization of 3D parts in µ-stereolithography. In addition, a focus is placed on the
charged resins that are increasingly used in the realization of “green” 3D parts for the
creation of ceramic objects.

3. Printability

The fact of placing voxels against each other undoubtedly makes it possible to reach
a shape, but the adhesion between the various elementary volumes is an important element
so that the 3D part is regarded as acceptable: this objective can be reached by gluing (poly-
merization), heating, assembly, etc. These successful operations qualify the performance of
the part.

3.1. General Considerations

Apart from systems cut from a block of material or made by 3D printing with a single
material (such as in this paper), the manufacture of a 3D structure generally involves the
assembly of parts that are glued together, this bonding is normally included in the process.
This is what is described in this article, with a bonding made with the same monomeric
material, as has been abundantly explained, the voxel being created has a size greater
than the volume of material to be transformed. It can be the same for multi-material
printing with voxels having a variable adhesion between them. Thus, a structure made up
of different elements, in particular in the nature of the materials used to realize them, is
built by the cohesive assembly of these various voxels. It is natural to think that the more
complex the structure is, the higher the number of parts to be assembled and necessary to
build the structure. It is therefore necessary to consider, at least partially, the printability of
materials in the process of additive manufacturing being considered.
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As a reminder, beyond making it possible to achieve the shape of a structure, the
assembly ensures the transmission of loads from one voxel to another, and therefore the
assembly technique becomes a major factor (hence the concept of printability). There are
many assembly methods in the industry, but generically the three main structural assembly
techniques are welding, gluing, and bolting/riveting. Apart from gluing, these are not very
well adapted to the cohesion of voxels, especially with sub-millimeter resolutions, which
requires seeking a compatibility between voxels of different origins so that the associated
printability allows, in one step, the 3D object to adapt to the solicitations applied to the
multi-material 3D structures in relation to the particular functions that they have to fulfill.
Another method is the use of a complementary interface that connects the voxels by gluing;
then, the mechanical strength of the 3D assembly will obviously depend on the nature
of the glue and the surfaces of the glued materials, but also on the mode of mechanical
solicitation applied.

Without going too far into the concept of printability, it is useful to return to the general
principles of bonding [33], which involve different elements:

- Mechanical: The adhesive will lodge in the pores, the asperities of the voxels. The
roughness of the voxel and the notion of wetting are involved;

- Diffusion: Adhesion occurs by the progressive disappearance of the interface. It is
the inter-diffusion of the macromolecules that achieves the adhesion. This diffusion
obeys the classical parameters: molecular weight, polarity, crystallinity, degree of
cross-linking, glass transition temperature.

Bretton and Villoutreix [34] present the properties of the main structural and non-
structural adhesives available to date, as well as the problems raised by the use of bonding
in industrial manufacturing.

3.2. Acrylic Resins

In 1984, in the first patent concerning stereolithography [1], it was possible to make it
very simple by defining layers of photopolymerizable resins. Under these conditions, the
surface in contact with the ambient air remained fluid for a few µm and it was only after
the realization of the upper layer that the oxygen was trapped, not renewed, and consumed.
This chemical disadvantage thus became an advantage in the process by allowing the
bonding of the layers to each other. Since then, other additive manufacturing technologies
have been developed [2]. For light absorption inside the reaction volume, we find the
presence of inhibitors that, once irradiated are consumed, and allow polymerization. The
object is thus constituted without discontinuity of the same polymer. Moreover, it had been
shown by Schaeffer et al. [35] that during the construction of the object, the next voxel is
“stuck” to the previous one while its polymerization occurrs in the zone between T1 and T2,
that is to say, with a still soft and reactive material (see also [14]).

3.3. Conclusions

In additive manufacturing processes, an energy input, normally localized in space and
time, is necessary for a 3D object to be built. The notion of printability goes a little further,
since it considers the object placed in its real conditions of use.

