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Abstract: Artificial intelligence (AI) is increasingly being utilized in cybersecurity, particularly for
detecting malicious applications. However, the black-box nature of AI models presents a significant
challenge. This lack of transparency makes it difficult to understand and trust the results. In order to
address this, it is necessary to incorporate explainability into the detection model. There is insufficient
research to provide reasons why applications are detected as malicious or explain their behavior.
In this paper, we propose a method of a Vision Transformer(ViT)-based malware detection model and
malicious behavior extraction using an attention map to achieve high detection accuracy and high
interpretability. Malware detection uses a ViT-based model, which takes an image as input. ViT offers
a significant advantage for image detection tasks by leveraging attention mechanisms, enabling
robust interpretation and understanding of the intricate patterns within the images. The image is
converted from an application. An attention map is generated with attention values generated during
the detection process. The attention map is used to identify factors that the model deems important.
Class and method names are extracted and provided based on the identified factors. The performance
of the detection was validated using real-world datasets. The malware detection accuracy was 80.27%,
which is a high level of accuracy compared to other models used for image-based malware detection.
The interpretability was measured in the same way as the F1-score, resulting in an interpretability
score of 0.70. This score is superior to existing interpretable machine learning (ML)-based methods,
such as Drebin, LIME, and XMal. By analyzing malicious applications, we also confirmed that the
extracted classes and methods are related to malicious behavior. With the proposed method, security
experts can understand the reason behind the model’s detection and the behavior of malicious
applications. Given the growing importance of explainable artificial intelligence in cybersecurity, this
method is expected to make a significant contribution to this field.

Keywords: explainable artificial intelligence (XAI); deep learning; cybersecurity; mobile malware;
malware detection; visualization

1. Introduction

Mobile security threats that target Android devices are constantly evolving and be-
coming more sophisticated. Using Android malware, cybercriminals can steal sensitive
information, disrupt device use, and compromise user privacy [1].

Among the many efforts to detect malicious applications (app), many studies have
demonstrated the effectiveness of deep learning methods [2]. Recently, studies using
image-based malware detection models have been increasing [3]. This method of detecting
malicious applications by expressing binary as an image enables more accurate detection
by applying advanced technology to image processing [4]. Additionally, this method
can quickly generate training data because it processes the data in a way that does not
require feature engineering. With these advantages, a more accurate and efficient malicious
application detection method can be built.
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However, a deep learning-based malware detection model does not explain the reason
for detecting an application as malicious. This poses severe problems when integrating
artificial intelligence (AI) into cybersecurity [5], reducing human users’ trust in the model
and making it difficult for users to understand the process behind the results [6]. To address
these issues, some studies interpret the model’s decision basis as images or strings [7–9].
Unfortunately, in many cases, a model is designed for interpretability rather than detection
accuracy, and interpretation methods are usually complex. As malware evolves rapidly,
a methodology that provides both accuracy and interpretability while requiring minimal
updates or modifications to models or input data is needed to continuously respond to
malware [10]. A method with a simple structure is needed for this purpose. In addition,
a means of explaining the interpretation of these detection models should be designed with
the needs and preferences of users in mind. That is, it should be provided in a form that is
easy for users to understand, such as in text format [11].

In this paper, we propose a high-accuracy method for detecting malicious applications
based on a vision transformer (ViT)-based model and a method for extracting the class and
method names of source code related to malicious behavior by interpreting the detection
results. The extracted data can be used to understand the behavior of the malicious app and
can provide an essential indicator for mobile security professionals to respond to threats.
Furthermore, static analysis is performed on representative samples from various malware
categories to verify malicious behaviors related to the extracted classes and methods. Our
main contributions are as follows.

• The proposed method effectively integrates the two goals of accuracy and interpretabil-
ity in malware detection. It can detect malicious Android apps accurately while
providing valuable insights into the underlying patterns and behaviors associated
with the identified threats. The combination of detection accuracy and interpretability
has broadened the scope of malware detection research and paved the way for the
development of more reliable and trustworthy AI-based cybersecurity solutions.

• A method for extracting features related to malicious behavior is presented. We show
that the proposed method can provide class and method names that are useful in static
analysis and that the provided class and method names can help to understand the
malware’s behavior and patterns.

• A simple structure and methodology for interpretation are proposed. The interpre-
tation method is more straightforward than in other studies. An image heatmap is
used to find out why the application is detected as malicious. This is an easy way to
convert applications into images, providing detection and interpretability.

The rest of the paper is organized as follows. Section 2 reviews related work, Section 3
provides the background, Section 4 offers the methodology, Section 5 presents the experi-
mental setup and results, Section 6 discusses the results, and Section 7 concludes the paper
with a summary and future research directions.

2. Related Work
2.1. Malware Detection

Android malware detection has been extensively studied and broadly divided into
signature-based and artificial intelligence-based methods [12].

Zhang et al. [13] obtained features through a static analysis of the AndroidManifest.xml
and Android Dalvik executable (DEX) file. They generated four different feature sets:
permission, intent filter, API call, and string, and proposed a convolutional neural network
(CNN)-based model for malicious app detection by creating a vector of features through
a feature embedding model.

Wang et al. [14] created a hybrid model using a deep autoencoder and convolutional
neural network to detect malicious applications. They used seven categories of static
features: requested permissions, intent, restricted API calls, hardware functions, code-
related patterns, and suspicious API calls. The total number of extracted all individual
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features was 34,570. Among them, 413 features were used after filtering. Two variant
CNN-based models, CNN-S and CNN-P, were used to detect malicious apps.

Ren et al. [15] presented two methods for processing classes.dex files into fixed-size
sequences and using them as input to a deep learning model. This method does not limit
the input file size, does not require feature engineering, and consumes few resources.

Hsien-De Huang and Kao [16] mapped the bytecode of classes.dex to RGB color to
create fixed-size color images that revealed visual patterns in malware from the same family.
The inception-V3 model detected malware with high accuracy, and the grayscale image
was as effective as the color.

