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Abstract: Datasets used for artificial-neural-network and machine-learning applications play a vital
role in the research and application of such techniques in solving real-life problems. The construction
and availability of large datasets to be used in the off-line phase of ANN training is usually a crucial
and time-consuming step towards system construction. In this work, a framework for autonomous
construction of a diverse, extensive, and open dataset* with built-in redundancy is demonstrated.
As part of the framework, a low-cost robot using off-the-shelf components is built that constructs
the dataset autonomously. The robot includes a controller network with multiple WiFi-transceiver
nodes for collecting received-signal-strength indicators (RSSIs) at various elevation points throughout
the building. All nodes are configured with direct internet access to streamline the data collection
towards an online database that is constructed as part of this framework. Preliminary validation and
analysis of the dataset are discussed, and an exploration of the application domain of the dataset is
carried out. Moreover, this paper investigates the effect of the height of the hand-held mobile WiFi
antenna attached to the robot on the received power strength of the WiFi signal.

Keywords: indoor localization; dataset construction; low-cost robot; artificial neural network; signal-
strength indicator

1. Introduction

The indoor localization process has increased in popularity and received significant
attention from both academia and industry. However, even with the huge existing number
of studies on this topic, localization is still considered a big challenge and there is no
optimal solution for all existing applications. Nowadays, various indoor networks, such
as WiFi, Bluetooth, Zigbee, and more, have been used to obtain received-signal-strength
(RSS) values to estimate an object’s position, using it as the primary feature. Unlike other
wireless technologies, the WiFi-fingerprint-localization system [1] does not require the
deployment of extra infrastructure, as WiFi routers are already widely distributed in most
indoor environments, such as residential buildings, commercial shops, airports . . . etc.
Therefore, WiFi-based IPS has become one of the most promising systems these days.

The WiFi-fingerprinting method is composed of two main phases: the training phase,
for fingerprint-radio-map generation, and the estimation phase, for the user-location es-
timation process. The radio-map generation process is time-consuming and expensive,
which is considered a drawback of this method. Therefore, the traditional systems for the
radio-map creation process, which are based on manual collection such that the surveyor
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needs to walk through the whole localization area to collect the WiFi fingerprints, are
labor-intensive and time-consuming systems, especially in large-scale areas. As a result, a
contemporary solution for the WiFi-fingerprinting training phase is the automated method
(robot-based method) [2,3], where a robot collects RSS and builds a radio map to be able to
perform the location-estimation process.

Indoor robot-based solutions have many potential applications in daily life, such as
home care, data collection, object finding, and emergency support [4,5]. On the other hand,
designing autonomous robots is considered a critical issue since it requires the continuous
computation of various characteristics of the robot, such as width, height, position of the
sensors mounted on the robot, or wheel diameter, which can be used to make assumptions
about the movement of the robot [6].

A robot developed by researchers in [7] is capable of generating a map using LiDAR
sensors and simultaneous localization and mapping (SLAM) methods. The robot was
equipped with an RGBD camera to improve the efficiency of the WiFi radio map, especially
in featureless areas such as corridors. Despite this, the developed robot scanned 3000 points
in 2 h without providing information about the experimental environment and the mean
error of the positioning system.

A robot’s power needs become crucial when operating in large indoor environments.
Researchers used a robot equipped with LiDAR and SLAM to construct a dual WiFi radio
map (2.4 and 5.0 GHz) in [8] and, using a Bayesian probabilistic model and K-nearest-
neighbor algorithm, they were able to reach a mean error of 2.4 m. The robot in this
experiment consumed between 60 and 82 Wh and was able to scan two university floors in
94 min, making it an extremely power-efficient device.

According to [9], a robot-based method was adopted to collect data more effectively
and quickly. By analyzing the map’s reliability and collecting additional learning data, a
reliable WiFi radio map (WRM) was constructed using the SLAM-based data-collection-
and-analysis (SDCA) technique. The WRM construction was improved by 12.9% with
this method. Furthermore, they developed a robust tracking algorithm that can handle
fluctuations in WiFi signals after collecting the data called the extended-Viterbi-algorithm
and signal-fluctuation-matrix fusion tracking method (EVSFM). However, the author used
a small environment with too many access points to achieve high-quality results, where the
mean positioning error was about 1 m. In most indoor environments, this is not possible.