4. Production of Free Radicals by Light

By absorbing a photon of suitable energy (of the order of magnitude of the energy of
a chemical bond) in one or two steps, light can cause the production of free radicals. By
going back to the fundamentals of light absorption processes, this part reminds us what
the associated laws are, in particular by introducing the concept of optical thickness, µ,
for transparent and charged media. The effect of the time of continuous one-photon or
pulsed two-photon irradiation is also treated in this part leading to mastered voxel size
relationships with the principal parameters (i.e., number of absorbed photons, µ, chemical
kinetics parameters). Examples are also presented.
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4.1. General Considerations

Since the works of Göppert-Mayer in 1931 [36], then those of the photo-physicists and
photo-chemists, on the processes of absorption of light, in particular by organic molecules,
one knows the light absorption processes with one or more photons corresponding to the
promotion of an electron of an occupied orbital to another free one, leading to the promotion
of a molecule into an unstable electronic excited state. The idea of the Battelle Institute in
the years 1970–1985 [37,37,38] was already to fabricate three-dimensional objects in fluids,
transparent to the wavelengths emitted by coherent sources, by multi-photon absorption.
The principle retained at that time was to “play” on a bi- or even multi-photonic absorption
such as the one presented in Figure 11.
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Figure 11. Principle of simultaneous or sequential two-photon absorption.

In this figure, the incident photons are represented by their energy, hν, where h is
Planck’s constant and ν the frequency of the radiation. At that time, it was sequential
absorption, defined as follows: a chromophore absorbs a photon of wavelength λ1 (corre-
sponding to the frequency ν1, with λ = c/ν, where c is the speed of light in vacuum) and
then has a certain lifetime (from a few picoseconds to an hour). A second photon, emitted at
λ2, allows it to pass on a higher electronic excited state which will lead to the fragmentation
of the molecule (or by energy transfer to an acceptor). Thus, relative to what has been
described in stereolithography regarding the one-photon initiation of a free radical or ionic
polymerization reaction, the formation of the species that will initiate the polymerization
then occurs in a two-photon process in a sequential or simultaneous manner (see Figure 11).
In this same figure, the principle of simultaneous absorption is represented (on the right of
the figure). By moving the light beams in a transparent medium (which is generally not so
simple to achieve for thicknesses of a few centimeters or tens of centimeters), one can in
principle imagine operating a local transformation of the medium. This can be achieved
by populating an electronic excited state precursor of the species involved in the initiation
step, either by sequential absorption, requiring the transition through an intermediate
electronic excited state [39], or by the formation of an unstable chemical intermediate, or
simultaneously (cf. Figure 12).
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We recall that if F is the luminous flux at a given wavelength, it is absorbed according
to a law of the form:

dF/dx = −α·F − βF2 − γF3 − . . . (5)

The term α is classically expressed in mole−1·L·cm−1 (α varies depending on the
electronic transitions involved, from a few units to 105 mole−1·L·cm−1) by photo-chemists
and spectroscopists, β is the effective capture cross-section related to the concentration
for a simultaneous two-photon absorption. This effective capture cross-section is usually
expressed as GM, named after Maria Goeppert-Mayer. We recall that a GM corresponds
to 1 × 10−50 cm4·s·molecules−1·photon−1 (as examples, the effective section of capture is
300 GM for Rhodamine B, 100 for Rhodamine, and 28 for Fluorescein). For two-photon
photochemical initiators, Schafer et al. [35] report values on the order of 10–20 GM (see
also [40]). Quantum rules are used to estimate this parameter [36,41–44]. One of the first
advantages of this excitation mode, initially applied to microscopy of biological materials,
is the quality of the spatial resolution, as shown in Dufour et al. [45]. A second, which
comes out of this work, is related to the fact that the biological media studied are relatively
transparent in this spectral range located between the red and the infrared.