Daoudi et al. [17] used grayscale images from DEX file bytecodes to detect malware
with a CNN model, achieving high accuracy. Image size did not significantly impact
performance, and obfuscated apps were also effectively detected.

Freitas et al. [4] constructed MALNET-IMAGE, a dataset consisting of over one million
malicious application images, providing a valuable resource for research into malicious
apps. Using this MalNet dataset, detection performance was evaluated using CNN-based
models such as ResNet, DenseNet, and MobileNet.

Yadav et al. [18] presented an EfficientNet-B4 CNN-based method for Android ma-
licious app detection, wherein the DEX file was transformed into an image and used as
model input. This approach demonstrated superior malicious app detection performance
compared to pre-trained models such as ResNet, InceptionV3, and DenseNet.

These influential studies in the field of Android malicious app detection each employ
unique approaches, ranging from static analysis and feature extraction to complex deep
learning models. Studies focusing on image-based malware detection have demonstrated
impressive performance, leveraging the latest CNN-based models.

2.2. Malware Detection Interpretation

XMal, proposed by Wu et al. [9], is a method for detecting malicious applications
and generating descriptions of malicious behavior using an attention mechanism based
on a multi-layer perceptron (MLP). Their model generated human-readable descriptions
of malware behavior using API calls and permissions as features. It included an attention
layer and MLP and used a pre-built semantic database of highly impactful features for
detection. However, XMal prioritizes highly weighted features, but may not cover all
malicious behavior, while its focus on interpretability may compromise detection accuracy.

Deep learning techniques can visualize important image features, making them helpful
in interpreting the results of image-based malware detection models.

Iadarola et al. [7] used images to identify common patterns among malware of the
same type. They used gradient-weighted class activation mapping (Grad-CAM) to visually
present the model’s results to security professionals. They used average Euclidean distance
to compare heatmap images of similar malware types, finding similar shapes and enabling
security experts to identify patterns in these types without prior knowledge of the samples.
One area of improvement is that the interpretation provided to security experts is a heatmap
of a binary image; thus, it is not an image that humans can easily understand.

Yakura et al. [19] proposed a method of extracting essential byte sequences from
malware to make manual analysis more efficient. Based on attention mechanisms and
CNNs, they showed that by applying attention maps to binary data, and thus it was
possible to identify features or locations of these data that characterize the type of malware.

The research in this field has been largely focused on generating descriptions of
malicious app behaviors or identifying typical characteristics associated with specific
categories of apps.

3. Background
3.1. Vision Transformer

A ViT is a Transformer Encoder-based model for image classification that is highly
scalable and performs well on large datasets with fewer training resources than CNN-based
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models [20]. Self-attention is an essential mechanism for ViT, which enables ViT to learn
large image datasets very accurately and effectively [21]. One of the most valuable things
about ViT is that self-attention makes it easy to recognize where the model is focusing on
in the input data. This interpretability is a crucial advantage of ViT compared to other
deep learning models and is particularly useful in applications where transparency and
explainability are essential [22]. Overall, self-attention is a suitable method for the ViT to
achieve high accuracy in various computer vision tasks and provide a transparent and
intuitive way to interpret its inner workings [23].

One of the methods that can be used to compute the attention map is Attention
Rollout [24]. The Attention Rollout method can be applied to a ViT to generate a heatmap
showing the areas identified as critical in the ViT model.

In CNN-based models, Grad-CAM is often used to generate heatmaps. Grad-CAM
improves on the traditional class activation map (CAM) method and has the advantage that
it can be applied to visualizations without modifying the model [25]. The CAM method
relies on the last convolutional layer, the Global Average Pooling layer, and gradient values
to produce a heatmap highlighting critical regions [26].

Some research points out that Attention Rollout may be more efficient in explaining
ViT decisions than previous XAI techniques, such as CNN’s Grad-CAM. Both Attention
Rollout and Grad-CAM aim to provide insight into the decision-making process of a deep
neural network. Attention Rollout provides a more accurate and detailed visual description
of ViT’s predictions [27]. However, it should be noted that the effectiveness of these
visualization methods depends on a number of factors, such as the complexity of a given
dataset and the specific task.

3.2. Android DEX File

The Dalvik Virtual Machine (DVM) runs code that has been converted to the DEX
file format. DEX files contain data about the source code of the application. The DEX file
contains crucial information to run Android apps but is not human-readable. It has sections
such as header, string_ids, and type_ids. The data section contains bytecode and string
data stored in a format specific to each element. DEX decompiler tools allow for the Java
source code to be obtained by reorganizing the data in a DEX file into Java code format.
The tools used to decompile DEX include jadx [28], dex2jar [29], and apktool [30]. Even
without a decompiler tool, the source code and related information can be obtained by
parsing the DEX file following Google’s dex format documentation.

4. The Proposed Method
4.1. Overview

This paper proposes both a method to detect a malicious mobile app based on ViT and
a method to extract information on malicious behavior using an attention map generated
from ViT. This approach uses ViT’s attention mechanism to extract regions of the images
converted from the DEX that significantly influence the detection model’s decision-making
process. The extracted image regions are mapped to a DEX file to obtain DEX file data for
these regions. Since DEX files contain the application’s source code data, we can obtain the
data that the model used to make decisions in the form of human-readable strings, such
as class names and method names. Figure 1 shows the overall structure of our proposed
approach. The pseudo-code of the algorithm for overall progress is shown in Algorithm 1.

First, the DEX file format is parsed. A dex section data map is created with the offset
value of the DEX file as the key and the DEX section’s information that uses the offset’s data
as the value. Then, the app, which is represented as an image, is input into the detection
model to obtain a prediction result. The next step is to create an attention map representing
the most referenced regions for malware detection in the ViT model. To make high attention
score regions, relatively high values are selected in the attention map. The dex section
data and values are obtained by searching the dex section data map with the index of the
highlighted area. Class and method information is extracted from the obtained data and
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provided to the user. The proposed method aims to detect malware and provide class and
method names related to malicious behavior. The following sections sequentially describe
each step of the proposed method.

