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Abstract: The rapid expansion of the Internet and communication technologies is leading to sig-
nificant changes in both society and the economy. This development is driving the evolution of
smart cities, which utilize cutting-edge technologies and data analysis to optimize efficiency and
reduce waste in their infrastructure and services. As the number of mobile devices and embedded
computers grows, new technologies, such as fifth-generation (5G) cellular broadband networks and
the Internet of Things (IoT), are emerging to extend wireless network connectivity. These cities
are often referred to as unmanned aerial vehicles (UAVs), highlighting their innovative approach
to utilizing technology. To address the challenges posed by continuously varying perturbations,
such as unknown states, gyroscopic disturbance torque, and parametric uncertainties, an adaptive
recursive sliding mode control (ARSMC) has been developed. The high computational cost and
high-order nonlinear behavior of UAVs make them difficult to control. The controller design is
divided into two steps. First, a confined stability analysis is performed using controllability and
observability to estimate the system’s stability calculation. Second, a Lyapunov-based controller
design analysis is systematically tackled using a recursive design procedure. The strategy design
aims to enhance robustness through Lyapunov stability-based mathematical analysis in the presence
of considered perturbations. The ARSMC introduces new variables that depend on state variables,
controlling parameters, and stabilizing functions to minimize unwanted signals and compensate
for nonlinearities in the system. The paper’s significant contribution is to improve the controlled
output’s rise time and stability time while ensuring efficient robustness.

Keywords: smart cities; unmanned aerial vehicle; nonlinear dynamic inversion; recursive sliding
mode control; adaptation laws

1. Introduction

Unmanned aerial vehicle (UAV) path learning for optimizing age and power consump-
tion in Internet of Things (IoT) applications with UAV battery recharge is an important task
for future smart cities [1]. It is important to optimize UAVs’ flight paths to minimize their
age and power consumption while ensuring full data coverage. There are challenges and
opportunities of using UAVs for environmental monitoring, such as the ability to collect
data over remote or inaccessible areas. The effectiveness of UAV systems is demonstrated
through several case studies in [2]. Helicopters (UAVs) are lifted and propelled by one
or more rotors, making them suitable for operation in congested or remote areas where
fixed-wing aircraft cannot operate. The key advantage of a helicopter is that its lift and
direction can be controlled by adjusting the speed of its rotors through motors. As a result,
helicopters are often used in areas where takeoff or landing is difficult. The importance of
real-time applications for air vehicles has increased over time [3–5]. In order for a closed-
loop system to exhibit the desired response, the controlling variables must be manipulated
accordingly. To study this phenomenon, an experimental setup of a twin-rotor MIMO
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system (TRMS), a type of UAV with significant coupling effects, is developed and modeled
in [6]. The setup for the UAV is a highly nonlinear system with limited degrees of freedom.
It consists of two basic parts: a mechanical part and an electrical part. The objective involves
addressing the challenges posed by the controller task, which include: (i) dealing with the
dynamic changes of the UAV; (ii) handling the changing dynamics of the system, including
mismatched disturbances and varying parametric dynamics; and (iii) managing the absence
of the time-varying parameter variations states of the system. A comprehensive review of
the literature will help enable us to understand the trajectory for robust optimization.

A linear controller with all of its properties was utilized to regulate the TRMS and
its coupling effect, whereby the main rotor, through its pitch angle, governs movement
along the vertical axis, while the tail rotor, through its yaw angle, governs movement
along the horizontal axis [7–9]. The use of PID control in different scenarios has been
explored in several studies. In [10], PID control is discussed as a fractional controller based
on the degree of freedom, while [11] explains its application for UAVs with a degree of
freedom. In [12,13], estimation control with nonlinear control is used for highly nonlinear
systems. Additionally, [14] presents a decoupled system optimized via swarm optimization
based on the PID control strategy. The efficiency of classical control is confirmed in [15,16]
through its effective output response of the TRMS. Hybrid control as classical and nonlinear
control is presented in [17,18]. The authors of [19] analyze the performance of a twin-rotor
MIMO system using a linear quadratic regulator (LQR) and LQG control techniques and
discuss the differences in the response of pitch and yaw angle control inputs. In [20], a
comparative analysis is presented of different control techniques for a twin-rotor MIMO
system and the reasons why pitch angle control input may show more variations compared
to yaw angle control input are discussed. The authors of [21] undertook a comparative
study of PID and fuzzy logic controllers for a twin-rotor MIMO system and considered
the differences in the response of pitch and yaw angle control inputs. To eliminate the
coupling effect, a decoupling method was employed, either through static decoupling
or dynamic decoupling. Furthermore, a classical control strategy, specifically optimal
control, was implemented to gain insights into the behavior of the system [22,23]. An
adaptive model for predictive control based on a tube was proposed in [24]. Nonlinear
model identification with adaptive model predictive control using neural networks was
considered in [25] and neural network observer-based control for a twin-rotor MIMO
system was investigated in [26]. Learning-based fast nonlinear model predictive control to
address issues of parametric uncertainty was reported in [27,28]. One approach to address
parameter uncertainty is to use a modified extended Kalman filter (EKF) to perform joint
state and parameter estimation. Another method is to use the multiple model second
level adaptation (MALSA) scheme [29,30]. A discrete-time intelligent control strategy
was implemented in [31], which was designed to match the behavior of the prototype.
To address the nonlinear response of states following system decoupling, a robust control
strategy was developed in [32]. Two types of robust control, sliding mode control (SMC)
and integral SMC, were designed to overcome these nonlinearities [33,34]. A fuzzy and
LQR controller designed for decoupled systems was used to control the pitch and yaw
angle over desired values based on the model. Additionally, a real-time adaptive model
inversion technique utilizing an artificial neural network was proposed to control the
cross-coupled dynamics of nonlinear systems in [35]. Rapid and sudden changes in rotor
speeds are the primary cause of cross-coupling between pitch and yaw dynamics. However,
because some states of the system cannot be measured, mathematical modeling of the
system can become challenging, as the system is no longer flat. In previous research,
robust generalized dynamic inversion (RGDI)-based control theory and mixed-optimization
control were applied in [36,37] to a UAV, and its performance was characterized through
an experimental test of the prototype.