In large indoor environments, RSS radio maps can be time-consuming to produce.
Researchers from [10] solved this problem by using a robot to collect RSS at various
locations in the environment. They also used interpolation methods to estimate RSS values
at unmeasured locations. In addition, they applied machine-learning algorithms during
the online phase to estimate the object’s current position and obtained a 2.21 m error.
Furthermore, no map of the environment was created, and the researchers did not provide
valuable information about the environment. Only 10 reference points were used in the
offline stage of the study.

Indoor positioning reduces the time required to scan the environment, as well as the
possibility of dealing with changes in the environment over time. To keep Bluetooth RSS
maps up to date, the researchers of [11] developed a robot that can update the fingerprint
database frequently. The method was tested on 210 m2, and the mean error was 1.84 m.
Within 27 min, the robot scanned the entire environment and generated a route between
the specified reference points. According to [12], the researchers used the Gaussian Process
Regression-conditioned Least Square Generative Adversarial Network (GPR-GAN) method
to solve constrained spaces in the environment. Despite the authors’ inability to handle the
issue of reaching a small part of the environment with the robot, they reduced the mean
error distance to 1.98 m over the environment.

Previous studies have shown that the role of robots is important in improving the
efficiency of data collection, and this has an important role in improving the efficiency of
the model. Therefore, this study focuses on how the strength of the received WiFi signal
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is affected by the height of the handheld WiFi antenna, which is connected to the robot.
Different sets of antenna heights are considered.

In the rest of the paper, the related work is discussed first. The existing literature and
research relevant to using Wi-Fi beacons in localization is explored. Then, an overview
of the overall system architecture is presented, outlining its key components, and func-
tionalities. A detailed description of the robot sub-system follows, where an overview
of the robot’s external structure, physical design, and characteristics is discussed. Ad-
ditionally, a schematic description of the robot’s electronic system is provided to offer a
visual representation of its internal layout and connections. The next section details the
robot’s operation and its sub-modules. Then, the paper discusses the indoor-environment
infrastructure, covering the setup necessary to support the robot’s operations in an indoor
setting. The backend database and web-server interface is then explored, outlining the
underlying technology and functionality enabling interaction with the robot. Then, the
paper presents the results obtained, along with a comprehensive discussion analyzing the
implications and significance of the results. A conclusion section summarizes the main
points discussed in the paper and provides a final reflection. Finally, a list of references
is included to acknowledge the sources cited throughout the paper, ensuring academic
integrity and facilitating further research.

2. Related Work

There are indoor-positioning methods other than indoor networks. Based on the
intensities and luminaries of indoor light, some researchers extended the boundaries of
indoor positioning. In [13], an experimental robot captured frequency information from
four LED transmitters with different frequencies. The robot is equipped with a LiDAR
sensor that maps the room and two cameras capable of measuring light intensity and
frequency. Although the experimental results reached a mean error of 80 cm, this method
appeared to be unsuitable for localization in large environments. In [14], the researchers
used light luminaries to predict position. A LiDAR-based SLAM map was generated by
a robot that reads the visible light and stores it with a real-time position estimated using
the HTC Vive. To predict the robot’s current location, they used KNN, support-vector
regression (SVR), and decision trees. The robot used in the research was a vacuum robot
with an added photodiode to measure light intensities, and they achieved great results in
terms of positioning error, which was between 8.4 and 14.4 cm. However, the experiment
was extremely expensive, as the HTC Vive tracking system was used only in one room,
which had a 43.4 m2 area, and the cost would be high if applied to the entire building floor.
In addition, it is only used for positioning trained robots.

