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Abstract: As an indispensable module of computer-aided pronunciation training (CAPT) systems,
mispronunciation detection and diagnosis (MDD) techniques have attracted a lot of attention from
academia and industry over the past decade. To train robust MDD models, this technique requires
massive human-annotated speech recordings which are usually expensive and even hard to acquire.
In this study, we propose to use transfer learning to tackle the problem of data scarcity from two
aspects. First, from audio modality, we explore the use of the pretrained model wav2vec2.0 for MDD
tasks by learning robust general acoustic representation. Second, from text modality, we explore
transferring prior texts into MDD by learning associations between acoustic and textual modalities.
We propose textual modulation gates that assign more importance to the relevant text information
while suppressing irrelevant text information. Moreover, given the transcriptions, we propose an
extra contrastive loss to reduce the difference of learning objectives between the phoneme recognition
and MDD tasks. Conducting experiments on the L2-Arctic dataset showed that our wav2vec2.0
based models outperformed the conventional methods. The proposed textual modulation gate and
contrastive loss further improved the F1-score by more than 2.88% and our best model achieved an
F1-score of 61.75%.

Keywords: mispronunciation detection and diagnosis (MDD); computer-aided pronunciation
training (CAPT); transfer learning; pretrained model; text modulation gate

1. Introduction

A computer-aided pronunciation training (CAPT) system facilitates oral learning of
language learners by supporting flexible learning patterns and the use of fractional time.
As an indispensable module of CAPT systems, mispronunciation detection and diagnosis
(MDD) techniques have attracted a lot of attention from academia and industry over the
past decade. Similar to the role of oral language teachers, MDD can provide language
learners with instant feedback about pronunciation problems, either at segmental or supra-
segmental levels, to improve their oral proficiency. Considering the rapidly increasing
number of language learners, especially for distant learning and online learning, a high-
performance MDD is in great demand to assure the precise diagnosis of pronunciation
errors. The present study focuses on phonetic mispronunciations in second-language
learning. Moreover, we only consider MDD of constrained speech, that is, the (reference)
text/prompt/transcription (In this study, the terms “text”, “prompt”, and “transcription”
refer to the textual content to be learned to pronounce by the speakers and they will be
interchangeable) to be uttered by speakers is known to the system.

Previous MDD studies can be roughly grouped into two categories, both of which have
fully made use of the transcriptions. The first category is based on confidence measures.
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With the help of forced alignment techniques in the automatic speech recognition (ASR)
area, researchers usually first align the acoustic frame/phone level segments with given
texts. Then they calculate posterior probability as an indicator of whether the pronunciation
is correct or not. The most representative methods are goodness of pronunciation (GOP)
and its variants that use a posterior probability ratio to evaluate pronunciation and detect
errors [1–3]. Although the approaches based on confidence measures can detect incorrect
pronunciations, they lack the ability to provide specific diagnostic information, i.e., how
the target speech is mispronounced. The second category is based on extended search
lattices of speech recognition, among which extended recognition network (ERN) [4] is the
most representative approach. ERN analyzes the text first and then incorporates a finite
number of phonetic error patterns into the decoding network based on handcrafted or
data-driven rules. The recognized phoneme sequence of learners’ speech will be compared
with the canonical phonetic transcription to derive insertion, deletion, or substitution
errors. However, ERN cannot guarantee that all mispronunciations are covered. The MDD
performance will degrade when unseen mispronunciations occur. Moreover, building the
above multistage systems is complicated and laborious; errors of each stage will accumulate
to the final result.

Inspired by the End-to-End (E2E) ASR framework, connectionist temporal classifica-
tion (CTC)-based methods [5] are recently proposed for MDD and achieve encouraging
performances [6,7]. The E2E approaches avoid manually designing phonetic rules and
the complex modeling process. In spite of effectiveness, training those E2E MDD models
requires large-scale supervised speech corpora covering enough mispronunciation sam-
ples. It is worth noting that MDD is a data-scarce task. Acquiring non-native speech data
with reliable corresponding annotations by experienced experts is very costly and time-
consuming. Moreover, it is more difficult and even impractical to develop such datasets
with a large size.

Transfer learning, as a developing sub-field of deep learning, has the potential to
alleviate the problem of data scarcity. By pretraining a model from relevant tasks and then
using the pretrained model as a feature extraction module for specific downstream tasks,
transfer learning has been successfully applied to multiple research domains [8–10]. As
a useful technique of transfer learning, self-supervised pretraining (SSP) attempts to first
create pseudo-labels from unlabeled data and then learn powerful context representation
in a supervised fashion [11,12]. As the most powerful SSP model, wav2vec2.0 has also
been successfully shown to be effective in the field of MDD. In [13,14], the researchers
investigated MDD by using the well-trained wav2vec2.0 as a model building block and
fine-tuning it for MDD tasks.

Instead of using wav2vec2.0 as the backbone of MDD, some studies use wav2vec2.0
as the feature extractor of their systems [14–16]. Although wav2vec2.0 has been applied to
MDD tasks, its feasibility under different configurations, especially for ultra-low resource
MDD, still remains to be explored.