In order to fulfill the objective, the first step involves inverting the motion equations.
To simplify the model, a controller design utilizing nonlinear dynamic inversion (NDI) was
implemented. To ensure system stability, calculations of controllability and observability
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matrices were performed, resulting in full rank matrices of order 6 × 10 and 10 × 6,
respectively. In previous research, a real-time robust generalized dynamic inversion-based
optimization was applied to the UAV, and its efficiency was evaluated through experimental
testing. The issue of chattering, which can occur in higher-order complex systems with
fast switching control inputs, was also addressed. The adaptive recursive sliding mode
control (ARSMC) method was developed directly from the mathematical model of the
system under study by introducing new variables that depend on the state variables,
controlling parameters, and stabilizing functions. The stabilizing functions are used to
compensate for nonlinearities in the system that can affect its operational stability. In the
future of smart cities, optimizing the age and power consumption of UAVs through path
learning will be crucial within the realm of Internet of Things (IoT) applications, especially
for achieving efficient UAV optimization. The main objective is to design an adaptive
recursive technique that incorporates adaptation laws and a recursive fast terminal sliding
surface. This technique is specifically tailored for highly nonlinear and cross-coupled
multiple input multiple output (MIMO) systems. The innovative approach is tested on
a UAV to ensure accurate flight path tracking and stabilization. The remaining paper is
organized into the mathematical modeling in two sections and the UAV stability analysis
is discussed in Section 3. The recursive control design is elaborated in Section 4 and the
adaptive recursive sliding mode control is explained with adaptation laws in Section 5.
In Section 6, the performance of controllers is elaborated via figures. The final section
provides conclusions based on a comparison of the simulation’s response.

2. Mathematical Model

Suitable and reasonable assumptions must be made in order to model a higher-order
nonlinear system [6]. In this section, we describe a highly nonlinear system with a finite
degree of freedom and discuss its important parameters in Table 1. We use mathematical
state equations to describe an experimental prototype represented in Figure 1 with both
main and tail rotors, as follows:

dθ̇

dt
=

a1

I1
τ2

1 +
b1

I1
τ1 −

Mg

I1
sin(θ) +

0.0326
2I1

sin(2θ)ϕ̇2 − B1θ

I1
Ψ−

kgy

I1
cos(θ) ϕ̇ (a1τ12 + b1τ1) (1)

where θ is the pitch angle of the main rotor. The variable I1 is the inertia of the main rotor.

d ϕ̇

dt
=

a2

I2
τ2

2 +
b2

I2
τ2 −

B1ϕ

I2
ϕ̇− kc

I2
1.75 (a1 τ2

1 + b1τ1) (2)

where ϕ is the yaw angle of the tail rotor. The variable I1 is the inertia of the main rotor.
The variable I2 represents the inertia of the tail rotor. The equation for the main motor of
the TRMS (UAV),

τ̇1 =
T10

T11
τ1 +

k1

T11
u1 (3)

where τ1 represents the momentum of the main rotor. The equation for the tail motor of the
TRMS (UAV),

τ̇2 =
T20

T21
τ2 +

k2

T21
u2 (4)

where τ2 represents the momentum of the tail rotor.
In order to model a system, some suitable assumptions need to be made. An ex-

perimental prototype consisting of both main and tail rotors can be described through
mathematical state equations, which are then converted into linear state equations. This
means that there are no terms with a degree higher than one in the resulting equations.
The process of obtaining linear equations with some compromising assumptions is called
linearization. The linearized model is more amenable to analysis and controller design.