In terms of indoor positioning, WiFi is not the only network that caught researchers’
attention. The researchers in [3] developed a ZigBee network radio map and a nonlinear-
regression model to locate the robot’s location, which is good for dynamic environments due
to its continuous database updates. In a 145 m2 environment, the robot visited 531 reference
points with a mean error of 0.81. Although the robot can be used in any dynamic envi-
ronment, it cannot avoid moving obstacles. Other researchers chose Bluetooth RSS as
fingerprints in indoor positioning, and in [15] LiDAR and a camera were used as wearable
devices to scan the environment and create SLAM-based maps. The camera is responsible
for labelling the rooms in the environment, and the helmet records Bluetooth signals to be
used to estimate position in the future. Other researchers suggested RFID tags as a solution.
A study in [16] achieved a 1.22 m error rate for RSS-data collection over a 45 m2 environ-
ment by using RFID tags and two-wheel robots. Table 1 summarizes a set of previous
studies in this field. Ref. [17] demonstrated the use of Bluetooth low-energy (BLE) beacons
for constructing a location-aware infrastructure by using unsupervised learning methods.
Data collection, storage, and post-processing techniques in [17] were of particular interest.
Paper [18] suggested using support-vector regression (SVR) for mobile-target localization
in indoor environments. The techniques discussed in [18] could be applied to the dataset
collected in this paper and would lead to an interesting future study.
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Table 1. Recent studies in the field of indoor positioning.

Ref. Year Robot Type Environment
Area

Map
Acquisition

Location
Estimation

Positioning
Method Time Observations Localization

Error Scope

[3] 2019 Custom 145 m2 SLAM ASMF ZigBee NA 531 0.81 m Generic (ZigBee)

[8] 2020 Industrial
(Pioneer 3-DX) 2 university floors SLAM KNN Bayes with

Gaussian process WiFi 94
min NA 2.4 m Generic

(smartphones)
[9] 2020 Industrial (Kobuki) 89 m2 SLAM EVSFM WiFi 2.5 h 825 1 m Generic

[10] 2019 Custom unknown Pre-defined KNN WiFi NA 10 2.21 m Generic

[11] 2018 Industrial
(Pioneer 3-DX) 210 m2 SLAM PDR Bluetooth 27

min NA 1.84 m Generic

[12] 2020 Industrial (Kobuki) 700 m2 SLAM GPR-GAN WiFi NA NA 1.98 m Generic

[13] 2021 Industrial
(Kobuki turtlebot) One room SLAM PDR VLP NA NA 0.8 m Robot specific

[14] 2021 Industrial (Roborock
s50 vacuum)

One room
(43.4 m2) SLAM Ridge regression VLP NA 7344 84 to 144 mm Robot specific

[15] 2020 Custom One floor SLAM SLAM BLE NA NA NA Wearable device
[16] 2021 Industrial (Pioneer 3-DX) 45 m2 Pre-defined Odometry RFID NA NA 1.22 m Robot specific

[18] 2022 Custom 100 m2 Pre-defined Support-vector
regression WiFi NA NA 0.8528 m Generic

(smartphones)
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For an efficient RSS-based IPS, there are various factors that should be considered, such
as human-body effects, building material, device diversity, antenna polarization, and sensor-
placement height, and a good understanding of RSSI behavior with these factors will lead
to an accurate, efficient, and effective IPS [19]. Various studies have discussed these factors,
such as [20], in which the author introduces a detailed explanation of the building material
and environmental effects on WiFi RSSI measurements, such that their conclusion shows
that metal makes a significant contribution to signal-strength fluctuations and that isolators
such as wood and plastic contribute to a reduction in signal strength. The author of [21]
discussed the effect of device diversity in the localization process, and their results showed
significant differences in the behavior of different devices in a practical environment. The
authors of [22] demonstrated the use of a handheld device operated manually by a human
for a dataset construction that maps the same area of study as this paper. The authors then
used the collected dataset for constructing, training, and then testing an AI model used for
location estimation. The size of the collected dataset in [22] is not clear, but it is apparent
that the number of collected samples was not sufficient for constructing an accurate ANN,
hence the use of the BSI method to generate a denser database and attain an effective ANN
solution. The authors in [23] considered the polarization of the antenna and its effect on the
accuracy of the location-estimation identification. Although the authors of [23] discussed
mathematically how the RSSI value is related to the distance between the transmitter and
the receiver, their focus was on the polarization of the transceivers and not on the effect of
the distance between the transmitter and the receiver on the location estimation, which is
the focus of this paper.

Most of the existing studies overlooked the effect of the height of the receiver antenna.
Therefore, this paper investigates the effect of the height of the hand-held mobile WiFi
antenna attached to the robot on the received power strength of the WiFi signal. There are
different heights of antennas being studied that are spaced 60 cm apart. As RSSI is used for
indoor navigation, the default height was set to 1.5 m, which is thought to be the average
height of a pedestrian’s hand-held smartphone.