In addition to the way of transferring knowledge learned from related tasks to
downstream tasks, transfer learning also enables us to learn better representations across
modalities, e.g., transferring knowledge from a modality with rich or clean data to that
with scarce or noisy data [17]. In the field of MDD, there is a line of studies attempting
to leverage the prior linguistic information extracted from the given transcriptions for
MDD [18–21]. The first category of such studies is to convert the phoneme sequence of
given text into textual embedding via a text encoder. Feng et al. [19] feeds phoneme
sequences into a sentence encoder and then combines them with audio features via
attention. Frame-level cross-entropy loss is calculated with the help of a manually la-
beled phoneme boundary. Ye et al. [22] proposed to utilize three kinds of information
for MDD: acoustic, phonetic, and linguistic (APL) representations for MDD. Among
them, the phonetic representations are extracted with pretrained ASR models, and the
linguistic representations are extracted from canonical phoneme sequences by a linguis-
tic encoder. To obtain better alignment between the acoustic and linguistic embeddings,
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Chen et al. [15] leveraged articulatory features that are derived from the reference text.
The second category conducts data augmentation based on the given text to alleviate
the data scarcity problem. Facing the imbalance problem between correct and incorrect
pronunciation samples in the training data, Fu et al. [20] designed three data augmentation
techniques based on the given transcriptions by randomly replacing the phone labels while
keeping the corresponding acoustic signals unchanged. Zhang et al. [23] proposed an
L2-GEN method that generates mispronounced L2 phoneme sequences that mimic L2
speech and then synthesizes new L2 speech for data augmentation. Despite the effective
network design, most previous studies directly incorporated textual features into speech
representation via a naive attention mechanism. We contend that textual features con-
tribute very differently when they are assigned to attend different acoustic features. For
correct pronunciation, transcription can guide the model to step towards text–audio joint
representation for better inference. However, it is difficult to align prior phonemes with
acoustic features when mispronunciation occurs and hence limits the potential performance
improvement.

Most of the above-mentioned MDD studies are based on the E2E ASR framework.
The main idea is to train a mature phoneme recognition model with L1/L2/L1-L2 hybrid
datasets, and then obtain results comparing the recognized phoneme sequence with the
reference phoneme sequence. Despite the modeling simplicity, the E2E ASR-based methods
have a side effect. Because of the inconsistent optimization goals between ASR and MDD
tasks, the best model optimized with respect to the recognition error does not necessarily
result in the best MDD performance [24]. This is because MDD usually uses an F1-score
as the performance metric that considers both the correct and incorrect pronunciations.
Most previous models are optimized with a sole phoneme recognition objective directly
or implicitly constrained by extra error states towards the correct diagnosis. Such a single
recognition loss tries to predict each phoneme equally. To some extent, we hope the
system can detect more mispronunciations with little/no sacrifice of performance on
correct pronunciations. To tackle the inconsistency problem of optimization goals, some
researchers attempt to incorporate the ASR task with auxiliary tasks, e.g., by classifying
phone states (i.e., whether the phone is correctly pronounced) [18], classifying accents of
learners’ L1 speech [25], and estimating word-level mispronunciation probabilities [26].
Due to the difference of learning objectives between phoneme recognition and MDD tasks,
previous methods fail to focus on mispronunciations explicitly and, thus, are less effective
in detection and diagnosis.

Based on the above introduction and analysis, we can find that training MDD systems
faces the problem of data scarcity. This study is motivated by that fact that some previous
studies tackled this problem to some extent by using SSP models and incorporating prior
text and that it is still worth investigating how to make full use of them. Aiming to further
improve the performance of MDD, we propose an E2E mispronunciation MDD method
using transfer learning that leverages the pretrained acoustic model and the linguistic
knowledge from text. Specifically, the main contributions of this study are as follows:

(1) We explore the use of the pretrained model wav2vec2.0 for MDD tasks, especially
under different configurations for low resource MDD;

(2) We propose an effective text–audio gate control module to effectively leverage the
linguistic information from text modality. It can enforce the model to align textual
information to the most related acoustic regions while ignoring irrelevant parts auto-
matically;

(3) To further unleash the power of prior text, we refine the loss to bridge the learning
objective gap between phoneme recognition and MDD by explicitly discriminating
the probability of reference and annotation sequences. Conducting experiments on
the L2-Arctic dataset confirm the effectiveness of our proposals.

The remainder of this paper is structured as follows. Section 2 introduces the related
work wav2vec2.0. Section 3 introduces the proposed methodology for MDD, including the
pretrained model based MDD framework, the textual modulation gate, and the contrastive
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learning strategy. Section 4 shows the experiments and results. Section 5 concludes this
paper and gives outlook for future work.

2. Related Work

Transfer learning [27,28] and domain adaptation [29,30] are both techniques used in
machine learning. Transfer learning refers to the process of taking knowledge learned from
one task (source task) and applying it to a different but related task (target task), whereas
domain adaptation is a specific type of transfer learning where the goal is to adapt a model
trained on one domain to perform well on a different but related domain. They are related
and sometimes used interchangeably. The present study leverages transferred acoustic
knowledge from pretrained models with audio modality and linguistic knowledge from
prior text for the MDD task. Moreover, it is also related to multimodal learning [31], which
involves training a model on data from multiple modalities to jointly learn representations
that capture the relationships between the modalities. In other words, the model learns
to integrate information from different modalities to make predictions. To make the
title concise and the terminology reflect all related concepts, we use “transfer learning”
throughout this article.

