
Citation: Shi, H.; Wang, J. Intelligent

TCP Congestion Control Policy

Optimization. Appl. Sci. 2023, 13,

6644. https://doi.org/10.3390/

app13116644

Academic Editors: Christos Bouras,

Runzhou Zhang, Lin Zhang,

Yang Yue, Hao Feng, Zheda Li and

Dawei Ying

Received: 13 April 2023

Revised: 24 May 2023

Accepted: 28 May 2023

Published: 30 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Intelligent TCP Congestion Control Policy Optimization
Hanbing Shi and Juan Wang *

College of Mechatronics Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China;
shbing0601@163.com
* Correspondence: juanwang618@126.com

Abstract: Network congestion control is an important means to improve network throughput and
reduce data transmission delay. To further optimize the network data transmission capability, this
research suggests a proximal policy optimization-based intelligent TCP congestion management
method, creates a proxy that can communicate with the real-time network environment, and abstracts
the TCP congestion control mechanism into a partially observable Markov decision process. Changes
in the real-time state of the network are fed back to the agent, and the agent makes action commands to
control the size of the congestion window, which will produce a new network state, and the agent will
immediately receive a feedback reward value. To guarantee that the actions taken are optimum, the
agent’s goal is to obtain the highest feedback reward value. The state space of network characteristics
should be designed so that agents can observe enough information to make appropriate decisions.
The reward function is designed through a weighted algorithm that enables the agent to balance and
optimize throughput and latency. The model parameters of the agent are updated by the proximal
policy optimization algorithm, and the truncation function keeps the parameters within a certain
range, reducing the possibility of oscillation during gradient descent and ensuring that the training
process can converge quickly. Compared to the traditional CUBIC control method, the results show
that the TCP-PPO2 policy reduces latency by 11.7–87.5%.

Keywords: network congestion; congestion control; internet; proximal policy optimization

1. Introduction

With the accelerated growth of mobile broadband network technology and the in-
crease in the number of users in recent years, the huge amount of network information
transmission will cause network congestion, and network congestion may lead to a slow
transmission speed, high delay, high loss rate, etc., and seriously lead to network failure.
To realize the reliable transmission of network data, it is necessary to build an efficient and
reliable network transmission protocol, and congestion control is the key technology to
achieve efficient and reliable transmission.

NewReno [1] and CUBIC [2] use packet loss to detect congestion and reduce the
congestion window length after congestion is detected. Westwood [3] is an adaptation of
NewReno, and the transmission capacity-based congestion control mechanism uses the
prediction of the link transmit capacity as the basis for congestion control.

Traditional congestion control mechanisms use defined control rules to adjust con-
gestion windows, making it difficult to adapt to the complexity and real-time changes in
modern networks. Therefore, the researchers propose a congestion control algorithm based
on reinforcement learning. Van et al. used reinforcement learning algorithms to adaptively
change parameter configurations [4], thereby improving the quality of the video stream.
Cui et al. proposed a custom congestion control algorithm Hd-TCP [5], which applies
deep reinforcement learning to deal with the poor network experience caused by frequent
network switching on a high-speed rail from the perspective of the transport layer. Lin
et al. improved the applicability of virtual network functions using a model-assisted deep
reinforcement learning framework [6]. Xie et al. proposed a congestion window length

Appl. Sci. 2023, 13, 6644. https://doi.org/10.3390/app13116644 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13116644
https://doi.org/10.3390/app13116644
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9886-0110
https://doi.org/10.3390/app13116644
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13116644?type=check_update&version=2

Appl. Sci. 2023, 13, 6644 2 of 13

for 5G mobile edge computing based on deep learning [7]. TCP-Drinc is a model-free
intelligent congestion control algorithm based on deep reinforcement learning [8], which
obtains eigenvalues from past network states and experiences and adjusts the congestion
window length based on the set of these eigenvalues. The Rax algorithm uses online
reinforcement learning [9] to maintain the optimal congestion window length based on
the given reward function and network conditions. QTCP is based on Q-learning for
congestion control [10,11], which improves throughput to a certain extent. MPTCP [12]
uses Q-learning and Deep Q-Networks (DQN) for multipath congestion control, which is
able to learn to take the best action based on the runtime state. However, the Q-learning
algorithm is slow to learn and difficult to converge. The reinforcement learning algorithm
based on the policy gradient can solve the shortcomings of the Q-learning algorithm such
as slow learning speed and difficult convergence.