3. Overall System Architecture

A systematic approach was established at an early stage in this project for data collec-
tion, storage, and retrieval for the purpose of this work. The overall system architecture is
demonstrated in Figure 1. The main component of the system is the autonomous robot,
which was constructed to facilitate the autonomous collection of the WiFi beacons in the
target area. The autonomous robot is described in Section 3.1.
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The building infrastructure was of high significance in this study. It was necessary
for the installed WiFi access points (APs) to support the management frames periodically
broadcasted by WiFi APs announcing the presence of the WiFi LAN and its available
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parameters. In addition, a track was installed to aid the robot in data collection at predefined
locations. The building infrastructure is discussed in Section 3.2.

Finally, a web interface was implemented to aid the robot in data storage due to the
large size of the collection, which would always be larger than the internal storage available
in the target low-cost microcontroller systems of choice. The web interface and associated
components are described in Section 3.3.

3.1. Robot Sub-System Description

As part of this work, an autonomous robot was constructed to collect all relevant
WiFi-hotspot information from various heights throughout the desired indoor space. This
information was collected from the broadcasted WiFi-beacon frames. The collected infor-
mation includes service set identifiers (SSIDs), received-signal-strength indicator (RSSIs),
encryption, and media-access-control (MAC) addresses. The details of the robot are dis-
cussed in the remainder of this section.

3.1.1. External Overview

An overview of the robot can be seen in Figure 2b. It includes three NodeMCU boards
mounted at selected heights on an antenna tower, as seen in Figure 2b. The WiFi-transceiver
logic-board (NodeMCU) modules are connected to a dedicated 8 V power-supply battery
pack, as seen in Figure 2b: 4 × 4 V Li-ion batteries are used, each two in series, to provide
the WiFi transceivers with the necessary power during the extended hours of operation
(more than four hours of operation for each run of data collection). Four DC motors are
each connected to an individual wheel for precise movements and a motor power-supply
sub-circuit (L298N), which is connected to a separate power-supply battery pack (8 V input
using 2 × 4 V Li-ion batteries in series) mounted at the bottom of the robot to ensure
stability by having a low center of gravity in addition to ensuring simple cable routing
and an optimal board layout. Two separate power supplies are used in order to isolate
the mechanical sub-system from the logic sub-systems. This isolates the logic boards from
the electrical noise usually produced by mechanical sub-systems. The body of the robot
mainly consists of synthetic polymers that impose minimum interference with the Wi-Fi
transceivers. In the final revision of the robot, the Wi-Fi transceivers were mounted on
a wooden pole for the same reason. In addition, the main control unit and the client
transceiver are linked using shielded CAT 5 network cables to reduce interference. Those
precautionary measures ensure minimum impact of the robot itself on the measured signal
strength and related communications.

Two infrared transmitters and sensing modules for navigation are connected to the
front of the robot for navigation, as seen in Figure 2a. The robot uses infrared (IR) trans-
mitters and sensors to sense the track on which is it intended to traverse. To guarantee
accurate displacement, many experiments were carried out by investigating different fac-
tors, such as the velocity of the wheels, the relative rotation of the wheels, and tracking
module calibrations.

3.1.2. Schematic Description

The schematic of the overall electronic system is depicted in Figure 3. The main control
board also functions as a WiFi transceiver, for which a NodeMCU logic board is used.
The number of logic inputs/outputs from the main controller to each client controller is
reduced to two digital IOs: RX and TX. The TX connection is shared between the two client
boards, which enables the main controller to transmit to both clients in a broadcast manner.
The RX connection is not shared, which results in the client boards being able to relay
feedback information individually to the main controller. The connections from the main
control board towards the motor-control sub-circuit are achieved using two digital outputs:
left-drive and right-drive control signals. The motor-drive signals are treated as analog
signals using pulse-width modulation (PWD), which is sufficient to drive the robot to the
designated signal-collection points. In addition, this setup also gives complete control of
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the speed and direction of movement of the robot to the main control board. Finally, each of
the two infrared sensors is connected to the main controller board using two digital-input
connections, which are used as an indication of the path markings and enable the robot
to follow a predefined path throughout the building in addition to identifying specific
checkpoints for WiFi-signal-strength collection.
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batteries connected in series to provide the motors with 8 V of power. The logic and WiFi
transceivers are powered using a more powerful setup of four Li-ion batteries, each two