2.1. Technical Basis

In speech-related domains, several SSP models have been designed, such as APC [32],
wav2vec [33], and wav2vec2.0 [12]. They are used as the building blocks of models for
many tasks, e.g., ultra-low resource ASR [34] and emotion recognition [35].

This study uses the pretrained model wav2vec2.0 [12] to obtain the acoustic representa-
tions. The architecture of wav2vec2.0 is shown in the left part of Figure 1. It is composed of
three modules: a CNN-based acoustic encoder, a transformer-based context network, and
a vector quantizer. The encoder module built with seven blocks of temporal convolution
layers encodes the raw audio sample X into latent speech representation Z . The encoder
module compresses about a 25 ms region of 16 kHZ audio every 20 ms. After that, the
encoded representation Z will be used to provide inputs for two branches. For the branch
of the transformer-based context network, a certain proportion of consecutive time steps of
latent representation Z are masked and used to learn the contextual representations C. For
the branch of the vector quantizer, vector quantization (VQ) [36] is used to discretize the
unmasked Z in continuous space to a finite number of entries Q, which is detailed in the
upper-right part of Figure 1. During pretraining, a contrastive predict coding (CPC) [37]
criterion is adopted. The outputs of the transformer-based context network and quantized
outputs of vector quantizer are used to compute the contrastive loss so that the pretrained
model can distinguish the latent representation from a series of distractors sampled from
other masked time steps. In the meantime, VQ is expected to learn the underlying speech
units that are reported to correspond to phonemes. Alternatively, learning general acoustic
representations can be achieved using other pretrained models, e.g., HuBERT [38]. In this
study, we chose the wav2vec2.0 model for reasons of its popularity and ease of implemen-
tation.

As for transferring linguistic knowledge from prior text for E2E MDD, the common
way is to convert sentence transcription to textual embeddings and then incorporate them
with attention operation. Specifically, the input of the model is the phoneme sequence
converted from prior text. Suppose an N-length phoneme sequence of the input sentence
S = [s1, ..., si, ..., sN ] where si is the phoneme at the i-th position in the prior phoneme
sequence, the audio sample X and phoneme sequence S can be converted to acoustic
and textual representations by an audio encoder and text encoder, respectively, using the
following equations:

hQ = Audio_encoder(X ) (1)

hK, hV = Text_encoder(S) (2)
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where hQ, hK, and hV are the query, key, and value, respectively, for the attention operations.
Next, a fixed-length context vector can be obtained using the following equation:

c = Attention(hQ, hK, hV). (3)

���

mask }concat
Transformer Quantizer

FC layer

Figure 1. Left: The structure of the pretrained model wav2vec2.0 framework and its corresponding
criterion in the pretraining stage. Top-right: The details of vector quantization module. Bottom-right:
The use of acoustic representations learned from wav2vec2.0 model for MDD task by adding fully
connected (FC) layers.

2.2. Previous Methods for MDD

There exist a couple of studies that transferred acoustic knowledge from audio modal-
ity for MDD. In our previous work [39], we created an MDD model by stacking only a fully
connected layer on the top of pretrained wav2vec2.0. The experimental results showed that
the proposed MDD model trained only with one-third of the data achieved the comparable
performance to the conventional methods, suggesting the effectiveness of wav2vec2.0 for
learning robust features. In the same period, Wu et al. [13] used a similar way of using
wav2vec2.0 for MDD and also showed its effectiveness on another corpus. Instead of
using wav2vec2.0 for directly extracting MDD features, Zhang et al. [14] proposed to use
wav2vec2.0 and a K-means clustering algorithm to convert the original continuous speech
into audio vectors and then into discrete acoustic units. By modifying this unit sequence,
they augmented the acoustic data and finally improved the MDD performance.

As for transferring linguistic knowledge from text modality, the researchers usually
first aligned the audio with phoneme sequence, and then used the joint representation
as input for the MDD module. Fu et al. [20] proposed to concatenate the acoustic repre-
sentations and the attention results (calculated by Equation (3)) for MDD. Different from
the study [19] that relied on manually labeled phoneme boundary, this study used an E2E
framework. Moreover, instead of extracting linguistic features as input, Zhang et al. [25]
proposed an ASR and alignment unified transformer-based MDD framework where the
prior target text was used as the condition for the decoder input. Contrastive learning, a
kind of technique that maximizes the intra-class similarity and minimizes the inter-class
similarity, has been used extensively over the years in various applications [40,41]. In
the filed of SSP, contrastive learning can be used to learn useful representations in a self-
supervised manner. Wickstrøm et al. [42] proposed a contrastive learning framework that
enabled transfer learning clinical time series by exploiting a data augmentation scheme in
which new samples were generated by mixing two data samples with a mixing component.
For the task of Chinese spell-checking, Lin et al. [43] proposed reverse contrastive learning
which explicitly forced the model to minimize the distance in language representation
space between similar sample pairs. In the context of MDD, we can anchor the transcription
in order to generate the dissimilarity/similarity.
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3. Methodology

In this section, we first present our basic MDD framework by fine-tuning the wav2vec2.0
model. Next, we introduce the enhanced MDD framework that incorporates the textual
information of prior text via the text–audio gate control module. Finally, we introduce
the proposed contrastive learning to fill the learning objective gap between phoneme
recognition and MDD tasks.