To return to these “old” times, if the access to picosecond, or better femtosecond, lasers
was envisaged, the cost of these sources was prohibitive, whereas the photochemistry
of the two-photon processes had already begun to be studied, which could explain the
origin of the patents of Battelle. Several possibilities could be evoked: absorption of
a photon to populate an electronic singlet state, transition to a triplet state (of potentially
longer lifetime than the singlet), absorption of a second photon to populate from this state
another reactive triplet state (e.g., the case of acridine in [46,47]), formation of a triplet state
that transfers its energy to another triplet that itself absorbs a photon to create a reactive
state (acridine-rhodamine 123 couple, for example [2]). The interest of this system is that,
on the one hand, if the linear transformation results in a non-radiative return without
any noticeable chemical transformation, this is because the system may be reversible at
low light intensities, on the other hand, the triplet–triplet absorption allows for chemical
transformation of the medium with obvious possibilities in terms of spatial resolution. The
reader interested in this area may benefit from consulting several other works (cf. [48])
that present values of high molecular extinction coefficients for triplet–triplet transitions,
with additions from [49]; for other substances, it may be possible to consult the following
references [50–55]; for diacetyl (with a high room temperature triplet lifetime of the order
of one millisecond), see [56]. Whether it is a single-photon or multi-photon process, the
initiation is a nonlinear process, but following very different absorption laws [14].

4.2. One-Photon Process
4.2.1. Absorption by an Unfilled Resin

With low intensity light fluxes, only the first-order term needs to be considered.
This is a one-step process where an electron from a ground state orbital is promoted to
an electronically excited state. The molecule in this state is assumed to produce chain-
bearing free radicals. Figure 13 from [57] shows a spectrum of a benzophenone derivative,
(2-hydroxy-4-(3-methacryloxy-2-hydroxylpropoxy) benzophenone (BPMA) in acrylic resin.
If ε is the molecular extinction coefficient (linked to the substance), the absorbed intensity
I follows a law of the form:

I(x) = dF/dx = ε·c·F0·exp(−ε·c·x) = F0/µ·exp(−x/µ) (6)

where F0 is the incident flux (assumed to be perpendicular to the layer to be polymerized),
x the depth, and c the concentration of the initiator. The optical thickness, µ, is defined as
the inverse of ε·c. µ is of the same order of magnitude as the polymerized thickness e (but
µ > e for the layers to bond together) and depends on the wavelength (µ increases when the
absorption coefficient decreases). It is thus not always possible to use a commercial resin with
a 3D machine from another supplier which uses different concentrations of initiators and
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wavelengths. It is on this principle that the stereolithography with one photon was developed
in 1984: installation of a layer of photopolymerizable resin of thickness e, slightly lower
than µ; illumination solved on surface to polymerize precisely the zones to be transformed;
installation of a new layer, etc., until the realization of a 3D object.
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4.2.2. Absorption by a Filled Resin

Under conditions where light is the object of diffusion, the optical thickness decreases
(even if, to a first approximation, the transmission of light energy follows a law close to
the Beer–Lambert law [58,59]). This penetration thickness, Ep, is defined, in the absence of
absorption by the resin, approximately by:

Ep = 2D50/(3·Q·C) (7)

where the symbols represent the following:

• D50: the average diameter of the particles (assumed to be spherical);
• Q: light scattering parameter defined by h.∆n2/λ, with h the interparticle distance;
• λ: irradiation wavelength;
• ∆n: the difference in refractive indexes between the resin and the mineral filler (with

indexes that are of the order of 2) or organic;
• C: the charge density.

With the initiator, if µ is the optical thickness in the absence of filler, the thickness, µc,
in the presence of solid additives is expressed by the following approximate relationship [2]:

1/µc = 1/µ + 1/Ep (8)

In fact, from the calculation, perpendicularly to the layer the presence of fillers reduces
the depth of polymerization and laterally increases it unless the powders used absorb the
light (competition between absorption and diffusion of light).