ẋ(t) = Ax(t) + Bu(t) (5)
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y(t) = Cx(t) (6)

where x ∈ R and u ∈ R show real numbers and input value, while y ∈ R is considered as
the output of the system. Dynamic states as state vectors are given as:

x =
[
θ θ̇ ϕ ϕ̇

]T (7)

y = [θ ϕ ]T (8)

where θ is the elevation position, φ is the azimuth position, τ1 is the main rotor momentum
and τ2 represents the tail rotor momentum. The dynamic states at origin, x(t) = x(0),

J =
δ f (x)

δx
|x=0 (9)

J =


∂f1
/
∂x1

· · · ∂f1
/
∂x6

...
. . .

...
∂f6
/
∂x1

· · · ∂f6
/
∂x6

 (10)

Figure 1. Basic schematic sketch of TRMS [6].
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The simplified matrices can be obtained at origin (0, 0, 0) as,

A =



0 1 0 0 0 0
−Mg

I1
− B1θ

I1
0 0 b1

I1
0

0 0 0 1 0 0

0 0 0 − B1ϕ

I2
− kc

I2
1.75 b2

I2

0 0 0 0 − T10
T11

0
0 0 0 0 0 − T20

T21


(11)

C =

[
1 0 0 0 0 0
0 0 1 0 0 0

]
B =



0 0
0 0
0 0
0 0
k1
T11

0
0 k2

T21


(12)

Table 1. Parameters of TRMS (UAV).

Variable Notation Description Units and Values of Parameters

I1 Main rotor inertia 6.8 ×10−2 kgm2

I2 Tail rotor inertia 2× 10−2 kgm 2

a1 Constant 0.0135
b1 Constant 0.0924
a2 Constant 0.02
b2 Constant 0.9
Mg Gravitational momentum 0.32 Nm
B1θ Frictional parameter 6× 10−3 Nms2 rad2

B2θ Frictional parameter 1× 10−3 Nms2/rad2

B1ϕ Frictional parameter 1× 10−1 Nms/rad
B2ϕ Frictional parameter 1× 10−2 Nms2/rad
kgy Gyroscopic parameter 0.05 rad/s
k1 Gain of main motor 1.1
k2 Gain of tail motor 0.8
T11 Denominator of motor 1.1
T10 Numerator of motor 1
T21 Denominator of motor 1
T20 Numerator of motor 1
kc Coupling reaction for gain 2

Figure 2 shows a block diagram of a UAV with a representation of the coupling effect.
The diagram includes two output states, which are the pitch angle and the yaw angle.
The coupling effect is also depicted in the diagram.

The system under consideration is checked by a well-known calculation process with
respect to controllability and observability. The controllability property of the system,
coupling within the state, and the input involves the system matrices. The Cc matrix is a
linear system said to be in controllable form if it is possible to find some input, and this
input will transform the state’s x(to) to the origin at a finite time. If there exists some input
which gives x(t) = 0, admitted for all initial times and states, then it is verified for the
controller [38]. The full rank of the controllability matrix further validates that the system
is indeed controllable.
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Cc =



0 0 0 0 0.0014 0 −0.0014 0 −0.0052 0
0 0 0.0014 0 −0.0014 0 −0.0052 0 0.0058 0
0 0 0 0 0.0016 0.0036 −0.0096 −0.0216 0.0491 0.1116
0 0 −0.0016 0.0036 0.0096 0.0216 0.0491 0.1116 0.2468 0.5616
1 0 0.0009 0 0.0008 0 0.0008 0 0.0007 0
0 0.8 0 0.0008 0 0.0008 0 0.0008 0 0.0008

 (13)

Figure 2. Block Diagram of System.

The full rank property of the system is validated by the matrix shown above, which
is a positive sign of controllability. The observability matrix Oo has been calculated and
is provided below. The full rank property of the matrix confirms the observability of
the system.