3.1. Fine-Tuning Wav2vec2.0 for MDD

Once the wav2vec2.0 model is well pretrained, it can be used as a feature extractor
for the downstream task MDD. It is worth mentioning that in [12], only using a fully
connected (FC) layer stacked on the wav2vec2.0 encoder obtains the state-of-the-art phone
recognition results on the TIMIT corpus. Following this structure, we also investigate the
effectiveness of the pretrained model wav2vec2.0 by adding an FC layer on top of it for the
MDD task. The basic MDD framework is shown in the bottom-right part of Figure 1, which
is in line with that of our previous work [39]. The acoustic representation output from the
wav2vec2.0 is fed into the FC layer. During fine-tuning the pretrained model, quantization
is disabled and the CTC loss is adopted. The aim of fine-tuning the pretrained wav2vec2.0
is to further update the model parameters for the MDD task in a supervised fashion. The
MDD model predicts phone sequence from the raw speech waveform. In this context, the
MDD task can be regarded as a variant of the phone recognition task.

3.2. Enhanced MDD by Textual Information
3.2.1. The Framework of Enhanced MDD

Although we have included a powerful pretrained acoustic model into our MDD
system, there is still possibly much room for improvement by combining with reference
texts. A common approach is to convert the reference text into phonemes and transform
each phoneme into a high-dimensional linguistic feature vector via a text encoder. Fu
et al. [20] implemented such a MDD framework based on CNN and Bi-LSTM neural
networks. As shown in the left part of Figure 2, their framework takes audio signals and
phoneme sequences as inputs. The audio encoder built with CNN and Bi-LSTM and the text
encoder built with Bi-LSTM convert the audio signal and phoneme sequence to acoustic and
linguistic representations, respectively. Given a canonical phoneme sequence with length N,
the linguistic representation Htext = [htext

1 , htext
2 , ..., htext

N ] can be derived by the text encoder.
After that, the model improves the aligned representation learning by performing attention
for feature aggregation. The acoustic and linguistic representations are concatenated and
fed into a linear layer for MDD. This model is referred to as BaselineConventional. We
replace the audio encoder and text encoder with the pretrained wav2vec2.0 model and
transformer respectively while keeping the same fusion strategy, which is shown in the
right part of Figure 2. Moreover, the concatenation of acoustic and textual representations is
further fed into another transformer layer. This model is referred to as BaselineConcatenate.
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Figure 2. An overview of baselines: (left) The BaselineConventional model from [20]. It takes
phoneme sequences and the fbank feature as inputs and improves the aligned representation learning
by performing attention for feature aggregation. (right) Our BaselineConcatenate model where
we replace the audio encoder and text encoder of the BaselineConventional model with the more
powerful wav2vec2.0 model and transformer while keeping the same fusion strategy. It should be
noted that only the audio branch is pretrained.

3.2.2. Textual Modulation Gate

The MDD model shown in the Figure 2 takes the reference text (i.e., the canonical
transcription) as the input. However, some phonemes in the canonical transcription of
the reference text will be “polluted” when the speakers mispronounce them. In this case,
the “polluted” reference text is thus not paired with associated audio features. Therefore,
we propose a textual modulation gate based on attention fusion. On the textual side, we
run an information monitor to filter out texts whose prior knowledge is strong enough to
deteriorate the performance. To this end, we design and compare four different textual
modulation gates. The first is shown in the bottom-left corner of Figure 3. For Htext and
Haudio, we have:

αt,n = sigmoid(score(htext
n , haudio

t )) (4)

score(htext
n , haudio

t ) = haudio
n (htext

t )T (5)

ct =
N

∑
n=1

αt,nhtext
n (6)

g = sigmoid(W · haudio
t + U · ct + b) (7)

yt = haudio
t + g� ct (8)

where � is an element-wise product. We compute attention weights, between textual
embedding htext

n ∈ Htext and acoustic embedding haudio
t ∈ Haudio, which is used for

re-weighting the textual representation. Then we choose the implementation of linear
projection, summation, and sigmoid activation sequentially to generate the textual gate
before feeding them into the transformer layer for CTC prediction. We refer to the formula
above as TextGate. Furthermore, we further explore three variants of gate modulating. Two
of them only differ in the activation function from TextGate: one with the softmax function
and another with the tanh function (see the TextGateσ and TextGateφ subplots in Figure 3).
The third variant uses one gate to control on the textual branch and another to control on
the acoustic branch, which is referred to as DoubleGate. It should be noted that, except for
the BaselineConcatenate model that uses the “concatenation” operation, the rest models
use the “add” operation. This design is for the convenience of easily extending the model
by stacking more textual modulation gating layers.
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Concatenate

Figure 3. Variants of textual-gate modulating: (BaselineConcatenate ) is identical to the right model in
Figure 2. (BaselineAdd) uses another popular feature fusion operation “add” instead. (DoubleGate)
not only performs control on textual branch, but also monitors acoustic branch with another gate.
(TextGate), (TextGateσ) and (TextGateφ) attempt to look into different activation functions.