4.2.3. Polymerized Depth

We have shown that T1 can be expressed as:

T1 = ((2kt/R0)1/2)/kq (9)

with R0 the free radical production rate, which, under the conditions considered, becomes.

R0 = Φ·(dF/dz)·exp(−z/µ) = R1·exp(−z/µ) (10)

where z is the depth of the fluid, F the incident flux, and Φ is the quantum yield of free
radical production.
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For a time T very slightly higher than T1, the polymerization has started and the
resin becomes solid. During this time, the polymerization reaction kinetics is (using the
quasi-stationary states approximation):

d(R·)/dt = −k1·(R·)·(M) = d(M)/dt (11)

where (M) is the monomer concentration.
Then, at least a reaction rate RR is stable (see Equation (12), assuming that (M) stays

close to (M)0); then, as a first approximation, the variation in monomer concentration
∆(M) is expressed by Equation (13). Thus, if the transformation is spatially isotropic,
the transformed thickness varies substantially as (∆(M))1/3 at least as long as the resin
remains fluid.

RR = k1·((R1·exp(−z/µ)/(2kt))1/2·(M)0 (12)

∆(M) = k1·(R·)·(M)0·(T − T1) = k1·((R1·exp(−z/µ)/(2kt))1/2·(M)0 = K·exp(−z/2µ) (13)

where
K = k1·((R1)/(2kt))1/2·(M)0 (14)

For a chain length of the order of 100, a molar mass of about 200 g for each monomer
unit, and a heat capacity of 1.5 J·g−1·◦C−1, the propagation reaction generates approxi-
mately 20 kJ·M−1 at each step related to the propagation process, i.e., a maximum increase
in fluid temperature to about 70–80 ◦C (heat that dissipates rapidly by thermal diffusion).
Several phenomena can modify this situation:

• The use of oligomers (reduction in chain length and increase in the molar mass of
oligomeric units);

• The use of passive fillers, which reduces the phenomenon;
• The polymerization kinetics function of the resin;
• The heat transfer (Fourier law) from the reactive zones to the whole reactor.

Models show that the resolution can be less than one micrometer [14]. Moreover,
for a flux density F(0,r) of monochromatic light arriving on the resin surface, assuming
a Gaussian beam (cylindrical symmetry), the local absorbed light intensity is defined by
a law proportional to exp(−z/µ), where µ is the optical thickness, which leads to a time
T1 before the reaction starts (cf. Figure 2). A Monte Carlo simulation with a Gaussian
laser beam reaching the resin surface orthogonally, presented in Figure 14, illustrates the
complex influence of the light exposure time on the shape of the polymerized zone in
a one-photon process.

As a reminder, the distance µ corresponds to an attenuation of the light flux of 1/e.
An important effect is that, after T1, the evolution of polymerization follows an appar-

ent logarithmic law as a function of the irradiation time, which leaves some “slack” in the
choice of the polymerization time, as long as the inhibitors have been used up.

4.3. Simultaneously Absorbed Two-Photon Stereolithography
4.3.1. General Framework

When we are able to increase F today, with femtosecond pulse lasers, in the expression

dF/dx = −α × F − βF2 − γF3 − . . . (15)

it is the second term, F2, that can become dominant. The two-photon absorption shown in
Figure 12 (right) corresponds to the simultaneous absorption of two photons of identical or
different frequencies leading to the promotion, in a single step, of a molecule from a ground
state to an electronically excited state. The energy difference between these two states is
equal to the sum of the energies carried by the two photons. Two-photon absorption is
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a third-order process, different from classical absorption, because it is proportional to the
square of the intensity of the incident light, which makes it a nonlinear optical process.
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Figure 14. Polymerization of a monomer by radical reaction (a: 50,000 shots, b: 1,000,000, c: 750,000)
using one-photon electron excitation: increase in polymerization depth (arbitrary units—A.U.) versus
time, and σ the width of the Gaussian at half height.