Oo =



1 0 0 0 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0

−4.7059 −0.0882 0 1.3588 0 0
0 0 0 −5 1.6170 4.5

0.4151 −4.6534 0 0 −1.3543 0
0 0 0 25 −9.5532 −27

22.1089 0.8294 0 0 −8.6574 0
0 0 0 −125 49.1258 139

−3.9032 22.0356 0 0 5.8103 0
0 0 0 663 −246 −702



(14)

3. Design Procedure of Robust Sliding Mode Control

Based on variable structure systems (VSS) control theory, sliding mode control (SMC)
maintains sliding mode system states by continuously changing the controller structure
in response to fluctuations in the state variables. By using high-frequency switching
control, SMC alters the system dynamics [12]. There are two parts to the controller design.
The sliding surface is chosen in the first segment according to the sequence of the system
under consideration.
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The designed sliding surface can be expressed as:

s(t) =
(

d
dt

+ λ

)n
∫ t

0 eξ(t) dt (15)

where s(t) is known as the selected manifold as the sliding surface and eξt is the measured
tracked output with the new state as a state variable. It is vital to pay emphasis to the
control rule that forces the control factors to their set point while choosing the sliding
surface. The control law can be formulated mathematically as:

u = ueq + udis (16)

while
udis = −ksign(s) (17)

where ueq represents the equivalent controller, sign(s) is a sign function that creates a
discontinuous control input resulting from a limited switching around the sliding surface
and k1 is a constant. The trajectory of the controlled system moves along the manifold
during the application of SMC as a result of the actions of several structures and follows
the switch condition known as the chattering phenomenon displayed in Figure 3. It has
been suggested that switching functions [36], denoted by x, that may be a scalar or a vector,
define the system structure during SMC. In the phase plane, the switching surface can be
seen as a line with the symbol s(x) = 0.

Figure 3. Chattering phenomena.

A strategy that is frequently used to evaluate the stability of nonlinear systems based
on ODE theory is the use of a Lyapunov function. The Lyapunov function should be
determined in order to verify the system’s stability according to ODE class theory, it
must be negative definite. This requirement is adequate to ensure the nonlinear system’s
asymptotic stability. However, creating a suitable Lyapunov function for ODEs can be
challenging. It has been noted that the sliding motion in the context of sliding mode
control (SMC) happens close to the sliding surface, much like the frequency switching
phenomenon. In SMC, the system’s nonlinear behavior may attempt to move away from
the sliding surface, but the controller will compel the system to follow the line until it
reaches the origin, referred to as the boundary layer. SMC simulations have demonstrated
satisfactory convergence for pitch and yaw angles. However, the SMC chattering pattern
for these systems is unsuitable as it can pose a risk to the actuators. Figure 4 shows the rapid
and sudden changes in voltage patterns that require highly optimized power suppliers.
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The TRMS output requires smooth convergence with a regular voltage pattern that can be
optimized using an optimization method.

Figure 4. Chattering in Control Input for Pitch and Yaw Angle.

4. Recursive Control Design

After that, we continue working on the controller’s recursive section to create addi-
tional states as new state variables. When the final control phase is reached, nonlinearities
are removed using the backstepping control design method [39]. Comparing this form
of controller to earlier TRMS research, it offers a more accurate and efficient response.
Control theory has advanced significantly as a result of the simulation response and experi-
mental confirmation. To identify the new state variables, execute the following controller
design steps:

ξ̇1 = ξ2 + ψ1(ξ1) (18)

ξ̇2 = ξ3 + ψ2(ξ1, ξ2) (19)

...
...

...
... (20)

ξ̇n−1 = ξn + ψn−1(ξ1, ξ2, . . . ξn−1) (21)

ξ̇n = u + ψn(ξ1, ξ2, . . . ξn) (22)

where {ξi ∈ R̂i = 1, 2, . . . , n} are state variables and {u ∈ R̂} is the control input ψi :
R̂i × · · · × R̂n{→ Â} are nonlinear differentiable functions up to the order n − i with
ψi(0, . . . 0) = 0,
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The first error dynamics of the system are:

eξ = ξ1 − ξd, (23)

where ξd is the desired output to be tracked by the actual output of the system. The rest of
the error dynamics of the transformed system can be found as:

eξi = ξi − αi−1(ξ1, . . . ξi−1) ∀ i = 2, . . . , n (24)

where αi−1 ∀ i = 2, . . . , n are the stabilizing functions.
Step 01: The error dynamics eξi are arranged to design the virtual controller, also

known as the stabilization function, α1(ξ1), for the first subsystem.

˙eξi = ξ̇1 − ξ̇d = ξ2 + ψ1(ξ1)− ξ̇d = eξ2 + α1(ξ1) + ψ1(ξ1)− ξ̇d (25)

The stabilizing function α1(ξ1) to stabilize the first error state.

α1(ξ1) = −k1eξ1 − ψ1(ξ1) + ξ̇d (26)

The resultant error dynamics of eξ1 can be obtained as:

˙eξ1 = −k1eξ1 + eξ2 (27)

Step 02: The error dynamics eξ2 are arranged as:

˙eξ2 = ξ̇2 − α̇1(ξ1) = ξ3 + ψ2(ξ1, ξ2)−
∂α1

∂ξ1
ξ̇1 (28)

˙eξ2 = eξ3 + α2(ξ1, ξ2) + ψ2(ξ1, ξ2)−
∂α1

∂ξ1
(ξ2 + ψ1(ξ1)) (29)

The stabilizing function α2(ξ1, ξ2) to stabilize the second error state.