3.3. Contrastive Learning

Phoneme recognition aims to infer phonemes from the acoustic signals correctly as
much as possible, irrespective of whether we should pay more attention to mispronuncia-
tions. During the model training with regard to phoneme recognition, the model optimizer
seeks to update parameters and hence improve the recognition performance by detecting
more canonicals (i.e., correct pronunciations) in proportion. With the given prior texts,
we propose an objective based on contrastive learning to reduce the difference of learning
objectives between the phoneme recognition and MDD tasks.

Although we cannot directly construct negative pairs and positive pairs as usual to
define the similarity, we introduce a supervised contrastive loss derived from CTC [5]. Ad-
dressing the variable length (T) input frames, X = [x1, x2, ..., xT ], conditionally independent
probability of label sequence:

p(π|X) =
T

∏
t=1

yt
πt = y1

π1
y2

π2
...yt

πt ...y
T
πT

, ∀π ∈ Φ(L). (9)

p(πe|X) =
T

∏
t=1

yt
πe

t
= y1

πe
1
y2

πe
2
...yt

πe
t
...yT

πe
T
, ∀πe ∈ Φ(Le). (10)

where yt
πt denotes the softmax output of label πt at time t, and Φ(·) is a map function

which can generate all possible intermediate label representations from unmodified label
sequence. A modified label sequence πe is made by inserting, deleting, and substituting
phones. Suppose there is only one substitution mispronunciation occurring at position t,
for the π-πe pair, yk

πk
= yk

πe
k
, ∀k 6= t. Then we can define the dissimilarity for modified

annotation and sequence.

Dπ,πe ,X
contrast = ln p(πe|X)− ln p(π|X) = ln yt

πe
t
− ln yt

πt . (11)

We incorporate margin into the dissimilarity and sum up all possible negative pairs.
Then our contrastive loss can be expressed as:

L(L,Le ,X)
contrast , ∑

π,πe∈
B−1(L,Le)

max(ln p(πe|X)− ln p(π|X) + m, 0). (12)

In order to train the network, we incorporate the additional contrastive loss Lcontrast:

L = LCTC + Lcontrast (13)
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where LCTC is a loss for phoneme recognition (CTC computes the probability of all possible
intermediate sequences via dynamic programming. Similarly, we implemented the loss as
followed approximately. m is set to 16 empirically):

L(L,Le ,X)
contrast = max(ln p(Le|X)− ln p(L|X) + m, 0). (14)

4. Experiments and Results
4.1. Speech Corpora

To validate our proposals, we conducted experiments on the publicly available corpus
L2-arctic [44] that is commonly used in previous MDD studies. The L2-arctic corpus
is an English speech dataset that is designed for research in voice conversion, accent
conversion, and mispronunciation detection. It is composed of non-native utterances with
mispronunciation. There are 24 non-native speakers (12 males and 12 females) and six
mother tongues (L1): Hindi, Korean, Spanish, Arabic, Vietnamese, and Chinese. Moreover,
most previous studies incorporated English native data for model training so that the ASR-
based MDD models can accurately identify the correctly pronounced parts of the utterances.
This is motivated by the fact that the L2-arctic corpus is not only composed of L2 data
but also with a small size. Therefore, we also use the TIMIT [45] corpus, containing 6300
utterances produced by 630 speakers, as an additional corpus. Here, the original training
subset of TIMIT corpus is used. In order to merge the speech samples of the L2-arctic and
TIMIT datasets for training, we re-sample the audio files of the L2-arctic corpus to 16 kHZ with
the open-source tool SoX [46]. For the TIMIT corpus, we map its phone set with 61 phonemes
to that with 39 units according to the mapping table used in [47] and finally merge it into
L2-arctic phone set.

4.2. Experimental Setup

For the well-pretrained wav2vec2.0 models, we used those from fairseq toolkit [48]:
wav2vec2.0-BASE, wav2vec2.0-LV60, and wav2vec2.0-XLSR. They use the same model
architecture but different numbers of layers (i.e., different numbers of parameters). Ac-
cordingly, they are trained with different amounts of data for pretraining. The BASE and
LV60 models use 960 h of Librispeech [49] and 53,200 h of LibriVox for pretraining, respec-
tively. For the XLSR model, 56,000 h of speech data, consisting of 53 languages, is used for
pretraining.

In this paper, the experiments are conducted in two stages. In the first stage, we
compare the feasibility of the pretrained model wav2vec2.0 with conventional methods.
We also examine the influence of the amount and type of training data to fine-tune the
pretrained wav2vec2.0 on MDD performance. In the second stage, using the best configura-
tion found in the first stage as the basis, we mainly focus on comparing the influence of
different textual modulation gates on the MDD performance.