To further improve the communication capability of the congestion control strategy in
the unknown network environment, this paper analyzes the characteristics of the four stages
of congestion control and proposes a congestion control strategy based on the proximal
policy optimization algorithm, which is one of the best policy gradient algorithms [13]; this
strategy can save a lot of model training time, make full use of the training data, and finally
realize the reliable transmission of data. Compared with the traditional CUBIC congestion
control strategy, the proposed algorithm is feasible and effective in improving network
transmission performance.

2. Related Work
2.1. Fundamentals of Congestion Control

Network congestion is a phenomenon that often occurs in the operation of computer
networks, and from its manifestation, network congestion is the phenomenon that the
cache in the router drops packets because of overflow. When the packet arrives at the
router, the packet is forwarded according to the configured forwarding rules and output to
the corresponding link. Due to limited network link resources (including cache size, fixed
bandwidth, processing power, etc.), queues form in the link and network congestion occurs
when packets arrive too quickly. Increasing the buffer area can absorb excess packets and
prevent packet loss, but if you blindly increase the size of the buffer without improving
the link bandwidth and processor capacity, this will cause the waiting time in the queue to
greatly increase, and the upper protocol can only retransmit them, so simply expanding
the cache space can not solve the network congestion problem, but will cause a waste
of network resources. In addition, network nodes process thousands of data streams
per second, sharing bandwidth between data streams, and the maximum rate of data
transmission is limited by the bottleneck link. Congestion occurs when a network node
needs to process more data than it can handle. Therefore, the job of congestion control
is to prevent data senders from sending large amounts of data into the network, causing
the transmission link to be overloaded. The principle of congestion control is shown in
Figure 1.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 13

Figure 1. The role of congestion control.

2.2. Deep Reinforcement Learning-Based Congestion Control

The congestion control strategy framework based on deep reinforcement learning is

shown in Figure 2. Deep reinforcement learning requires the construction of environ-

ments and agents. Taking the network environment as the environment, by collecting the

real-time state of the network environment, the strategy function used by the agent is con-

structed, the agent responds after learning, and the strategy function is fitted by an artifi-

cial neural network. The agent makes the optimal control strategy according to the output

of the policy function, controls the congestion window length, and changes the TCP send-

ing policy. After the agent makes an action, deep reinforcement learning will judge the

action according to the state, so as to output the reward value and depending on the re-

ward value, modify the parameters of the artificial neural network so that the agent can

maximize the reward.

Figure 2. DRL-based congestion control algorithm framework.

The QTCP algorithm is an algorithm based on the Q-learning framework. Its state

space is continuous, and its state includes average RTT, average interval time between

sending and receiving packets, and discrete action spaces including increasing by 10

bytes, decreasing by 1 byte, and remaining unchanged. Next, the system compares the

size of the utility function of the current time period and the previous time period to de-

termine whether it is a positive reward or a negative reward, where the utility function

log() log()U a throughput b RTT= ⋅ − ⋅ . QTCP algorithms perform better than traditional al-

gorithms in a variety of network scenarios, but the effect is still linked to network scenar-

ios and cannot completely avoid the shortcomings of traditional congestion control algo-

rithms. The congestion control algorithm Indigo, based on imitation learning, sets the

Figure 1. The role of congestion control.

Appl. Sci. 2023, 13, 6644 3 of 13

2.2. Deep Reinforcement Learning-Based Congestion Control

The congestion control strategy framework based on deep reinforcement learning is
shown in Figure 2. Deep reinforcement learning requires the construction of environments
and agents. Taking the network environment as the environment, by collecting the real-time
state of the network environment, the strategy function used by the agent is constructed,
the agent responds after learning, and the strategy function is fitted by an artificial neural
network. The agent makes the optimal control strategy according to the output of the
policy function, controls the congestion window length, and changes the TCP sending
policy. After the agent makes an action, deep reinforcement learning will judge the action
according to the state, so as to output the reward value and depending on the reward value,
modify the parameters of the artificial neural network so that the agent can maximize the
reward.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 13

Figure 1. The role of congestion control.