Appl. Sci. 2023, 13, 6768 8 of 20

batteries are connected in series, and the two sets are connected in parallel to provide
8 V of power with double the wattage. The two sets of two series-connected batteries are
connected in parallel to provide the additional power needed for all WiFi transceivers,
which are usually power-hungry. In addition, the system spends a fraction of the time
moving between checkpoints and most of the time in WiFi-signal-strength collection. About
3% of the time is spent moving, whereas 97% of the time is spent collecting the required
data. This was determined based on many development cycles monitoring power and
performance and applying multiple improvements to the system to reach the current
minimalist yet very effective system.
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3.1.3. Operation

The infrared sensors transmit an infrared beam below the robot and sense the amount
of light reflected from the ground beneath the robot. The output of those sensors is an
analog signal that depends on the amount of light reflected from the pre-defined track. This
analog signal is then converted into a binary signal indicating whether the robot is still on
the pre-defined path or has moved in the wrong direction. This binary indicator is then
used by the main control unit, which controls the robot’s motors, adjusting its movements
to the correct path. In addition, the information conveyed by the infrared sensors is used to
identify the pre-defined checkpoints at which the robot is intended to pause and collect
WiFi-signal-strength information.

A. Main Control System

The robot is mainly split into a main control unit and client control units. The flow
chart of the main control unit is demonstrated in Figure 4b. Its main function is controlling
the speed and direction of the robot, as explained earlier. In addition, it functions as a
driver of the client control units. When it detects a checkpoint (clearly marked on the path,
as seen in Figure 4a), it sends a trigger to all connected client units instructing them to start
collecting the required samples.
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B. Client WiFi Sub-Systems

The client WiFi-unit control sub-system is demonstrated in Figure 5. Its main task is to
collect WiFi samples when instructed to do so by the main controller unit. It attaches a serial
number to each sample collected and sends all samples to the remote database over WiFi
using HTTP post protocol. The sampling process is performed in a number of prespecified
iterations. The effect of height on the received signal strength was of significant importance
to this study; hence, the robot was equipped with two additional client sub-systems, one
for each height of interest in addition to the baseline main controller. At each target point,
the measurement data were collected at different height levels, namely, 30 cm, 90 cm, and
150 cm. The main control system was 30 cm high, whereas the client sub-systems were 90
and 150 cm high.
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3.2. Indoor-Environment Infrastructure

The indoor environment used for the experiments was the second floor of the engi-
neering college at An-Najah National University, which covers an area of approximately
23 × 23 m2. Figure 6 shows a 2D map of the study area. There are eight APs distributed in
the area, as illustrated in Figure 6 with red symbols. The type of APs deployed is TP-link,
and all the APs were installed at an approximate height of 2.7 m.
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Track with Predetermined Checkpoints

The robot can follow a predetermined path marked by a line, with the addition of
checkpoints at which the robot must stop in a specific order. The robot uses the sensors to
detect the line and checkpoints and adjusts its movement based on the feedback received
from the sensors. Infrared sensors are used to detect the contrast between the line and the
ground. The robot is designed to follow the line by moving towards the center of the line;
when a sensor crosses the line, the robot adjusts its movement to bring the robot to the
center of the line. In addition to following the predetermined path, the infrared sensors are
used by the controller to detect when there is a checkpoint mark on the line, where it stops
and performs its desired task. A plus (+) sign along the path is used to indicate a stopping
point, and an algorithm using the existing infrared sensors can detect those checkpoint
marks as described in the next section.

Overall, the robot can follow a predefined path marked with checkpoints, making it
useful for repetitive tasks such as the case described in this research.

The robot is set to transmit the selected WiFi-beacon parameters and the robot’s
position to the server. The robot surveys the floor at a speed of about one checkpoint per
minute, at about 1 cm/s on average. Most of the time is spent on collecting the required
samples, whereas a fraction of the time (~5%) is spent on the actual movement. The robot
moved along a tracking line with a length of 82 m and TPs 0.45 m apart for this study.
The main goal is to use the collected WiFi samples to train an AI model to estimate the
exact location of any handheld device in 3D space using WiFi-beacon frames. The actual AI
modelling, training, and validation are the subject of a forthcoming study.
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3.3. Backend Database and Web-Server Interface

The server side was implemented using a MySQL/PHP/HTML trio, which is a
standard arrangement for providing a dynamic web interface for quick storage and retrieval
of all measured metrics, as demonstrated in Figure 7.
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Figure 7. Remote web-server flow.