4.3.2. Resolution

If we consider a two-photon process, it is because the associated nonlinear system
will result in a better spatial resolution than that of the incident beam (significantly lower
than the square of the radial power density because the threshold of consumption of the
inhibitors must always be exceeded, as shown in Figure 4). In order to excite an initiator
molecule by a two-photon pathway, the photons must be spatially and temporally con-
centrated (remember that in a vacuum, light travels 0.3 mm in one picosecond (i.e., about
0.2 mm in the resin); it is therefore necessary to pay attention to the different optical paths
involved, some of which may constitute delay lines). It is from this excited state that the
unstable species, responsible for the polymerization, will be produced during a dissociative
chemical process. Consequently, one cannot normally use a continuous laser but one or
more lasers with very short pulse durations (picosecond or better femtosecond). Indeed,
by “compressing” the photons spatially and temporally, the probability of two-photon
excitation is “obviously” increased. This type of illumination also has the consequence
that the excitation is generally confined to the immediate vicinity of the focal point of
a concentrated beam (which is what is sought). Figure 15 presents qualitatively the gain in
spatial resolution, as a function of the square of the flux density represented in this figure
by the red curve.

The writing of two adjacent exposures allows the estimation of the resolution: the
quantities of molecules excited locally to, below a certain minimum distance, form a single
polymerized set. Beyond that, there is a separation into two distinct volumes. This
transition is related to the two-photon Sparrow criterion (this criterion means that for a lens
with numerical aperture (NA) of 1.4, the minimum lateral separation is about one quarter
of the free-space wavelength, λ/4). For example, the separation between the two voxels
must be 100 nm for λ = 400 nm.
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Figure 15. Spatial resolution gain induced by two-photon absorption process.

With τ the duration of a pulse, T the repetition frequency, and Pmean the average power,
if T = 80 MHz, Pmean = 3 W, and τ = 140 × 10−15 s, we obtain for the peak power a value
Ppeak = 1.7 × 106 W, which corresponds to the range where two-photon absorption can lead
to electronic excitation of the initiator. These approximate data define the framework of
one of the constraints to be satisfied so that there is a possibility of two photon absorption.

Figure 16 illustrates one of the interests of simultaneously absorbed two-photon
stereolithography in terms of spatial resolution (inspired by [60]; see also [61]).
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raphy; SLA: single-photon stereolithography; µ-SLA: µ-mask stereolithography [62]; DIW: direct
writing; Inkjet 3DP: direct injection molding; SLS: selective laser sintering; FDM: molten filament
deposition.

4.3.3. Classical Initiators

Kannan et al. [63] and Belfield et al. [64] give examples of calculated values for β
from experimental data of biphoton absorption coefficients. According to Selimis et al. [65],
the molecules with good biphoton absorption efficiency are classically the compounds
of the benzophenone family [66]. In addition to the data of Schafer et al. [67], data on
other substances have been published [68–78]; these are essentially chemical compounds
containing aromatic ketone groups that are known to have the potential to form, with good
quantum yield, free radicals that can initiate radical polymerization chain reactions [2].

4.3.4. Two-Photon µ-Stereolithography

Considering the potential resolution of less than a micrometer, the difficulty of produc-
ing layers in stereolithography under these conditions, and the existence of pulsed lasers at
“reasonable” costs, this two-photon absorption principle has already been adopted for the
production of very small objects. The beam is focused at the point of initiation, followed by
polymerization. The displacement in space of the support (or, in a reciprocal way, the laser
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beam) allows, without the reactive fluid moving, the realization of an object from near to
near. Figure 17 illustrates the principle of this micro-fabrication.
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Figure 17. Principle of the two-photon stereolithography setup.