2.2. Deep Reinforcement Learning-Based Congestion Control

The congestion control strategy framework based on deep reinforcement learning is

shown in Figure 2. Deep reinforcement learning requires the construction of environ-

ments and agents. Taking the network environment as the environment, by collecting the

real-time state of the network environment, the strategy function used by the agent is con-

structed, the agent responds after learning, and the strategy function is fitted by an artifi-

cial neural network. The agent makes the optimal control strategy according to the output

of the policy function, controls the congestion window length, and changes the TCP send-

ing policy. After the agent makes an action, deep reinforcement learning will judge the

action according to the state, so as to output the reward value and depending on the re-

ward value, modify the parameters of the artificial neural network so that the agent can

maximize the reward.

Figure 2. DRL-based congestion control algorithm framework.

The QTCP algorithm is an algorithm based on the Q-learning framework. Its state

space is continuous, and its state includes average RTT, average interval time between

sending and receiving packets, and discrete action spaces including increasing by 10

bytes, decreasing by 1 byte, and remaining unchanged. Next, the system compares the

size of the utility function of the current time period and the previous time period to de-

termine whether it is a positive reward or a negative reward, where the utility function

log() log()U a throughput b RTT= ⋅ − ⋅ . QTCP algorithms perform better than traditional al-

gorithms in a variety of network scenarios, but the effect is still linked to network scenar-

ios and cannot completely avoid the shortcomings of traditional congestion control algo-

rithms. The congestion control algorithm Indigo, based on imitation learning, sets the

Figure 2. DRL-based congestion control algorithm framework.

The QTCP algorithm is an algorithm based on the Q-learning framework. Its state
space is continuous, and its state includes average RTT, average interval time between
sending and receiving packets, and discrete action spaces including increasing by 10 bytes,
decreasing by 1 byte, and remaining unchanged. Next, the system compares the size
of the utility function of the current time period and the previous time period to deter-
mine whether it is a positive reward or a negative reward, where the utility function
U = a · log(throughput)− b · log(RTT). QTCP algorithms perform better than traditional
algorithms in a variety of network scenarios, but the effect is still linked to network sce-
narios and cannot completely avoid the shortcomings of traditional congestion control
algorithms. The congestion control algorithm Indigo, based on imitation learning, sets the
network scene information to expert knowledge, and the decision network is a single-layer
LSTM network, to achieve congestion control in the current training scenario. However, the
performance of the algorithm can only play a superior performance in the trained scenario,
so the practical application is limited. In contrast, DRL-based congestion control algorithms
only require a simple neural network and combine historical information based on multi-
ple time slice states before the current moment to obtain performance beyond traditional
algorithms, so we will take a closer look at DRL-based congestion control algorithms.

3. Methods
3.1. Deep Reinforcement Learning
3.1.1. Background

Deep reinforcement learning is a combination of deep learning and reinforcement
learning. Deep learning uses representation learning to refine data [14] and does not have
to choose features, compressed dimensions, conversion formats, or other data processing
techniques, offering better feature representation capabilities than conventional machine
learning techniques and providing a distributed representation of data by mixing low-level

Appl. Sci. 2023, 13, 6644 4 of 13

features to create more abstract high-level features. Reinforcement learning originated from
the optimal control theory in cybernetics [15], which is mainly used to solve the problem of
timing decision making, by ongoing environmental interaction and trial-and-error, and fi-
nally obtains the optimal strategy for a specific task and maximizes the cumulative expected
return of the task. The mainstream methods of traditional reinforcement learning mainly
include the Monte Carlo class method and the time difference classification method [16].
The former is an unbiased estimate with a larger variance, while the latter uses a finite step
bootstrapping method with a smaller variance but introduces bias. Deep reinforcement
learning combines the structure of deep learning with the idea of reinforcement learning
for solving decision-making problems. With the help of the powerful representation ability
of deep neural networks, any component of reinforcement learning can be fitted, including
state value functions, action value functions, strategies, models, etc., and the weights in
deep neural networks can be used as fitting parameters. DRL is mainly used to solve high-
dimensional state action space tasks, integrating deep learning’s powerful understanding
ability in feature representation problems and reinforcement learning’s decision-making
ability to achieve end-to-end learning. The emergence of deep reinforcement learning has
made reinforcement learning technology truly practical and it can solve complex problems
in real-world scenarios. The most representative deep Q-network (DQN) is an extension of
the Q-learning algorithm [17], which uses neural networks to approximate the action–value
function, and the optimization goal is the minimization loss function:

Li(θi) = Eπθi
[(yi −Q(s, a; θi))

2] (1)

where i represents the ith iteration, yi = r + γmax
a′

Q(s′, a′; θi−1).