Figure 1. A malware detection and related information extraction method using the ViT atten-
tion mechanism.

Algorithm 1 Proposed overall progress Algorithm.

Input: APK
Output: Detection Result, List of Class and Method Name

1: DEX = extractDEX f romAPK(APK)
2: dex_rgb_image = conversionIntoImage(DEX)
3: dex_section_data_map = DEXparse(DEX)
4: prediction = ViT(dex_rgb_image)
5: attention_map, attention_points = getAttentionMap(ViT, dex_rgb_image)
6: for attention_points do
7: dex_mm_list = converToDexO f f set(attention_point)
8: end for
9: class_method_names_list = extractIn f ormation(dex_mm_list, dex_o f f set_index_table)

10: return prediction, class_method_names_list

4.2. Conversion into Image

The DEX is extracted from the Android Application Package (APK). Since the APK is
a ZIP format, the APK is unzipped to obtain the DEX file. Then, the DEX file is converted to
an RGB-based image because color images provide better accuracy than grayscale images
in malware detection models [31]. The following Equation (1) shows how to change a DEX
file to a color image.

dex_rgb_image[n] = RGB(dex[3n], dex[3n + 1], dex[3n + 2]), (n = 0, . . . ,
k
3
) (1)

where dex_rgb_image is a list of RGB codes for a DEX color image, dex is a one-dimensional
array of dex bytes, and k is the total length of a one-dimensional list of dex bytes. If k is
k/3 6= 0, zero is padded to the end of the dex file to make the length a multiple of 3. The
conversion to an RGB image uses the same method as R2-D2 [16]. As in Equation (1),
the three bytes of bytecode in the DEX file are converted to a single RGB pixel. The image
of the DEX can be obtained by changing the one-dimensional dex_rgb_image array to two
dimensions. The obtained image has a square shape. The image sizes are made differently
depending on the size of the DEX. The images are scaled to the same size when input to
the model.
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4.3. Malware Detection Model

The malware detection model uses the ViT model proposed by Dosovitskiy et al. [20].
The ViT model consists of multiple layers of Transformer Encoders. The following Figure 2
shows the structure of an encoder block used in the ViT. The model consists of L encoder
layers. For each layer, the input is the previous layer’s output, and the input of the first
layer is the model’s input. The ’Embedded Patches’ at the bottom of Figure 2 are the
input of the ViT model. The encoder block of a layer consists of a normalized multi-head
self-attention (MSA) and a normalized multi-layer perceptron (MLP). Between MSA and
MLP, the residual connection exists.

Figure 2. The Transformer Encoder used in Vision Transformer [20].

ViT uses a number of transformer encoder blocks to learn relationships between image
patches and uses MLP, an output layer, to make the model’s output.

The DEX image created in Section 4.2 is used as input to the model. The image
shape is (H, W, C), where H is the height of the image, W is the width of the image and
C is the number of channels. The image is divided into patches that are used as model
input. The image is divided into patches of size (P, P), where P is the size of the patch.
The number of patches, N, is calculated by Equation (2) [20].

N =
HW
P2 (2)

The generated patch is xi
p , (1 ≤ i ≤ N). The shape of xi

p is xi
p ∈ RP2C. To enter the

patches into the model, embedding is applied, as shown in Equation (3).

z0 = [xcls; x1
pE; x2

pE; · · ·; xN
p E] + Epos, E ∈ R(P2·C)×D, Epos ∈ R(N+1)×D (3)

where z0 is the initial input to the model. To embed patches, we use patch projection
with E. E is a matrix. D is the embedding dimension, so patches map to D dimensions.
The position embedding, Epos, is added. The class token xcls is added to the first position of
the input.

Equation (4) is a set of layer normalization (LN) and the MSA in an encoder block.
First, layer normalization is performed on the encoder’s input, as shown in the equa-
tion. LN normalizes each sample’s features. For more information about LN, refer to
Wang et al. [32], Ba et al. [33]. Then, MSA is performed. For more information about MSA,
refer to Vaswani et al. [22]. The input and output of a set of LN and MSA are connected by
a residual connection. The result of the residual connection z

′
l−1 goes into the input of a set

of LN and MLP in Equation (5).

z
′
l−1 = MSA(LN(zl−1)) + zl−1, l = 1 · · · L (4)
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where L is the total number of encoder layers in the model. Equation (5) is a set of LN and
MLP in the encoder block. The input and output of a set of LN and MLP are connected
by a residual connection. The result of the residual connection zl is an output of the
encoder block.

zl = MLP(LN(z
′
l−1)) + z

′
l−1, l = 1 · · · L (5)

where L is the total number of encoder layers in the model. The output of each Transformer
Encoder is zl . The zl becomes the input of the next layer.

An attention weight A is generated in the MSA from Equation (6) as follows.

A = so f tmax(
QKT
√

Dh
) (6)

where Q is the query and K is the key. Dh is D/k and k are the number of heads [22].
The attention weight A is used to create the attention map in Section 4.4.2.

The following Equation (7) finally generates a detection result in ViT.

ŷ = MLP(z0
L) (7)

where z0
L is the first row of zL. After iterating over the Transformer Encoders L times,

the final output is zL ∈ R(N+1)×D. Since the value of the model input z0 is a class token in
Equation (3), z0

L in zL is the class token. The class token is a special token that contains the
global information of the input image.

At the final layer, a layer normalization is applied to the output zL of the encoder
block. After the layer normalization, the class token z0

L ∈ RD is extracted from the zL.
The detection result ŷ is obtained by MLP [20]. This MLP head finally generates the
malicious application detection result.

4.4. Extraction Malicious Function Identifiers

After obtaining the malicious application detection results from the model, the func-
tional identifiers related to the malicious behavior are obtained. In this paper, the function
identifier means the names of classes and methods. This process has three steps.