α2(ξ1, ξ2) = −eξ1 − k2eξ2 − ψ2(ξ1, ξ2) +
∂α1

∂ξ1
(ξ2 + ψ1(ξ1)) (30)

The resultant error dynamics of eξ2 can be obtained as:

˙eξ2 = −eξ1 − k2eξ2 + eξ3 (31)

Step i: ∀ 2 < i < n The error dynamics eξ1 are arranged as:

ėξi = ξ̇i − α̇i−1(ξ1, ξi−1) = ξi+1 + ψi(ξ1, ξ2, ξi)−
i−1

∑
m=1

∂αi−1

∂ξm
(ξm+1 + ψm(ξ1, . . . ξm)) (32)

ėξi = eξi + αi + ψi(ξ1, ξ2, ξi)−
i−1

∑
m=1

∂αi−1

∂ξm
(ξm+1 + ψm(ξ1, . . . ξm)) (33)

The stabilizing function αiξ1, . . . ξi to stabilize the ith error state.

αi = −eξ1−i − kieξi − ψi(ξ1, ξ2, ξi)−
i−1

∑
m=1

∂αi−1

∂ξm
(ξm+1 + ψm(ξ1, . . . ξm)) (34)

The resultant error dynamics of eξi can be obtained as:

ėξi = −eξ1−i − kieξi + eξi+1 (35)
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Step n: At the final iteration, a control law is designed that ensures the asymptotic
stability of the system and, hence, we can also write this as u = αn for i = n

ėξn = ξ̇n − α̇n−1(ξ1, ξ1, . . . ξn) (36)

ėξn = u + ψn(ξ1, ξ1, . . . ξn) +
i−1

∑
m=1

∂αi−1

∂ξm
(ξm+1 + ψm(ξ1, . . . ξm)) (37)

The control law u ensures the asymptotic stability of the system.

u = −eξ n−1
− kneξ n

− ψn(ξ1, ξ1, . . . ξn) +
i−1

∑
m=1

∂αi−1

∂ξm
(ξm+1 + ψm(ξ1, . . . ξm)) (38)

The resultant error dynamics of eξn can be obtained as:

˙eξ n
= −eξ n−1

− kneξ n
(39)

Stability Analysis of Recursive Backstepping: The error dynamics of the closed-loop

system in coordinate eξ =
[
eξ 1

, eξ 2
. . . . . . . . . .eξ n

]T
can be written as: ėξ = Aeξ

eξ


ėξ1
ėξ2
ėξ3
...

ėξn

 =



−k1 1 0 · · · 0

−1 −k2 1
. . . 0

0 −1 −k3
. . . 0

...
. . . . . . . . . 1

0 0 0
. . . −kn





eξ 1
eξ 2
eξ 3
...

eξ n

 (40)

The above matrix demonstrates that the off-diagonal elements possess skew-symmetric
properties. To evaluate the stability of the transformed system, a Lyapunov candidate
function can be utilized. Lyapunov functions are scalar functions used to establish the
equilibrium stability of an ordinary differential equation (ODE). These functions are es-
sential to stability and control theory and are named after the Russian mathematician
Aleksandr Mikhailovich Lyapunov. For several classes of ODEs, the presence of the Lya-
punov function is a necessary and sufficient condition for stability. Although constructing
a Lyapunov function for ODEs is not a general technique, it is known for many specific
cases. In essence, a Lyapunov function is a function that has positive values everywhere
except at the equilibrium and decreases (or remains non-increasing) along every trajectory
of the ODE. The primary advantage of Lyapunov-function-based stability analysis of ODEs
is that the exact solution of the ODE is not required, whether analytical or numerical [40].
The candidate function for the considered system is here:

V =
1
2

eξ
2
1
+

1
2

eξ
2
2
+ . . .

1
2

eξ
2
n (41)

V̇ = −
n

∑
m=1

kmeξ
2
m (42)

Adaptive Recursive Sliding Mode Control Strategy

In summary, adaptive recursive sliding mode control (ARSMC) combines three dif-
ferent control techniques—adaptive control [39], recursive control [40], and sliding mode
control [36]—to achieve robust and adaptive control of complex nonlinear systems with
uncertain dynamics. The sliding mode control provides robustness to disturbances and
uncertainties, while the adaptive control adjusts the controller parameters in real-time
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based on estimation of the system states and model parameters. The recursive control
updates the controller parameters based on the current state of the system, allowing it
to track changes in the system dynamics and adapt to them in real-time. The ARSMC
has been successfully applied to a wide range of complex nonlinear systems, including
robotics, aerospace, and power systems. Its effectiveness and robustness have been demon-
strated through simulation and experimental studies, making it a promising approach for
advanced control of complex nonlinear systems.