The backend server had two web interfaces:

1. A database-insertion interface with which the robot behaves as a client, where it
can connect and submit compressed POST HTML requests that include all scanned
access points for this iteration. The server in turn parses each request into tens of DB
insertion commands, one for each scanned piece of access-point information.

2. A set of processing and filtering scripts through which one can quickly retrieve a
selected subset of the measured metrics for further processing and analysis.

Figure 8a,c show the metadata of the main table in the database and a sample of the
recorded metrics, respectively. All recorded metrics are stored in one flat table, which
greatly simplifies the implementation of the PHP scripts for manipulating and retrieving
information from the database. Figure 8b indicates the next “autoindex” of the main table,
which indicates that over 261 K samples were collected as part of this study.
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Figure 9 shows the flowchart of inserting data into the database, which is triggered
by all the WiFi transceivers on the robot. This interface intended for the use of the robot is
minimalistic, with simple inserts of the raw data transparently into the database.
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The link speed with the robot was about 50 Mbps, and the insertion of the data into the
database did not utilize the full bandwidth. Each transmitted data packet was about 1 KB,
conveying information of a full scan with all SSIDs and their signal strength. There were
exactly 32 of those packets transmitted each minute, resulting in an average bit rate of less
than 5 Kbps. Most of the delay was due to the nodeMCU’s scanning algorithm. Furthermore,
a dedicated uplink was used for transmitting the data to the server, but there may have been
congestion issues in the global network that could have influenced the transmission delay
and latency. However, latency, delay, timing, or congestion of the transmission/network
were not taken into consideration in our analysis. We focused on reliability of the link with
safeguards implemented as part of the robot’s transmitting algorithm. Nevertheless, time
stamps were collected for possible future use in an AI model.

Figure 10 shows the flowchart for retrieving data from the database, which is triggered
by users for post-processing of the recorded signal-strength information. The retrieval
process is slightly more structured towards filtering the database for a selected set of known
Aps, as indicated in Figure 10. In addition, the retrieval process organizes the data based
on the height of the reporting-client sub-system in the collecting robot.

All the data collected for this study, along with the firmware of the robot’s main
controller and client sub-systems, are now available under the ANNU-Beacon project on
GitHub, as indicated earlier. This project portal will be used to publish any necessary
source code and reference material that might be needed for reproducing this work.
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4. Results and Discussion

The data collection and analysis framework proposed in this paper is exceptional in
terms of:

1. The needed time, effort, and cost: the total needed time for data collection using the
proposed robot-based system was approximately 3 h, which introduced a clear accel-
eration of the data-collection process compared to what could be collected manually.
Specifically, about one minute was needed to collect 32 RSSI samples from all routers
in the vicinity at three different heights, which indicates the robot’s efficiency. There
were about 1.5 K beacons collected, processed, transmitted to the cloud, and stored in
the database. In addition, using the proposed robot was the ideal solution for such
a repetitive task. The effort was minimized since the robot moved autonomously
along the predefined area of study. The transceivers used were off-the-shelf low-cost
NodeMCUs, which facilitate the research and development of state-of-the-art projects
in developing communities, as was the case in this project. The cost of placing and
measuring the track for the robot was marginal since it was guided by the layout of
the existing floor tiles and was done in parallel to the robot’s operation.

2. Highlighting the effect of the transceiver height on the RSSI value: For efficient real
indoor-positioning systems, the height of the APs is usually fixed, but the transceiver
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height is always changing based on the handheld device, its user, and its posture
(sitting, standing, young child, short/tall person, etc.). This results in different re-
ceived power values. To verify the effect of different heights on the RSSI values,
three different heights in a real scenario were studied in this paper: the height of the
handheld device when the person is sitting at the ground, the height when a child is
holding the device while standing, and the height when an adult is holding the device
while standing. The corresponding heights were 0.3, 0.9, and 1.5 m, respectively. The
transmitter AP’s height was modelled to 2.7 m in this paper and the physical location
of the APs were fixed to that height.