Van et al. proposed the use of the deep double Q-network (DDQN) [18]. DDQN
selects the action of the target Q value based on the current Q-network and uses the target
Q-network to calculate the corresponding Q value of the action.

yi = r + γQ(s′, argmaxaQ(s′, a; θi); θ−i) (2)

3.1.2. Proximal Policy Optimization Algorithms

The description of reinforcement learning is usually based on the Markov decision
process [19], which is a mathematical formalization of sequential decision making, in
which immediate rewards and subsequent states of the system are affected by behavior,
causing changes in future rewards, whose tasks correspond to the multivariate array
E = <S, A, P, R>, where:

S—is a state space.
A—is an action space.
P—is state transition probability.
R—is the reward function.

Cumulative discount returns are often used to define state returns at t moment:

Rt =
T

∑
i=t

γi−1r(si, ai) (3)

γ is the discount factor, which indicates that the farther away the return, the less impact
it has on the assessment of the current state, r(si, ai) represents the value of the return
obtained by selecting the action ai in the state si; the initial state is si, and under a certain
policy π, the state distribution obeys ρπ , then the task of reinforcement learning is to learn
a policy π so that the desired initial state return is maximized.

Appl. Sci. 2023, 13, 6644 5 of 13

3.1.3. Policy Gradient

The Policy Gradient (PG) method works by calculating the estimator of the strategy
gradient and inserting it into the stochastic gradient ascent algorithm. The most commonly
used gradient estimators have this form:

ĝ = Êt[∇θ log πθ(at|st)Ât] (4)

where πθ is the stochastic strategy and Ât is the estimator of the dominant function at time
step t. Here, the expectation Êt[. . .] represents the empirical mean of the finite batch sample,
in algorithms alternating between sampling and optimization, using the implementation
of automatic discrimination software to work by constructing an objective function with
a gradient as a gradient estimator of the strategy gradient. By deriving the target, the
estimator ĝ is obtained.

LPG(θ) = Êt[log πθ(at|st)Ât] (5)

While it is advantageous to use a uniform trajectory to perform multiple optimization
steps for LPG, it is not reasonable and, empirically, often leads to a large number of policy
updates being disrupted.

3.1.4. Trust Region Methods

In TRPO, the objective function is maximized but is limited by the size of the policy
update. The details are as follows:

maximize
θ

Êt[
πθ(at|st)

πθold(at|st)
Ât] (6)

Subject to Êt[KL[πθold(·|st), πθ(·|st)]] ≤ δ (7)

θold is the vector of policy parameters before the update. After linear approximation of the
target and quadratic approximation of the constraint, the conjugate gradient algorithm can
be used to effectively approximate the problem.

This theory proves that TRPO actually recommends using penalties rather than con-
straints, i.e., solving unconstrained optimization problems.

maximize
θ

Êt

[
πθ(at|st)

πθold(at|st)
Ât− βKL[πθold(·|st), πθ(·|st)]

]
(8)

The coefficients β follow the fact that a defined agent targets from the lower bound of
the strategy π, and TRPO uses hard constraints rather than penalties because it is difficult
to choose a single β value that performs well in different problems or single problems,
where features change during the learning process. Therefore, it is not enough to simply
choose a fixed penalty coefficient β using SGD to optimize the penalty target (8).

3.1.5. Proximal Policy Optimization Algorithm

The Proximal Policy Optimization (PPO) algorithm, which is one of the most effec-
tive model-free policy gradient methods, achieves state-of-the-art performance in many
reinforcement learning continuous control benchmarks [13]. It is derived from the TRPO
algorithm [20], but is easier to implement and has better sample complexity. Therefore,
PPO is used to train a defined congestion-controlled reinforcement learning strategy. PPO
is an actor-critical algorithm, so it uses a multi-step return of TD(λ) as a function of training
values and a generalized advantage estimator (GAE) to compute the policy gradient [21].