ARSMC is an advanced control strategy that combines adaptive control, recursive
control, and sliding mode control (SMC) techniques to improve the control performance
of complex nonlinear systems. In ARSMC, the system model is not required to be known
exactly and the controller adapts to the changes in the system dynamics to achieve better
control performance. The controller is designed recursively, which means that the current
state of the system is used to update the controller parameters for the next control action.
This allows the controller to track the changes in the system dynamics and adapt to them in
real-time. The sliding mode control technique is used to force the system states to converge
to a sliding surface that is defined based on the system model and the desired control
objectives. The sliding mode provides robustness to the system against disturbances and
uncertainties. The adaptive control technique is used to adjust the controller parameters in
real time based on estimation of the system states and model parameters. Overall, the AR-
SMC strategy, represented in Figure 5, provides better control performance, robustness,
and adaptability to complex nonlinear systems compared to traditional control strategies.
It has been applied in various fields, such as robotics, aerospace, and industrial automation.
This section implements an adaptive backstepping for position trajectory tracking control,
taking the output vector for the UAV position as [x1, x2]. The variables used in the design
procedure for the MIMO system are:[

θ = x1 and eξθ
= x1 − x1d , eξθ

∈ eξ1 , eξ2 , eξ3
φ = x3 and eξφ

= x3 − x2d , eξφ
∈ eξ4 , eξ5 , eξ6

]
(43)

Figure 5. Block diagram of UAV for ARSMC.

Defining the position tracking errors as:

[
eξz

]
=

[
eξθ

eξφ

]
=>

[
x1 − x1d
x3 − x2d

]
=>

[
Tracking error o f pitch position (angle)
Tracking error o f yaw position (angle)

]
(44)

[
eξθ

]
=

eξ1
eξ2
eξ3

 =>

x1 − x1d
x2 − α1
x5 − α2

 (45)

[
ėξθ

]
=

ėξ1
ėξ2
ėξ3

 =>

ẋ1 − ẋ1d
ẋ2 − α̇1
ẋ5 − α̇2

 (46)
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[
Vξθ

]
=

Vξ1
Vξ2
Vξ3

 =>

1/2e2
ξ1

1/2e2
ξ2

1/2e2
ξ3

 (47)

[
V̇ξθ

]
=

V̇ξ1
V̇ξ2
V̇ξ3

 =

eξ1
˙eξ1

eξ2 ˙eξ2
eξ3 ˙eξ3

 =>

eξ1(ẋ1 − ẋ1d)
eξ2(ẋ2 − α̇1)
eξ3(ẋ5 − α̇2)

 (48)

The required condition for the Lyapunov function to fulfill the asymptotic stability as:

V̇ = −V2
ξ1
−V2

ξ2
−V2

ξ3
(49)

[
eξφ

]
=

eξ4
eξ5
eξ6

 =>

x3 − x2d
x4 − α3
x6 − α4

 (50)

[
ėξφ

]
=

ėξ3
ėξ4
ėξ6

 =>

ẋ3 − ẋ2d
ẋ4 − α̇3
ẋ6 − α̇4

 (51)

[
Vξφ

]
=

Vξ4
Vξ5
Vξ6

 =>

1/2e2
ξ4

1/2e2
ξ5

1/2e2
ξ6

 (52)

[
V̇ξφ

]
=

V̇ξ4
V̇ξ5
V̇ξ6

 =

eξ4
˙eξ4

eξ5 ˙eξ5
eξ6 ˙eξ6

 =>

eξ4(ẋ3 − ẋ2d)
eξ5(ẋ4 − α̇3)
eξ6(ẋ6 − α̇4)

 (53)

The arbitrary control laws for the pitch and yaw position are formulated as follows:
αξ1 = −cξ1 eξ1 + ẋ1d ,

αξ2 = −ĉξ1 eξ1 + x1 + x2 − cξ1(ĉξ2 eξ2 + αξ1)ẋ1d
αξ3 = −cξ4 eξ4 + ẋ1d

αξ4 = −eξ4 − ĉξ5 eξ5 + x4 − x5 − cξ4(−ĉξ4 eξ4 − ẋ2d)ẍ2d

(54)

where ˙̂cξ2 ,˙̂cξ5 are the estimates of cξ2 , and cξ5 , respectively.

Theorem 1. In [39], it was reported that if the TRMS position system is controlled using Equa-
tion (54) along with the adaptation law Equation (49), the convergence is guaranteed. In addition,
the adaptation laws for parametric stability are provided as follows:{

˙̂cξ2 = n1c2
ξ2

,
˙̂cξ5 = n2c2

ξ2

(55)

where n1, and n2 are positive constants. The Barbalat’s Lemma is used to evaluate the worth of the
considered theorem. The above lemma requires:

Lemma 1. In [39,40], if the function f (t) is a uniform function and limt→+∞
∫ t

0 f (τ)dτ validated,
then f (t) must be converged at zero (origin) asymptotically.