Figures 11–13 show the value of the received RSSI from different APs at the three heights.
It can be seen in Figures 11–13 and Tables 2–4 that the value of the RSSI varied signifi-

cantly at a selected checkpoint when the transceiver height was changing. This is a very
important observation that should be taken into consideration in any indoor-positioning
system. The sub-figures of Figures 11–13 demonstrate a section of the captured data where
the signal strength was at its minimum (the associated with strongest Wi-Fi signal). The
sub-figures clearly show that the highest collection point was associated with the strongest
signal. In Tables 2–4, signal strengths at selected stop points are highlighted. The stop points
highlighted in the tables were spread over the whole indoor environment of the study. The
tables clearly support the observation that the signal strengths increased as the height of the
transceiver device increased. Therefore, we can conclude that the height of 1.5 m had the
strongest RSSI value, as the distance between the AP and the receiver was the shortest.
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Table 2. Comparison between the three different heights at selected checkpoints from AP (5).

Checkpoint
Number

Sample Mean of RSSI, dBm at Different Heights

Height 0.3 m Height 0.9 m Height 1.5 m

1 −89 −80 −76

23 −83.7 −82.6 −69.6

72 −52.7 −50 −47.45

91 −48.7 −36.35 −29

112 −66.4 −64.25 −60

Table 3. Comparison between the three different heights at different checkpoints from AP (1).

Checkpoint
Number

Sample Mean of RSSI, dBm at Different Heights

Height 0.3 m Height 0.9 m Height 1.5 m

14 −58.17 −54.95 −49

44 −69.6 −62 −57.13

77 −89.5 −83.8 −75.6

82 −91 −88 −83

98 −90 −86.3 −85.3
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Table 4. Comparison between the three different heights at different checkpoints from AP (4).

Checkpoint
Number

Sample Mean of RSSI, dBm at Different Heights

Height 0.3 m Height 0.9 m Height 1.5 m

1 −86.5 −83.5 −79.9

5 −87 −82.37 −81.4

13 −86.12 −77.72 −73.8

20 −87.8182 −78 −74.12

25 −81.57 −80.08 −79.85

For all of the data, more than 65% of the checkpoints had the maximum power at
the height of 1.5 m, and the remaining checkpoints had weak RSSI values, with very little
difference between the three heights. Figure 14 shows the percentage of checkpoints that
had the maximum RSSI value at 1.5 m.

The variation in the data values was attributed to factors in the real indoor environment
in which the data were collected. Such factors are not typically found in a laboratory
environment. For example, the real indoor environment had obstacles such as human
movements, doors, and windows, in addition to the effect of the building material in
different sections of the scanned building. In general, the shortest distance between the
transmitter and receiver results in the maximum power and clearly demonstrates the effect
of the height of the handheld device on the signal strength, whereas as the handheld
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device moves away from the AP and approaches a new one, the signal strength of the
first AP as perceived by the device is reduced in general and the effect of the height of the
transceiver/handheld device becomes negligible. The use of the robot in capturing the
signal strength has its strengths, since due to the systematic approach of using the robot,
many sources of errors related to a human operator are eliminated. However, there may
still be slight differences between the data collected by the robot compared to similar data
collected from a human’s handheld device due to different polarization, nature and speed
of movement, and variation in height and location, amongst other factors.
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It is worth noting that the Wi-Fi infrastructure that was the subject of this study is static,
with the locations of APs and their channel chosen to reduce interference and generally
fixed. In addition, there is a very limited number of routers with minimum interference
between them (in the range of 2–3 dBM).

5. Conclusions and Future Work

The work in this paper demonstrated a low-cost, scalable, and efficient framework
for data collection, analysis, and potentially offline training of various indoor metrics
such as, but not limited to, WiFi- and Bluetooth-beacon metrics, building geometrics, and
environmental aspects.

The specific WiFi-beacon data and associated signal strength collected as part of this
work will be a valuable asset for future use in an AI model for the indoor-localization
process. In addition, the paper demonstrates an automated procedure for collecting many
samples per point of interest at different elevations. This, in turn, lays the groundwork
for an accurate 3D localization framework efficiently. This paper is an excellent proof of
concept that there is a strong correlation between the receiver height and the corresponding
RSSI values.

Future work includes further analysis of the collected dataset, expanding the dataset
to include the whole faculty building, and improving on the robot’s capabilities to navigate
unassisted on any tacks.
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