According to [79–83], by using multi-photon absorption, excellent resolution can be
achieved, as shown in Figure 18. The technology is developing [39,76–85], with a few manufac-
turers occupying the market (e.g., Micro-light—http://www.microlight.fr/TPP.html, accessed
on 22 March 2023; Up-Nano—https://www.upnano.at/technology/#scale-applications,
accessed on 22 March 2023; Nano-Scribe—https://www.nanoscribe.com/en/, accessed on
22 March 2023). Application targets include biology, nano-photonics and µ-actuators,
µ-fluidics, neural electronics, and heterogeneous integration.
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Figure 18. Multi-photon micro-stereolithography (left: sculpture according to Park et al. [79]; right:
Eiffel Tower element according to Ovsianikov et al. [82]).

4.3.5. Two-Photon Stereolithography

Three-dimensional printing by one-photon photopolymerization transforms a liquid
resin into a solid material [2]. There are two phenomena to consider: first, the addition (al-
ready at the scanning stage) of support pillars of the object under construction is necessary
to ensure the smooth printing process of parts with complex shapes. Second, The removal
of the supports, usually by hand, is a time-consuming process. Moreover, the realization of
very thin layers is generally delicate (cf. µ-stereolithography) and consequently, developing
3D printing by photopolymerization without support is a research direction which can lead
to relevant advantages.

Proof of Concept

With a long working distance microscope objective (focal length 4 mm, numerical
aperture 0.42, working distance 20.5 mm), an average power of 15 mW at 515 nm, pulse

http://www.microlight.fr/TPP.html
https://www.upnano.at/technology/#scale-applications
https://www.nanoscribe.com/en/
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duration of 500 fs, and a 1 kHz repetition rate, a proof of concept was performed by
polymerizing an acrylic resin, HDDA (1,6-Hexanediol diacrylate), in a spectroscopic cell
(see Figure 11). In a first step, the beam focal point is placed at the exit surface of the small
reservoir so as to be able to hang a horizontal beam in a second step. Taking into account
the characteristics of the beam and the objective, the diameter of the beam at the focal plane
is estimated at about ten micrometers (the diffraction limit with this objective is about 1 µm
in air). In a second step, the tank is moved so that the focal point approaches the entrance
face (cf. Figure 19 highlighting the 6 mm long object thus created); finally, in a third step, the
beam is moved along a vertical line, allowing the fabrication of a bayonet-shaped physical
object (1.3 cm high).
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Removal of Layers

Since there can be a volume change related to the polymerisation [2], the part being
built should preferentially be supported to prevent it from being deformed by its gravita-
tional fall (Stokes’ law). This effect can be notably limited by increasing the viscosity of the
resin (which is not a problem since we are working without a layer by layer process), or
by adding various fillers to the resin (but which keep the medium transparent to the laser
wavelength) that will make the medium practically solid or with solid behavior. Figure 20
gives an example of a realization of a 3D part in a solid reactive medium [86–89]. The rather
classical setup is shown on the right-hand side of the figure (see [90]).
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In these experiments, we used conventional photochemical initiators (those used
for one-photon polymerizations) and standard acrylic resins with known polymerization
kinetics after free radical production [2].

Voxels Size vs. Time

By focusing the laser beam inside the reactive fluid, the initiator is excited by bipho-
tonic absorption and leads to polymerization. Depending on the local flux density, the
curve of Figure 2 is followed: no polymerization reaction as long as the inhibitors are not
consumed (zone I); then, beginning of polymerization with a fluid material at the beginning
which becomes pasty (zone II), before a hardening phase (zone III). To study the relation-
ship between the concentration of the initiator, the luminous flux, and the size of a voxel,
a device where we produce a very elongated ellipsoid was chosen to have the best accuracy
of measurement of the long axis of the voxel, by taking out the voxel with a small clamp,
the short axis can be partially degraded. Indeed, as shown schematically in Figure 21,
the voxel is made of resin whose reactional progress in the course of transformation is
variable. There is therefore a fragile zone that should not be degraded before washing for
the measurement of the long axis [3].
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Figure 21. Two-photon polymerization as a function of time.