Proof. To provide confined convergence of the system with explanation of ĉξ2 and ĉξ5 as the
parameters of a system, the Lyapunov stability analysis is applied. For ĉξ2 , the candidate
function is introduced for the considered subsystem.

vξ2 = vξ1 +
1

2n1
c̃2

ξ2
(56)
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where c̃ξ2 shows the error. The time derivative of Equation (57) is

v̇ξ2 = −cξ1 e2
ξ1
− ĉξ2 e2

ξ2
+

1
n1

c̃ξ2
˙̃cξ2

= −cξ1 e2
ξ1
−
(
cξ2 − c̃ξ2

)
e2

ξ2
− 1

n1
c̃ξ2

˙̂cξ2

= −cξ1 e2
ξ1
− cξ2 e2

ξ1
+ c̃ξ2

(
e2

ξ2
− 1

n1
˙̂cξ2

) (57)

In Equation (57), the mentioned term c̃ξ2

(
e2

ξ2
− 1

n1
˙̂cξ2

)
will be equal to zero. By taking

cξ2 a positive constant, the derivative of c̃ξ2 can be expressed as ˙̃cξ2 = 0− ˙̂cξ2 . Now the
candidate function is elaborated in Equation (56), which will be :

v̇ξ2 = −cξ1 e2
ξ1
− cξ2 e2

ξ2
≤ 0 (58)

Thus, the stability condition is satisfied through Equation (58). To guarantee the
stability of the positioning system, the Lyapunov candidate function for the system’s
position is chosen: The time derivative of the Lyapunov position is

v̇ξ =
(
−cξ1 e2

ξ1
− cξ2 e2

ξ2
− cξ4 e2

ξ4
− cξ5 e2

ξ5

)
≤ 0 (59)

where cξ1 , cξ2 , cξ4 , and cξ5 are the parameters of both angles. The basic variables representa-
tion for the control of TRMS can be characterized from Figure 6. This section explains how
an adaptive recursive method for trajectory tracking in a specific system was developed.
Equations (59) and (60) allow the system to follow the specified flight trajectory and guar-
antee the stability of the system. The suggested control’s second parameter is calculated
using the adaptive recursive technique using adaptive laws. A recursive method is used
to update this parameter continually, which improves the system’s ability to monitor the
trajectory. The system can adjust to changes in the environment and still maintain stability
while following the planned flying trajectory using adaptive rules. As a result, the system
is strengthened and better suited for use in practical applications.

Figure 6. Controller design procedure for UAV.
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5. Discussion: Simulation Response of Control Strategies

The novel ARSMC strategy effectively addresses key issues, such as finite-time conver-
gence, robustness for parametric perturbations, and singularity. To verify its effectiveness,
we conducted a comparison study and evaluated the performance of the controller in terms
of the vertical stability (pitch angle) and horizontal stability (yaw angle). Additionally,
the controller was tested in the presence of disturbances, such as external disturbances,
parametric uncertainties, coupling effects, and noise signals. The simulation response of
TRMS under different control strategies provides key ideas on how the augmentation of a
recursive strategy in SMC with adaptive laws performs better. The convergence time of
pitch and yaw angles in Figures 7 and 8 represents the brief response with their convergence
time in subplots. The figure that shows the square input for both the pitch angle and yaw
angle of the TRMS illustrates that the pitch angle has a faster convergence time than the yaw
angle. This delay is because the main rotor must be stabilized first in order to counteract
the disturbance generated by the tail rotor, such as the gyroscopic torque effect and the
coupling effect. As a result, the convergence time of the tail rotor cannot be faster than that
of the main rotor.

Figure 7. Pitch angle of UAV for ARSMC.