3.1.6. PPO2 Principle

The reinforcement learning algorithm needs to design the strategy function π(at|st)
so that it can generate the probability of performing some action at under state st. Artificial
neural networks can theoretically fit arbitrary functions, so the current reinforcement

Appl. Sci. 2023, 13, 6644 6 of 13

learning algorithm fits the strategy function π(at|st) through artificial neural networks,
and the neural network parameters are denoted as θ. The goal of reinforcement learning is
to make each action achieve the maximum reward value, and the core is how to judge the
quality of the selected action. To do this, the following advantage function is defined:

L̂πθ ,t = R̂t −Vφ(st) (9)

where Vφ(st) is a function of the value of the state and reflects all the cumulative reward
values that are expected to be achieved after the end of the round under state st. The
dominance function reflects the advantage of selecting an action at relative to the average
action at at moment t. If the value vt corresponding to all states s and action a is a two-
dimensional table, the large value range of states st will cause the storage space of the
two-dimensional table to be large and difficult to store. Therefore, the artificial neural
network is also chosen to approximate the value function Vφ(st). Finally, the optimization
objective function for reinforcement learning is defined as follows:

LMSE = Eπθk
(R̂t −Vφ(st))

2 (10)

The goal of the (10) function is to update the strategy function parameter θ so that each
action can obtain a larger reward value. However, the problem with the objective function
LMSE is that if the parameter θ is updated too much, it will cause repeated oscillations when
the gradient rises without fast convergence to the best advantage. For this reason, the PPO2
algorithm redefines the following objective function formula:

Lclip(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)] (11)

The clip function is a truncation function, defined as:

clip(r, 1− ε, 1 + ε) =


r

1− ε,
1 + ε,

1− ε < r < 1 + ε
r ≤ 1− ε
r ≥ 1 + ε

(12)

rt(θ) is a probability ratio function, defined as:

rt(θ) =
πθ(at|st)

πθold(at|st)
(13)

rt(θ) reflects the magnitude of parameter updates, the larger rt(θ) is, the larger the ampli-
tude of the update parameter, and vice versa. The goal of Equation (10) is to obtain a biased
estimate of the value function Vφ(st), so the commonly used least squares method is used to
define the objective function, and the squared operation ensures that the objective function
is non-negative. When the value of the advantage function in Equation (11) is positive, it
means that the reward value obtained by the current action is higher than the average, and
the objective function optimization goal is to let the agent choose such actions as much as
possible. When the dominance function is negative, it means that the reward value obtained
by the current action is lower than the average, and the agent should avoid selecting this
action. The Lclip(θ) function avoids excessive update fluctuations by intercepting rt(θ) to
limit it to [1 − ε, 1 + ε]. The Lclip(θ) function is schematically shown in Figure 3. When the
dominant function L > 0 (Figure 3a), if rt(θ) is greater than 1 + ε, it is truncated so that it is
not too large. Similarly, when L < 0 (Figure 3b), if rt(θ) is less than 1 − ε, it is also truncated
so that it is not too small. The Lclip(θ) function (Figure 3c) guarantees that rt(θ) does not
fluctuate sharply.

Appl. Sci. 2023, 13, 6644 7 of 13

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 13

1 1

(,1 ,1) 1 , 1

1 , 1

r r

clip r r

r

ε ε
ε ε ε ε

ε ε

− < < +
− + = − ≤ −
 + ≥ +

 (12)

()
t

r θ is a probability ratio function, defined as:

(|)
()

(|)
old

t t
t

t t

a s
r

a s

θ

θ

πθ
π

= (13)