4.4.1. DEX Parsing

A DEX file is composed of multiple sections, including a header, string table, type
table, class table, and method table. The proposed dex_section_data_map in Algorithm 1
is a structured representation of how these sections are laid out in a DEX file and allows
efficient DEX field data access. This map makes it easy to know which class or method
references data at an offset point within the DEX file.

To parse the DEX file, we parse each section according to its structure. For example,
the method_ids area starts at 0x16c offset when the method_ids_off value is written as 6C
01 00 00 in the dex header. The detailed configuration of the dex format is described in the
Google AOSP documentation [34].

The dex_section_data_map structure is organized as in Equation (8).

D[key] = value, key = 0 · · · (n− 1) (8)

where D is the dex_section_data_map, n is the total number of bytes in the DEX file. The
dex_section_data_map shows which string, prototype, class, and method values are at each
offset in the DEX file. key is the offset value of DEX file. value is a list that has DEX field
names and information about DEX fields as items. For example, if the data at positions 0x10,
0x11, and 0x12 of the DEX file correspond to the string_ids section, the value of D[0x10],
D[0x11], and D[0x12] becomes list(”string_ids” : string_data_o f f ). In the dex format, only
the fields that make up the class and method go into value as the class or method name, not
the dex field name. For example, if the data at positions 0xa0, 0xa1, and 0xa2 of the dex file
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correspond to the data section and are used in method_ex_2 of the class class_ex_1, the value
of D[0xa0], D[0xa1], and D[0xa2] are list(”class” : class_ex_1, ”method” : method_ex_2).

4.4.2. Attention Map

Attention Rollout [24] is used to generate a heatmap of the areas of the dex image,
on which the model focuses its attention [20]. In Section 4.3, the model produces a detection
result for the input DEX image, and the attention weight is calculated using Equation (6).
Here, a heatmap is created using the Attention Rollout method with the attention weight
calculated by the model. In each Transformer Encoder layer, the MSA creates an attention
weight for each head. Equation (9) shows how these attention weights are combined into
an attention matrix at the layer.

Wk[x, y] = max(Whk
0[x, y], · · ·, Whk

n[x, y]), k = 1 · · · L (9)

where Wk is attention matrix at the layer k. L is the total number of encoder layers in the
model. x, y are coordinates. n is the index number of attention heads. Whk

i , (0 ≤ i ≤ n)
is the attention weights of head i at the layer k. The Attention Rollout method uses the
average value, but we use the maximum value to obtain more emphasized values. Wk is
generated by taking the maximum value of each coordinate in the attention weights of the
n heads. Then, we keep the top p percent of elements in W and reset the rest to zero. Each
Transformer Encoder layer produces an attention matrix. Next, the following Equation (10)
is used to obtain the raw attention Ak. The Attention Rollout adds an identity matrix to the
attention matrix and renormalizes the weights to account for residual connections.

Ak = 0.5Wk + 0.5I, k = 1 · · · L (10)

where L is the total number of encoder layers in the model. k is the layer number. Therefore,
we add the identity matrix to the attention matrix, as in Equation (10), to obtain the raw
attention Ak. There is a Ak for each Transformer Encoder layer [24].

The attention rollout matrix is created using the following Equation (11). The attention
rollout matrix of the previous layer is multiplied by the current layer’s raw attention.
By repeating this process for all layers from 0 to L, we can obtain the attention rollout
matrix AR at the last layer.

ARi =

{
Ai × ARi−1 i f i > 0

Ai i f i = 0
(11)

where ARi is the attention rollout matrix. Ai is the raw attention at the layer i, and the
multiplication operation is matrix multiplication [24].

In ViT, images are divided into patches, and when image patches are entered into
the model, they are prefixed with a class token, as shown in Equation (3). Since detection
is performed using class tokens, an attention map needs to be generated based on the
attention of the remaining image patches to the class token. Therefore, in the attention
rollout matrix, we subtract the first row corresponding to the class token and use the rest of
the attention rollout matrix for subsequent processing. Finally, to obtain the attention map,
we convert and resize it to fit the image size.

4.4.3. Extraction Function Identifiers

In this step, the high attention score regions of the attention map are selected, and mali-
cious behavior-related class and method names are extracted based on the selected regions
of the attention map. High attention score regions are regions in an attention map where
the values are particularly high, indicating that the model is focusing more attention on
those specific parts of the input data. To select regions in the attention map, the values are
sorted in descending order, and only the values with the top p% are used, where p% is
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predetermined. Applying Equations (12) and (13), the attention map is filtered to remove
values below a certain threshold, which helps highlight the relevant features in the data.

Instead of extracting information from as many regions as possible, selecting only the
most suitable regions is more efficient [35].

AM′[i, j] =
{

AM[i, j] i f AM[i, j] ≥ c
0 i f AM[i, j] < c

(12)

c = a[d(N × p)e] (13)

where AM is an attention map. i, j are the coordinates of the attention map. AM′ is
a filtered attention map. a is the attention map changed to a one-dimensional array and
sorted in descending order. p is the pre-determined percentile value, given as a rational
number between 0 and 1. N is the total number of elements in the attention map matrix.

The following Algorithm 2 is used to change the coordinates of the selected regions to
the original dex offset values.

Algorithm 2 Coordinate Conversion Algorithm.