In this simplified approach, the flux density is, within a multiplicative factor λ, of the
form F0/length L2 in the beam direction, with T1 defined by T1 = ((2kt/R0)1/2)/kq. Under
the conditions of Figure 21, on the one hand, T1 is proportional to ((1/R0)1/4) since it is
a two-photon absorption and, on the other hand, to the inverse of the concentration of the
initiator. On this basis, all other things being equal, it is possible to relate the length of the
voxel with the irradiation time. These experiments were conducted with different laser
powers and are shown in Figure 22.
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Figure 22. Voxel length vs. irradiation time (sum of the different laser pulses). Laser 1 (500 fs, 515 nm,
1 kHz): 2.3 mW; 2: 5.4 mW; 3: 10 mW; 4: 20 mW; 5: 38.5 mW. Laser 2 (500 ps, 532 nm, 1 kHz): 40 mW.
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In order to optimize the production of an object using this two-photon absorption
method, we have tried to model the variations in the voxel length vs. the number of shots
(or time) and the power of the source, knowing that the absorbed light is proportional to
the number of shots (or to the concentration of the initiator (irgacure)) and to the square of
the luminous flux, and that this luminous flux is approximately proportional to the inverse
of the distance to the focal plane.

However, it is the polymerization reaction mechanism that leads to the S-curve in
Figure 2 that poses a problem for simplified and operational modeling. Indeed, it is
only after the disappearance of the inhibitor (dissolved oxygen and a stabilizer based on
hydroquinone or its family) that the polymerization reaction begins; in fluid media, it starts
with a chain reaction whose kinetics depend on the square root of the light absorption rate,
and then changes to a proportionality with this last parameter [2].

As a reminder, in zone (I), between 0 and T1 there is no reaction (T1 = Q/Ia); in zone
(II), the kinetics starts at Ia1/2 then evolves towards a proportionality to Ia because of the
rheological change induced by the photochemical cross-linking; in zone (III), we consider
for simplicity that the reaction is blocked.

In addition, in these considerations there are a number of assumptions that should be
validated, such as the stability of Ia, which assumes the non-consumption of the initiator,
and non-knowledge, such as the values of the rate constants, the concentrations of the
inhibitors, the concentration of M over time, etc. For all these reasons, it was not possible
to consider a model other than phenomenologically linking some main parameters in order
to optimize the fabrication of objects by the two-photon process which is the subject of
this work.

Based on this, and as an illustration of the control of voxel size as a function of
femtosecond laser power, Figure 23 shows the phenomenological relationship defined by
a classical kinetic model of free radical polymerization adapted to the two-photon initiation
process (cf. [2,60,92,93]). This type of figure illustrates the possibility of controlling the
relationship between the incident flux and the voxel size.
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Figure 23. Relation R·C−1/4 vs. C (average power 38.5 mW in the infrared)—R is the longest axis of
the voxel (ellipsoid shape) and C the concentration of the initiator—exposure time is 10 s.

Figure 24 shows the effect of this experimental law on the length of the voxel for all
the measurements presented in Figure 23. Given the difficulty of measuring the value of
the length (presence of “soft” material around the hard material), it is possible to express
all the experimental data by a simple law, which is:

L = α·t·C1/4 (16)

where α is a fitting parameter, t represents the irradiation time (number of shots), and C is
the initiator concentration.
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Figure 24. Variations in R vs. t·C1/4.

This approximate knowledge allows the estimation of the voxel size desired by the
designer of an object, the adequate polymerization time for a voxel, and thus to realize
the object.