Figure 8. Yaw angle of UAV for ARSMC.
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The step input tracking response in the simulation confirms that the control theory
regarding the convergence time of the angles, specifically the pitch and yaw angles, is
logical and results in a sharp stability response. According to the effectiveness of the
proposed controller, the control actions response for both angles can be characterized on
the basis of minimum voltage variations. A subplot also shows the attenuation due to the
applied noise signal and the range of disturbance being tackled by an efficient controller.
Other subplots verify how the controller can manage the considered disturbance over
time. The system response becomes more stable over time, which represents a remarkable
difference with respect to other applied control methods to date. The convergence time
and effect of attenuation are greater in the yaw angle. The reason behind this change is that
the coupling effect due to the disturbance torque is greater due to the weighted rotor as
well as the blades of the main rotor. A slight sharp variation in yaw angle is generated by
different factors created by the main rotor. The time constant values are also provided in
the subplots of both figures, which refer to the characteristic timescales associated with the
system’s response to changes or disturbances. The specific time constants depend on the
nature and complexity of the mechanical system under consideration. The control actions
of both angles are elaborated via Figures 9 and 10. The control action for the pitch angle
shows slightly more variations compared to the control input of the yaw angle. There are
several reasons for this. As we know, the pitch angle and yaw angle are both important
angles that need to be controlled in a twin-rotor MIMO (multiple-input multiple-output)
system. However, the response of the pitch angle control input may show more variations
compared to the yaw angle control input due to several factors. The first reason is that the
twin-rotor MIMO system is inherently unstable and highly nonlinear. This means that even
small changes in the input or the system’s parameters can result in significant variations in
the output. The pitch angle control input may be more sensitive to changes in the system’s
dynamics, leading to more variations in the response. The second reason is that the pitch
angle control input may require more precise control than the yaw angle control input.
Pitch angle control is essential for maintaining the altitude and stability of the system,
which requires very precise control. On the other hand, the yaw angle control input is more
straightforward and less sensitive to variations as it primarily controls the heading of the
system. The third reason is the coupling effect due to the gyroscopic torque of the main
rotor. The variations in the response of the pitch angle control input in a twin-rotor MIMO
system are due to the system’s inherent instability and nonlinearity, as well as the need for
more precise control to maintain the system’s altitude and stability.

Figure 9. Control input of pitch angle for ARSMC.
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Figure 10. Control input of yaw angle for ARSMC.

6. Conclusions

We present a novel dynamic control strategy that is highly efficient and results in im-
proved convergence time, achieved through the use of a Lyapunov stability mathematical
operator. The novel dynamic recursive structure of the controller developed based on the
mathematical model of the system highlights its excellent resistance against the consid-
ered varying perturbations. The effectiveness of the dynamic approach was demonstrated
through worst scenario conditions, including simultaneous noise and parametric variation
provided to both rotors with disturbance torque. In the future of smart cities, the opti-
mization of UAV’s age and power consumption through path learning will be a critical
endeavor in the realm of Internet of Things (IoT) applications, particularly in achieving
efficient UAV optimization. The primary objective of this study is to design an adaptive
recursive technique, incorporating adaptation laws and a recursive fast terminal sliding
surface, specifically tailored for highly nonlinear and cross-coupled multiple input multiple
outputs (MIMO) systems. This innovative approach is put to the test on a UAV to ensure
accurate flight path tracking and stabilization. Additionally, it is utilized to devise robust
controllers that can effectively handle uncertainties in the UAV’s operating environment.
The control strategy implemented in this study comprised two distinct phases. The first
phase involved comprehending the system’s behavior, which proved to be challenging due
to the presence of high coupling and disturbance torque. To address this, time-varying
dynamic constraints were designed. To provide a simplified model of the TRMS, NDI is
employed. However, the limitations of NDI and singularity issues were taken into account
during this phase. In the second phase of the control strategy, reference trajectories were
used to track the output states. To ensure robustness and stability validation against the
nonlinear characteristics of the coupled system with uncertainties, sinusoidal reference
tracking of states was employed. This approach aimed to address the nonlinear behavior
and uncertainties within the system, thereby validating the effectiveness and reliability of
the control strategy.

The inclusion of a robust term in previous research controllers was developed to
increase robustness against external perturbations and unmodeled states. The ARSMC
method is based on the mathematical model of the TRMS system which addresses varying
parametric uncertainties and loss of thrust anomalies. The controller uses an adaptive
law to track the desired trajectory of the vehicle in both vertical and horizontal angles
(positions). This control approach offers finite-time convergence, reduces the problem,
and provides a parameter-tuning law to eliminate external perturbations. A novel reaching
law based on an adaptive recursive approach with a finite-time convergence technique was
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used to generate a control law for stabilizing the nonlinear system. The hybrid controller
was designed for full system trajectory tracking and stability in a closed-loop system and
produced using hybrid Lyapunov analysis. The adaptive law was used to estimate the
controller coefficients and the global stability of the closed-loop system was proved using
Lyapunov analysis. Accurate fast-tracking and error convergence performance in all cases
of perturbations (noise matrix, parametric disturbance) revealed the effectiveness of the
applied controller. Numerical simulation was conducted to evaluate the performance of the
developed control system. Based on the simulation validation, some important suggestions
are provided below for control engineers to aid their understanding of the nature of control
design and system behavior.

• The presence of significant inherent uncertainties in the physical parameters can cause
nonlinear behavior that must be addressed by precise application of recursive adaption law.

• The high amplitude noise signal causes severe contamination for the input actuators
and high-voltage range.
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