Input: (x, y) . Attention Point Coordinate
Output: List with DEX Offset

1: function CONVERTTODEXOFFSETS(x,y)
2: x′ = x× (original_image_size/resized_image_size)
3: y′ = y× (original_image_size/resized_image_size)
4: dex_mm_list = List(3)
5: mm_idx = ((y′ × original_image_size) + x′)× 3
6: dex_mm_list[0] = mm_idx
7: dex_mm_list[1] = mm_idx + 1
8: dex_mm_list[2] = mm_idx + 2
9: return dex_mm_list

10: end function

Once the region is selected, the DEX components of the selected region should be found.
This is performed by converting the selected region to a DEX offset. The process is the reverse
of converting the DEX file to an image. In Algorithm 2, first, the scale of the resized image
used for the model is calculated. To obtain the offset of the DEX, the coordinates of the selected
area are multiplied by the scale of the resized image. Due to the RGB image being used,
3 bytes of the original image were changed to 1 pixel. The first DEX offset is added by 1 and
2 to get three offset values. These are the offset values in DEX. With the DEX offset values
obtained, we search for data in the dex_section_data_map in Section 4.4.1.

Finally, the fully qualified names of classes and methods related to the malicious be-
havior are extracted. Based on the selected regions in the attention map, the values fetched
from the dex_section_data_map have DEX field values. This is the information that the
malware detection model uses to determine maliciousness. In the dex_section_data_map,
the fields related to class and method are stored; thus, getting the class and method names
for the data used to determine maliciousness is possible. Here, we can take the class and
method names and sort them by frequency of appearance.

5. Experiment
5.1. Experimental Setup

Our experiments were run on Ubuntu 20.04.3 LTS on a single node. The CPU was
an Intel(R) Xeon(R) Silver 4210 CPU @ 2.20GHz with 256 GB of RAM and the GPU is
a Quadro RTX 8000 48 GB.
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5.2. Dataset

Our research to detect malicious apps uses AndroZoo [36], a constantly updated
repository of Android apps. We used 1 million apps labeled by using Euphoney [37]. There
are 37 labels for malicious apps, excluding those with ambiguous meanings or similar
names and fewer instances. AndroZoo is a large-scale imbalanced dataset composed
of various malicious apps. In the real-world cybersecurity domain, some malicious app
families make up the majority of the total malware [4]. For this reason, we used AndroZoo to
evaluate the detection model. In addition to AndroZoo, we also used the CICMalDroid2020
dataset [38]. CICMalDroid2020, which is a categorized dataset of 17,246 Android samples
collected from December 2017 to December 2018, with five categories (Adware, Banking
Malware, SMS Malware, Riskware, and Benign) [39]. CICMalDroid2020 is a balanced
dataset. The families were classified according to the characteristics of malicious apps,
and the features of each family were well explained. Therefore, we used this to evaluate
the performance of the detection model on a balanced dataset and to experiment with the
proposed malicious behavior extraction method.

We experimented with AndroZoo and CICMalDroid2020, respectively. For model
training, we used 70% of each of the AndroZoo and CICMalDroid2020 datasets as training
sets, with 15% used for validation and the remaining 15% used for testing. The following
Table 1 shows the number of samples and the number of malware families in AndroZoo
and CICMalDroid2020.

Table 1. The number of samples and the number of families in the datasets.

Dataset Number of Samples Number of Categories

AndroZoo 1,046,190 37
CICMalDroid2020 17,246 5

The following Table 2 shows the number of samples for each category in the AndroZoo
and CICMalDroid2020 datasets. It shows the number of samples for the 10 categories with
the highest number of samples out of 37 categories in the AndroZoo dataset. It can be seen
that the entire dataset is an unbalanced dataset, with most of the samples in the ’adware’
and ’trojan’ categories.

Table 2. The number of samples in the categories of the AndroZoo and CICMalDroid2020 datasets.

Dataset Category Number of Samples

AndroZoo

adware 771,299
trojan 163,671

riskware 30,534
addisplay 14,310

spr 10,104
spyware 7559
smssend 7055

troj 6139
exploit 5395
clicker 4412

CICMalDroid2020

SMS 4822
Riskware 4362

Benign 4042
Banking 2506
Adware 1514
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5.3. Malware Detection Model Performance Validation

To measure the performance of our proposed model, we used Accuracy, Precision,
Recall, and F1-score. These measures are given in Equations (14)–(16).

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

F1 = 2× Precision× Recall
Precision + Recall

(16)

Table 3 describes Weighted Average and Macro Average, which are ways to measure
the performance of the entire dataset when the data are organized into multiple categories.
The macro-averaged F1 score is computed using the arithmetic mean of all the per-category
F1 scores. The weighted average F1 score is calculated by taking the average of all per-
category F1 scores while taking into account the importance of each category. The weighted
average helps to measure the performance across the entire dataset. This means that the
weighted average can be more useful when assessing the model’s performance on the
whole dataset. The macro average ensures that the performance of minority categories
has an equal impact on the overall average. The performance of minority categories is
also considered important. Both the weighted average and the macro average are used to
obtain both the overall performance evaluation and the performance evaluation considering
minority categories of the detection model in the real-world dataset.

Table 3. Metrics for evaluating the performance.

Macro Average Weighted Average

Macro_precision =
∑ Precisioni

n
(17) Weighted_precision = ∑ wi × Precisioni , wi =

ni

N
(18)

Macro_Recall = ∑ Recalli
n

(19) Weighted_Recall = ∑ wi × Recalli, wi =
ni
N

(20)

i is each category; ni is the number of samples in category i; N is the total number of samples.

5.4. Accuracy of Malware Detection

The proposed ViT model is compared with well-known CNN-based app family detec-
tion models to evaluate its performance.

The input image size for all models was 224 × 224. This is the image size commonly
used in image classification models. There is no significant change in detection performance
for images above a specific size. The batch size was set to 256 and the epoch to 80. Epoch
80 has been shown to perform well in multiple tests. For image-based malware detection
models, CNN-based models are mainly used. ResNet [40], DenseNet [41], MobileNet [42],
etc., are popular because they have the advantages of a high performance, stable learning,
lightweight models, and applicability to various fields. The our proposed model with the
best validation loss during training was used for evaluation.

The structure and parameters of our proposed model are shown in Table 4. Con-
sidering the size of the test data, the model was set to 12 for Layers and 8 for Heads.
Even if the size of the model parameter was increased, there would be no significant
performance improvement.