4.2.1. Examination of Pretrained Model and Data Configuration

We build the MDD model by stacking one FC layer on the pretrained wav2vec2.0 model,
in which the parameters of the FC layer is randomly initialized. After that, we fine-tune the
MDD model using training data of the L2-arctic and TIMIT datasets. To better understand the
influence of the amount and type of training samples during fine-tuning, we train MDD models
with the following four kinds of training data configurations (Source code and configuration
files are available at https://github.com/vocaliodmiku/wav2vec2mdd).

• Default For this configuration, we merely use the training data from the L2-arctic
corpus. The way of data partition for training and testing is consistent with [19] where
the data of six speakers (NJS, TLV, TNI, TXHC, YKWK, ZHAA) are held as the test
subset while the rest data of other 18 speakers are merged to build the training subset.
Moreover, a development set is created by by randomly selecting 20% sentences from
each speaker of the training subset. There is no overlap between the training and
developing set.

https://github.com/vocaliodmiku/wav2vec2mdd
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• −33% This configuration is designed to explore the feasibility of the pretrained model
for ultra-low resource MDD. To this end, we reduce 33% of training data for each
language by randomly excluding six speakers from the Default training set.

• −66% Similar to the −33% configuration, we further reduce 33% of training data for
each language by randomly excluding another six speakers from the −33% training
set. In this case, only one speaker is kept for each of the six languages of non-native
speakers.

• +TIMIT This configuration is to explore the effectiveness of incorporating the native
English data. Here, the original training subset of TIMIT corpus is merged into the
Default training set.

Table 1 summarizes related duration statistics of these data configurations. We can regard
the data configurations of −33% and −66% as the low-resource and ultra-low-resource MDD.

Table 1. The total duration statistics (in hours) of different data configurations.

Train Dev Test

Default 2.50 0.28 0.88
−33% 1.49 0.37 0.88
−66% 0.73 0.19 0.88
+TIMIT 6.07 0.28 0.88

4.2.2. Examination of Textual Modulation Gate

At this stage, we conducted experiments to examine the effect of incorporating the pro-
posed textual modulation gates on the MDD performance (Source code and configuration
files are available at https://github.com/vocaliodmiku/wav2vec2mdd-Text). It should
be noted that, at this stage, we use all available training data, i.e., the TIMIT data config-
uration. However, to save computational time, we adopt the simplest pretrained model
wav2vec2.0-BASE as the basic audio encoder. Under this basic acoustic model condition,
we compare the MDD performances of a series of textual modulation gates. The dimension
of attention and gating mechanism is set to 768. After finding the best configuration for
leveraging the prior text by textual modulation gate and contrastive learning, we replace
the simplest pretrained model wav2vec2.0-BASE with the most powerful pretrained model
wav2vec2.0-XLSR.

The experiments are conducted with PyTorch. All models are trained 142 epochs using
the Adam optimizer with an initial learning rate of 5× 10−5 on one RTX3060 GPU. The
audio encoder is frozen in the first 10,000 steps. The other model training configurations
are set to default values or consistent with the setting in [20].

4.3. Performance Evaluation

We follow the evaluation metrics of previous studies [50]. For the E2E model, the MDD
results can be obtained by comparing the recognized phoneme sequence and canonical
phoneme sequence of the reference text sequence after alignment. The mispronunciations
are detected when inconsistency between the two phoneme sequences occurs. Accordingly,
there are four types of MDD results: true acceptance (TA), false rejection (FR), true rejection,
and false acceptance (FA). For correctly pronounced phones, TA means the recognized
phoneme sequence is consistent with the canonical phoneme sequence of the reference
text whereas FR means inconsistency. For mispronounced phones, TR indicates the
mispronunciation has been detected whereas false accept (FA) fails to do it. Further-
more, TR can be divided into correct diagnosis and diagnosis error. In addition, other
metrics such as recall (TR/(FA + TR)), precision (TR/(FR + TR)), and the F-1 score
(2 × ((precision × recall)/(precision + recall))) can be derived using the above statistics.

https://github.com/vocaliodmiku/wav2vec2mdd-Text
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4.4. Experimental Results
4.4.1. Comparison with Different Amounts and Types of Training Data

Table 2 lists the results of our implemented wav2vec2.0 based MDD models. Com-
paring the first three models shows that the model LV60 outperforms the model BASE.
We speculate these improvements of mispronunciation detection benefit from the robust
acoustic representation learned from large amounts of unlabeled data. According to the
language transfer theory, second language learners tend to transfer the L1 phonetic phe-
nomenon to second language (L2) learning [51], and some researchers argue that using
cross-language training corpus can boost MDD performance [52]. This is supported by the
results of the current study. As can be seen from Table 2, the multilingual pretrained model
XLSR performs better than the monolingual pretrained model LV60 (59.37% vs. 58.75%).

Table 2. MDD performances of different pretrained models and training data configurations.