Interest of Loaded Resins

In agreement with [94], fillers such as silica in nanoparticle form can be added to or-
ganic compounds such as acrylic resins without affecting the transparency of the medium.
This possibility allows, in principle, very high viscosities to be reached. However, pho-
tochemical polymerizations are generally subject to volume shrinkage. In the absence of
support, the object changes position. By preventing it from moving, it is possible to produce
objects without layers and without support from a polymer containing silica (nano-silica of
20 nm median diameter). After de-binding and sintering, it is thus possible to produce se-
quentially, after removal of the organic material, transparent silica objects [91,95]. Figure 25
shows a convincing result (probably not applicable to all other forms of nanoparticulate
fillers that do not allow a transparent reactive medium to be obtained).
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4.4. Two-Photon Stereolithography, Sequential Absorption

As presented in Section 4.1, the principle of such an initiation possibility is based on
the following kinetic mechanism, where A is a molecule excitable at the frequency λ1 from
a laser plane:

A + hν1→ A*→ unstable E-species with non-radiative relaxation to the ground state
E + hν2→ production of free radicals

This principle is exploited by Xolo GmbH [96] by realizing a laser plane at ν1 with
an A* species whose lifetime is sufficient for a displacement of the light excitation (at 90◦)
to produce the free radicals necessary for the creation of a 3D object. We move the laser
sheet (equivalent to layers) and, step by step, we create the object. It is thus a question
of controlling the distribution of the power density in the sheet, the time between the
production of A*, and the irradiation at ν2.
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4.5. Conclusions

It is shown that one- and two-photon absorption processes (simultaneous and sequen-
tial) can lead to the effective realization of 3D objects by stereolithography. The space
covered goes from micrometers to a few centimeters (transparency of the reactive fluid),
or rarely decimeter (time of setting of the layers). These different results are related to the
power of the light sources, the wavelength, the quantum yield of free radical formation, the
nature of the reactive fluid, etc., but above all they are associated with the local light inten-
sity, which defines the voxels involved in the realization of the 3D objects. This knowledge
is able to optimize a 3D manufacturing process.

5. General Conclusions

This paper, based on stereolithography, has first of all allowed us to recall some
important parameters, now classical, such as the voxel, but also printability, etc. However,
the central point of interest of the document is to show that the designer can play on the
modes of interaction of light-reactive matter with conventional resins (except for a process
with sequential biphotonic excitation, more complex from a chemical point of view). In
this context, continuous or pulsed sources can be envisaged, the latter allowing us to
consider manufacturing without passing through the stage of a layer-by-layer process and
the manufacture of “green” parts which can be transformed into glass. The control of these
interactions allows an optimized management of a manufacturing process.

This field, where polymerization initiation is particular and which allows excellent
spatial resolution, must meet several development challenges, which is also partly true for
stereolithography in general:

• To be able to manufacture ever finer structures (in reasonable manufacturing times);
• To have a fast means of displacement of the laser beam(s) without prejudice to the

resolution, keeping the optical properties of the light beams;
• To have a good transparency of polymerizable materials (with commercial resin, it

becomes difficult to manufacture an object beyond a few cm (typically 5 for parts of 10);
• To be able to go beyond polymer parts; the example of silica, transparent charge,

illustrates the direction of work to be carried out as long as one has a transparent
reactive set;

• To have less expensive laser sources;
• Considering multi-material manufacturing and approaching the 4D technologies that

are emerging.

It is indubitable from the positive work undertaken on these themes that industrial
activities on the manufacture of decimeter-sized objects could emerge, but the road is un-
doubtedly still long for two-photon stereolithography. However, it should be remembered
that, today, more than a thousand users worldwide are using two-photon 3D manufac-
turing technology to produce microscale objects that previously seemed difficult or even
impossible to manufacture, while relying on very similar concepts. However, this approach
is competing with other sequential single- or two-photon processes [97].

In recent years, the creativity of researchers has led to the emergence of new processes
where light is involved. This means that the stabilization of these processes is not yet
envisaged. No doubt in the future we will be offered very original operational photonic
systems, such as the one from Xolo GmbH [96].
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