Table 4. Configuration of Proposed VIT Model.

Model Layers Hidden Size D MLP Size Heads Patch Size

our proposed model 12 128 2048 8 14
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Table 5 shows the results of the evaluation of the models on the AndroZoo dataset.

Table 5. Malware-type detection scores for our proposed model and four popular CNN-based models
on the AndroZoo dataset.

Model Accuracy F1 Score Precision Recall F1 Score Precision Recall

Weighted Avg Macro Avg

our proposed
model 0.8027 0.7743 0.7775 0.8027 0.3113 0.5219 0.2509

ResNet18 0.8005 0.7737 0.7762 0.8005 0.2748 0.4800 0.2207
ResNet50 0.7843 0.7514 0.7528 0.7843 0.2230 0.3767 0.1803

DenseNet121 0.8047 0.7770 0.7764 0.8047 0.2397 0.3831 0.1983
MobileNetV2 0.7701 0.7258 0.7333 0.7701 0.1776 0.3803 0.1381

Our proposed model achieved an accuracy of 0.8027, which is significantly high in
comparison to other deep learning models such as ResNet18, ResNet50, DenseNet121,
and MobileNetV2.

The comparison of the deep learning models trained on the CICMalDroid2020 dataset
is shown in Table 6.

Table 6. Evaluation of malware type detection on CICMalDroid2020 dataset for our proposed model.

Model Accuracy F1 Score Precision Recall F1 Score Precision Recall

Weighted Avg Macro Avg

our proposed
model 0.8681 0.8701 0.8753 0.8681 0.8422 0.8386 0.8521

CNN [7] 0.8107 0.8093 0.8090 0.8107 0.7734 0.7809 0.7676
ResNet18 0.8859 0.8859 0.8869 0.8859 0.8617 0.8658 0.8585
ResNet50 0.8525 0.8534 0.8553 0.8236 0.8190 0.8157 0.8236

DenseNet121 0.9072 0.9071 0.9071 0.9072 0.8866 0.8883 0.8852
MobileNetV2 0.7944 0.7925 0.7913 0.7944 0.7423 0.7464 0.7392

The CNN model proposed by the Iadarola et al. [7], which used CNN models to
interpret detection results by generating heatmap images, was used as a comparative CNN
model. Our proposed model has a better performance than the CNN model. Our proposed
model achieved an accuracy of 0.8681, which is the third best performance after ResNet18
and DenseNet121, and there was no significant difference in performance. ResNet18
performed well because it can generalize to a relatively small number of data.

The following Figure 3 is the Receiver Operating Characteristic (ROC) curves of each
model for the AndroZoo dataset. The AUC value on the macro average, which reflects the
model’s performance, ViT leads with 0.90, closely followed by ResNet18 and DenseNet121,
each at 0.89.

5.5. Experiment with the Interpretation Process

Here is an example of how the proposed method can extract function identifiers used to
detect malicious applications. For this example, we selected a app (sha2: ae1377abf1755523fe
96a41456c88230f239ec106041b91ad6282c739072aae0) from the CICMalDroid2020 dataset
that is categorized as part of the SMS malware family. The following Figure 4 shows the
attention map generated by the Attention Rollout and the filtering of results to keep only
the high attention regions of the attention map.
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Figure 3. ROC curves for ’addisplay’ and ’spyware’ categories alongside the macro average ROC
curve for all categories within the AndroZoo dataset.

Figure 4. The attention maps that map have been filtered to remove values below a certain threshold
percentage. (a–i) are the percentile values, which means 0, 25, 50, 75, 90, 93, 95, 97, and 100.

The DEX is converted to an RGB-based image. This image is fed into the model
to obtain the model’s detection results. Then, the method in Section 4.4.2 is used to
build the model’s attention map for the DEX image. The attention map is drawn as
shown in Figure 4a, where areas closer to red are less critical, and areas closer to blue
are more important. To select the high attention regions of the attention map, we used
Equations (12) and (13) to keep only values above a certain percentile. In Figure 4, typically,
the 93rd or 95th percentile is a reasonable threshold for identifying valuable regions.
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As shown in Figure 4f,g, the high attention regions are clearly visible. Once the region is
selected, the Algorithm 2 is used to change it to the DEX offset value. Figure 5 shows how
well the selected regions were converted to dex offset values with Algorithm 2.

Figure 5. Attention points changed to DEX offset values. (a) is a 2D image of the dex_mm_list
generated by Algorithm 2. (b) is a selected high attention region of the attention map.

Both images are identical. Notice that the high attention score regions extracted from
the attention map are correctly converted to dex offset values.

Comparison with Malware Detection Interpretation Methods

Our proposed method is compared with existing studies that attempt to classify
malicious apps and describe malicious behavior. Table 7 shows studies related to the
interpretation of malicious app detection models.

Table 7. Studies that provide the basis for malicious app detection or extract the functionality of
malicious apps through the interpretation of malware detection models.

Work Year Model Features Explanation Method Explanation Result

Iadarola et al. [7] 2021 CNN DEX grayscale Image Grad-CAM cumulative heatmap image
Kinkead et al. [8] 2021 CNN opcode sequence LIME Visualizing activations

Wu et al. [9] 2021 XMal API calls and Permissions customised attention
mechanism natural language descriptions

Our approach - ViT DEX RGB Image attention mechanism String, Class/Method Name

One of the related studies, Iadarola et al. [7], proposed cumulative heatmaps to
provide interpretability to image-based detection models. It has been shown that malicious
applications belonging to the same malware family reveal similar patterns on the heatmap.
In another study, Kinkead et al. [8], an opcode sequence was extracted from the application
and used as input. They calculated the local interpretable model-agnostic explanations
(LIME) activation and created a line graph image of the activation. The image shows which
opcode sequences are highlighted. The other study, XMal, proposed by Wu et al. [9], used
API calls and permissions as features. It obtained APIs and permissions from APKs through
a preprocessing process. XMal did not use all APIs and permissions but selected 97 APIs
and 61 permissions. Then, through a customized model consisting of a fully connected
network and attention mechanism, malicious classification was performed and APIs and
permissions that could explain malicious behavior were selected.