Models Data

Correct Pronunciations Mispronunciations

F1
True Accept False Rejection False Accept

True Rejection

Corroct Diag. Diag. Error

wav2vec2.0-BASE - 94.12% 5.88% 49.53% 65.86% 34.14% 54.28%
wav2vec2-LV60 - 94.01% 5.99% 43.37% 68.08% 31.91% 58.75%
wav2vec2-XLSR - 94.57% 5.43% 43.95% 65.75% 34.25% 59.37%
wav2vec2-XLSR −33% 94.11% 5.89% 41.23% 69.13% 30.87% 59.27%
wav2vec2-XLSR −66% 93.35% 6.65% 46.06% 64.67% 35.33% 55.52%
wav2vec2.0-XLSR +TIMIT 94.30% 5.70% 41.80% 70.72% 29.28% 60.44%

To examine the MDD performance on ultra-low resource conditions, we compared
the four MDD models using the same pretrained model XLSR but different training data
configurations. As we can see from the last four rows of Table 2, reducing 33% of training
data slightly degrades the MDD performance compared with the default training data
configuration. When another 33% of the training data are reduced (i.e., the −66% data
configuration), the results deteriorate more. However, considering the relatively small size
of the training data (here, only one speaker’s data for each language is kept), achieving
a F1-score of 55.52% is still acceptable. In Figure 4, the upper and lower subplots depict
the confusion matrices for the MDD models trained with the default and −66% data
configurations. The model trained with the −66% training data can still retain the ability to
detect mispronunciations while identifying correct pronunciations. Despite the difference
of overall performances, the MDD models trained with different amounts of training data
share similar patterns. This suggests that the acoustic representations extracted from the
pretrained wav2vec2.0 model have robustness to unseen data for the MDD task even when
the annotated data are low-resource.

Finally, we explore the use English native data (i.e., the L1 data) to facilitate the
MDD performance. By introducing the additional training data the TIMIT corpus, the
performance of the model trained with the +TIMIT data configuration further improves
by more than 1% in terms of F1-score (59.37% vs. 60.44%). On the other hand, compared
with the −33% data configuration, the extra 33% data of the default data configuration
does not increase the performance too much (59.27% vs. 59.37%). This suggests that the
acoustic information conveyed by the correct pronunciations of the L1 data may break the
bottleneck of only using L2 data.
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Figure 4. Confusion matrices of the XLSR-based MDD models trained with the default (the upper
two subplots) and −66% (the lower two subplots) data configurations.

4.4.2. Comparison with Conventional Methods

Table 3 lists the MDD results of the proposed methods and other conventional methods.
Our pretrained model based methods surpass the well-known GOP based method [53]
and CTC based methods [7,20]. As for the training data, in CTC-ATT [7], the researchers
also included a small portion of the Librispeech corpus, in addition to the L2-arctic and
TIMIT datasets, to build a three-stage model that is complicated. Compared to their work,
our XLSR based model trained with less data increase the F1-score by 4.44% (56.02% vs.
60.44%). Even without using the TIMIT training data, our XLSR based model can still
achieve an F1-score of 59.37%. As for the model architecture, our model is similar to that
in [20] whereas our model replaced their Bi-LSTM with transformer based architecture
and made full use of acoustic knowledge transferred from wav2vec2.0 models. A close
observation shows that the benefit of using pretrained models mainly comes from the
improvements of the precision metric while the recall metric does not improve too much.
This means that our proposed models made fewer false-rejection errors while detecting
slightly more real mispronunciations.



Appl. Sci. 2023, 13, 6793 13 of 17

Table 3. The comparison of MDD performances between our proposed methods with other conven-
tional methods.

Models Precision (%) Recall (%) F1 (%)

GOP [53] 35.42 52.88 42.42
CTC-ATT [7] 46.57 70.28 56.02
CNN-RNN-CTC+VC
[20] 56.04 56.12 56.08

XLSR 63.12 56.05 59.37
XLSR(+TIMIT) 62.86 58.20 60.44

4.4.3. Using Textual Modulation Gate and Contrastive Learning

Table 4 lists the MDD results of using different textual modulation gates as well as the
baseline models. It should be noted that, as mentioned in Section 4.2.2, we used the simplest
pretrained model wav2vec2.0-BASE as the audio encoder for most of the MDD systems,
and we only used the most powerful wav2vec2.0-XLSR for the best textual modulation
gate, i.e., the models TextGateXLSR and TextGateXLSRContrast.

Table 4. Comprehensive performance comparison between different textual modulation gates.

Models

Correct Pronunciations Mispronunciations

F1
True Accept False Rejection False Accept

True Rejection

Corroct Diag. Diag. Error

BaselineConventional 92.65% 7.35% 43.88% 74.96% 25.04% 56.08%
BaselineConcatenate 93.68% 6.31% 42.87% 68.52% 31.48% 58.87%
BaselineAdd 94.15% 5.85% 45.36% 63.21% 36.79% 57.51%
DoubleGate 94.59% 5.41% 44.00% 68.68% 31.32% 59.34%
TextGate 94.50% 5.50% 42.52% 68.26% 31.74% 60.27%
TextGateσ 94.29% 5.71% 41.89% 69.86% 30.14% 60.34%
TextGateφ 94.53% 5.47% 46.33% 64.22% 35.78% 57.48%
TextGateσ R * 95.07% 4.93% 47.66% 63.62% 36.38% 57.47%
TextGateXLSR 94.94% 5.06% 43.72% 68.79% 31.21% 60.23%

TextGateContrast 93.72% 6.28% 40.43% 69.77% 30.23% 60.32%
TextGateXLSRContrast 93.81% 6.19% 38.62% 71.08% 28.92% 61.75%

* Reversed version of TextGate (maybe we can call it AudioGate); g is used to multiple hQ
t instead of ct.

In the stage of examining the benefit of leveraging the prior text, we used three
baseline models. The BaselineConventional and BaselineConcatenate models correspond
to left and right parts of Figure 2, respectively. The BaselineAdd model only differs in the
fusion style from the BaselineConcatenate model (“add” versus “concatenate”). Under fair
architecture and training settings, our baselines based on the pretrained wav2vec2.0 model
surpass the BaselineConventional [20], suggesting the audio encoder wav2vec2.0 in our
baselines provides more powerful representations. Moreover, the “concatenate" operation
for information fusion is better than the “add” operation.

As expected, the proposed approaches DoubleGate and TextGate outperform the Base-
lineConcatenate/BaselineAdd method by +0.5%/1.8% and +1.4%/2.7%, respectively. When
leveraging linguistic knowledge, most previous studies directly incorporated textual fea-
tures into speech representation via a naive attention operation. They did not consider
the fact that textual features contribute very differently when they are assigned to attend
different acoustic features. The text–audio joint representation should be carefully handled
especially when mispronunciation occurs. The gating mechanism can be used to modulate
the information flowed from text modality to audio modality. The textual modulation gate
proposed in this study successfully plays the role of validating information that comes from
texts. Figure 5 shows the attention weights output by the TextGate and BaselineConcatenate
model. Since the textual modulation gate can take responsibility for turning on/off textual
information flow, attention patterns look neat and natural, whereas audio–text correlation
maps for the model without a gate would be chaotic.
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Figure 5. Learned correlation maps of BaselineConcatenate (upper) and TextGate (lower).

Within the TextGate series, the difference in performance between using sigmoid and
softmax activation functions is marginal. However, using tanh activation function obtains a
much lower performance, and we also notice that the “AudioGate”, performing control on
the audio branch, reports poor performance. These results suggest that even incorporating
the extra reference text, the fusion framework needs to be carefully designed.

Based on our experimental results, we also found that better phoneme recognition
model implementations cannot always report better results in the context of MDD, which
is in line with the result reported in [24]. Figure 6 lists phone error rate (PER) and F1-score
of different MDD models. As the PER decreases, the F1-score trend is hard to conclude.
The failure is due to the mismatch of learning objectives between MDD and phoneme
recognition. Therefore, we further explored the benefit of introducing contrastive learning.
Moreover, we tried to utilize a more powerful acoustic model (XLSR) for further improve-
ment. We integrated the proposed TextGate into XLSR model in which the contrastive loss
was used. TextGateXLSRContrast obtains a performance gain of 1.5% F1-score compared to
the model TextGateContrast and achieves the best performance with an F1-score of 61.75%
(see the bottom two rows of Table 4), suggesting the effectiveness of our models by intro-
ducing textual modulation gates with a contrastive loss. Moreover, TextGateXLSRContrast
reports the lowest false accept rate, which corresponds to our discussion. Given the prior
text, the model learns more discriminative features about the reference and annotation
phonemes which are hard to distinguish, naturally making the prior transcripts more
informative.

Figure 6. Performances of MDD models with different textual modulation gates in terms of F1-score
and phone error rate (PER).
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5. Conclusions and Future Work

Training MDD models for CAPT faces the problem of data scarcity. In this study, we
proposed to use transfer learning to tackle this problem. First, we explored the effective-
ness of the pretrained acoustic model wav2vec2.0 for MDD tasks, especially for ultra-low
resource MDD. Moreover, we proposed textual modulation gates that assign more im-
portance to the relevant text information while suppressing irrelevant text information
for MDD. Furthermore, given the transcriptions, we proposed an extra contrastive loss to
reduce the difference of learning objectives between the phoneme recognition and MDD
tasks. By conducting a series of experiments, we have verified the wav2vec2.0 model
pretrained with unlabeled data in a self-supervised fashion can provide robust general
acoustic representations for the MDD task. Even when the annotated L2 training data are
low-resource, the model can still achieve promising performance. Moreover, the proposed
textual modulation gate that explicitly incorporates prior transcription in model training
effectively learns a better refined text–audio representation for MDD. Our best wav2vec2.0
based model improves the baseline models by +4.32% in absolute F1-score on L2-arctic
dataset. By using the best textual modulation gate and contrastive learning, our best model
further improve F1-score over the corresponding baseline methods by +2.88%, achieving
the highest F1-score of 61.75%. In future work, we will investigate extracting more in-
formation from transcriptions, such as transferring phonetic knowledge to constrain the
text–audio attention matrix and optimize the learning object toward MDD.
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