XMal [9] used a metric similar to the F1-score (Equation (16)) to quantitatively measure
how well a model describes the behavior of a malicious application while expressing the
interpretation results in natural language. Therefore, we compared XMal and the method
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proposed in this study with a numerical value. The following Equations (21)–(23) are used
to measure interpretability.

precisiondescription =
detect_concepts

detect_concepts + surplus_concept
(21)

recalldescription =
detect_concepts
total_concepts

(22)

irdescription =
2× precisiondescription × recalldescription

precisiondescription + recalldescription
(23)

where precisiondescription is the proportion of detect_concepts among the concepts in the
generated descriptions. recalldescription is the proportion of detect_concepts among the
concepts in the ground truth. detect_concepts is the number of “concepts” in the ground
truth detected by model. surplus_concept is the number of “concepts” in the generated
descriptions that do not exist in the ground truth. total_concepts is the total number
of “concepts” in the ground truth. For a detailed explanation of Equation (23), refer to
Wu et al. [9].

Table 8 shows an example of ground truth. The ground truth for malicious samples,
which consists of phrases describing the behavior of malicious applications, was generated
by security experts. We used the ground truth provided by XMal in our study.

Table 8. Ground truth example of malware behavior concepts for the Adrd malware family.
Wu et al. [9] has created behavioral concepts for malware families through security analysis experts.
Data from Wu et al. [9].

No. Concept

1 activate
2 the mobile device is booted up
3 access the Internet
4 download components
5 steal some info
6 send to remote server

The process of calculating irdescription is as follows. For apps identified as malicious by
our model, we extracted the names of the classes and methods using the proposed method.
API and permissions are the key features. The API calls in the source code of the extracted
class, and the permissions required by the API are extracted. If the extracted class is defined
in AndroidManifest.xml, the permissions corresponding to the described intent action
are collected. The maximum number of extracted key features is six. The extracted key
features are changed to semantics using the rules provided by XMal. Then, the semantics
are combined to create a description that describes the app’s behavior. Finally, we extract
“concepts” from the generated description and compare the extracted “concepts” with
the ground truth of the malware family to calculate irdescription. An example of semantics
matching key features can be seen in Table 9.

We compared our irdescription with Xmal’s irdescription. In XMal, they compared the per-
formance with XMal, Drebin [43] and LIME [44]. We referenced the results of Drebin, LIME,
and XMal from XMal [9] and compared them with the results of our proposed method.

For comparison with XMal results, we used the same Drebin dataset as XMal to test our
proposed method. The comparison was performed on the 10 malware families in the Drebin
datasets with the highest number of entries. XMal used 10 randomly selected samples for
each family. However, since the samples used in XMal are not specified, we also randomly
selected and used 10 samples for each family in the same way as XMal for comparison
under the same conditions. The selected samples are used to compute irdescription.
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Table 9. Example of a semantic that matches an API, permission key. Data from [9].

Feature Semantic

Ljava/net/URL; ->openConnection Access the Internet
Landroid/telephony/TelephonyManager; -> getDeviceId Collect device ID(IMEI)

Landroid/telephony/gsm/SmsManager; ->sendDataMessage Send SMS message
Ljava/lang/Runtime; ->getRuntime download components

android.permission.READ_SMS Collect SMS
android.permission.RECEIVE_BOOT_COMPLETED Activited by BOOT

The following Table 10 shows the results of the evaluation of the interpretability, where
the results for the comparison methods are from the XMal [9].

Table 10. irdescription values of Drebin, LIME, XMal, and Our Proposed method.

Malware Family Drebin LIME XMal Our Approach

FakeInstaller 0.25 0.25 0.35 0.37
DroidKungFu 0.44 0.50 0.66 0.83

Plankton 0.50 0.57 0.80 0.60
Opfake 0.44 0.85 0.88 0.40

Ginmaster 0.75 0.75 0.92 0.83
BaseBridge 0.20 0.73 0.89 0.88

Iconosys 0.44 0.85 0.85 0.86
Kwin 0.44 0.75 0.93 0.88

FakeDoc 0.50 0.57 0.66 0.56
Geinimi 0.40 0.60 0.75 0.82
Average 0.43 0.64 0.76 0.70

Our proposed method has a better interpretability performance than Drebin and LIME.
Compared to XMal, our proposed method performs similarly for FakeInstaller, BaseBridge,
and Iconosys, slightly worse for Plankton, Opfake, Ginmaster, Kwin, and FakeDoc, and sig-
nificantly outperforms some malware families, DroidKungFu and Geinimi. For some
families, our method performs better, and for others, it is nearly identical. However, our
approach has a simple model structure compared to other methods. Considering that our
proposed method has simpler feature engineering and interpretation methods, it has fairly
high interpretability.

Overall, our approach has significantly better interpretability than Drebin and LIME
and is close to XMal. Considering both accuracy and interpretability, our proposed method
has high accuracy and high interpretability while describing the interpretation results of
the model in a human-understandable form.

5.6. Example of Extraction Information

It is not sufficient to rely solely on numerical scores to verify that the extracted behav-
ioral information effectively describes the behavior of an application or correlates with the
malware type. In addition to validating interpretations based on scores, we also want to
demonstrate reliability by explaining the information extracted through static analysis.

Test samples for demonstration are selected from various malware categories. Static
analysis is performed based on the extracted information to demonstrate the relationship
and validity of the extracted features compared to the application’s behavior. We have
experimented with many types of malware, but discuss just one typical example in the
following section.

SMS Malware—trojan.fakeinst/smsagent

The sample has a popular threat label on VirusTotal as trojan.fakeinst/smsagent (sha2:
7f38675a778f8aeee0d76d63903f67e06fbdc49de7310a7744466416c8d924ce) and is a malicious
mobile application that uses the SMS function to perform malicious actions. This malicious
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app belongs to the SMS malware family. It is classified as SMS malware by our ViT model.
The short message service (SMS) malware sample uses the SMS service to exploit. The at-
tacker uses a command and control (C&C) server to send attack commands. The attacker
makes the device send an SMS, intercepts incoming or outgoing SMSs, and steals data.
Since this sample has been detected as SMS malware, we start the process of extracting the
names of the classes and methods used to determine maliciousness through our proposed
method. We begin by creating a heatmap.

a. Make attention map. First, an attention map is generated, and high attention
regions are selected. Figure 6a, shows the DEX of the malicious app converted to an image,
Figure 6b shows the attention map for a DEX image generated by our proposed method,
and Figure 6c shows the selected regions on the attention map.

Figure 6. (a) DEX image of trojan.fakeinst/smsagent, (b) attention map, (c) an image representation
of the DEX offset values of the highlighted regions of the DEX.

b. Convert to dex offset. The Algorithm 2 is used to filter out the high attention
regions of the attention map and convert them to dex offset values. When the converted
dex offset values are plotted as an image, it looks like (c) in Figure 6. In the following
Figure 7, the rectangles of the attention map correspond to sections of the DEX.

Figure 7. The rectangles on the attention map are the regions selected in step a. and indicate which
DEX section the rectangle corresponds to. DEX sections are color-coded.
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We can see that the model emphasized many regions of the method section in DEX
when it generated the detection results for an application.

c. Extract information. Using the dex offsets from step b, we can obtain the values
of the DEX sections in dex_section_data_map of this sample and filter the values to get the
names of the classes and methods. Figure 8 shows the fully qualified names of classes and
method names extracted by interpreting the model results with our proposed method. We
can sort these based on the appearance frequency or attention score of the extracted class
and method names. Sorted by priority, the top 10 are shown in order of importance.

Figure 8. Class and method names extracted by our proposed method.

We can obtain the app’s source code using the Android decompiler tool and analyze
the source code of the extracted classes and methods. First, by analyzing the ’run’ method
of the first-ranked ’install/app/MainActivity$4’ class, we can see that it sends device
information such as IMEI, PHONE, COUNTRY, APPID, MODEL, MANUFACTURER,
and SDK to the command-and-control (C2) server. The main activity includes the ability to
display a fake webview screen.

A snippet of the ‘onReceive’ method of the ‘install/app/MainReceiver/’ class, which
appears at the 3rd in Figure 8, is shown in Figure 9.

Figure 9. Snippet of the ‘onReceive’ method of the ‘install/app/MainReceiver’ class. This is related
to SMS.
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When the device receives an SMS, the application can check the sender’s phone
number and the SMS content and change the malicious application’s settings.

Another class, ‘install/app/Settings’, contains settings for malicious activities related
to texts and calls, mainly to delete texts containing a specific string or making a call.

From the analysis, it is clear that the extracted behavior-related information mainly
contains features related to malicious behavior, especially for apps categorized as SMS-
related. The extracted data can help security experts identify or analyze the behavior of
malicious applications.

6. Discussion

In Section 5.5, we compared the performance of Drebin, LIME, XMal, and the malicious
behavior extraction method of our proposed approach on the same malware dataset.
The average performance of our approach is better than Drebin and LIME, but slightly
lower than XMal. However, considering that our proposed method has a very simple
interpretation method, it is generally effective and easy to apply. In the future, adding
additional features or using alternative machine learning techniques to improve overall
performance is possible.

Our findings indicate that there is a correlation between extracted class and method
names obtained using our proposed approach and the presence of malicious behavior in
apps. This supports the assumption that our proposed method can be a useful approach to
the identification of malicious behaviors in Android applications.

This study has some limitations. The study lacks validation for applications that
use obfuscation techniques such as packing [45]. In applications where the information
available in the source code is limited due to obfuscation, our proposed method may not
work properly. If the extracted regions are not DEX sections associated with methods or
classes, the information that can be obtained may be limited. The interpretation results are
currently provided at the class and method level. This may introduce potential uncertainties
and may not provide detailed insights for specific applications. However, this issue can be
improved by providing specific code snippet locations, thereby enhancing the way images
are generated or interpreted.

7. Conclusions

In AI-based cybersecurity, there is an increasing need for model interpretation. As the
use of AI for malware detection increases, there is a need to interpret and explain the
decision-making process of AI models. However, there is a trade-off between explainability
and detection accuracy. We propose an approach to reduce the trade-off between the
accuracy and explainability of malicious app detection models.

With our proposed method, it is possible to provide malicious app detection results,
and class and method names related to malicious behavior. This method utilizes an image-
based detection model and ViT’s attention mechanism. It detects malicious apps, extracts
areas that the model considers important through an attention map, and presents the
names of classes and methods used for malicious determination. The performance of the
detection model was validated on datasets AndroZoo and CICAndMal2020 collected from
the real-world. Our proposed model achieved 80.27% accuracy in detecting malicious
apps in a large dataset of over 1 million apps. In interpretability evaluation, our proposed
method obtained an interpretability score of 0.70, using an evaluation method similar to
the F1-score.

Our proposed method has significant interpretability compared to other similar studies.
By analyzing several samples for each malware family, it was found that the source codes
of the extracted classes and methods were related to malicious behavior. Our proposed
method has limitations when apparent malicious behavior cannot be identified from the
source code, such as in the case of obfuscated or packed applications.

A highly accurate malicious application detection model, combined with our proposed
interpretation method, can provide human-understandable information about the charac-
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teristics of the detected threat that led to the classification of the application as malicious.
Consequently, users can trust and rely on AI-based security systems. Our proposed method
significantly helps security experts to understand the model’s detection results and identify
malicious app behavior. In future work, we aim to study how to describe malware behavior
in a format close to natural language.
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