()
t

r θ reflects the magnitude of parameter updates, the larger ()
t

r θ is, the larger the am-

plitude of the update parameter, and vice versa. The goal of Equation (10) is to obtain a

biased estimate of the value function ()tV sφ , so the commonly used least squares method

is used to define the objective function, and the squared operation ensures that the objec-

tive function is non-negative. When the value of the advantage function in Equation (11)

is positive, it means that the reward value obtained by the current action is higher than

the average, and the objective function optimization goal is to let the agent choose such

actions as much as possible. When the dominance function is negative, it means that the

reward value obtained by the current action is lower than the average, and the agent

should avoid selecting this action. The ()
clip

L θ function avoids excessive update fluctua-

tions by intercepting ()
t

r θ to limit it to [1 − ε, 1 + ε]. The ()
clip

L θ function is schematically

shown in Figure 3. When the dominant function L > 0 (Figure 3a), if ()
t

r θ is greater than

1 + ε, it is truncated so that it is not too large. Similarly, when L < 0 (Figure 3b), if ()
t

r θ is

less than 1 − ε, it is also truncated so that it is not too small. The ()
clip

L θ function (Figure

3c) guarantees that ()
t

r θ does not fluctuate sharply.

Figure 3. Schematic diagram of the truncation function; (a) is the range of values when the value of

the dominant function > 0; (b) is the range of values when the value of the dominant function < 0;

and (c) is the final range of values allowed by the truncation function.

Figure 3. Schematic diagram of the truncation function; (a) is the range of values when the value of
the dominant function > 0; (b) is the range of values when the value of the dominant function < 0;
and (c) is the final range of values allowed by the truncation function.

3.2. State Space Design

A reasonable state st is crucial for efficient reinforcement learning implementation, and
only by observing enough information can the reinforcement learning algorithm make the
correct action choice. Excessive state information can lead to slower learning and increased
computational demands. Therefore, this paper refers to the state parameters and design
state st required by mainstream TCP algorithms such as CUBIC for decision making. st
contains the following parameters.

(1) The current relative time tr. Described as the amount of time that has passed when
TCP first established the connection up to the present. In algorithms such as CUBIC,
the window length is designed as a third-degree function of time tr. Consequently, tr
plays a crucial role in determining the congestion window.

(2) The size of the current congestion window. The adjustment of the new window value
in the congestion control algorithm should be based on the present congestion window
length, which can be increased at a faster rate if the current congestion window length
is small, and stopped or increased more slowly if the window is large.

(3) The number of bytes is not acknowledged. Defined as the number of bytes trans-
mitted but not yet acknowledged by the receiver. The unacknowledged bytes can
be metaphorically compared to water stored in a pipe, where the network link is
similar to the pipe. This parameter is also an important parameter that the congestion
control algorithm needs to refer to. If the amount of water in the pipe is sufficient,
it should stop or reduce the injection of water into the pipe; if the amount of water
in the pipe is small, the amount of water injection into the pipe should be increased,
and the volume of water in the pipe may be used to calculate the water injection rate
(congestion window duration).

(4) The quantity of ACK packets obtained. When the normal amount of ACK packets
is received, the network is functioning well without congestion and the congestion
window length can gradually be increased. If the network is congested, with a reduced
number of ACK packets received, the congestion window length should either be
kept constant or reduced.

(5) RTT. Latency refers to the total time it takes for a packet to be sent to the receiving
acknowledgment packet, which can be figuratively understood as the time it takes for
the data to make a round trip from the sender to the receiver. Network congestion
and latency are strongly associated, and when network congestion is bad, latency
increases a lot. As a result, the delay can be an indicator of network congestion, and

Appl. Sci. 2023, 13, 6644 8 of 13

the congestion control algorithm can modify the congestion window in response to
the delay.

(6) Throughput rate. Described as the number of data bytes the receiver acknowledges
each second. A high throughput rate indicates that enough packets have been trans-
mitted in the present connection; alternatively, it shows that there is more available
network capacity and that more packets may be sent to the link. This parameter
directly reflects the network circumstances.

(7) The number of packet losses. The higher the number of packet losses, the more
serious the current network congestion is, and the congestion window size needs to
be reduced; a small number of packet losses suggests that the current network is not
congested, and the congestion window length should be increased.

3.3. Action Space Design

at is the control action made at the moment t for the congestion window. This docu-
ment defines the action to increase the congestion window length c by n segment length.

c = cold + ns′ (14)

The idea of Equation (14) is to provide a generalization formula that determines the
rate of growth of the congestion window length based on the observed state parameter
information. Different policies should be selected in different network scenarios. In a
high-bandwidth environment, n > 1 should be adjusted to increase the congestion window
length at an exponential rate; in a low-bandwidth environment, n = 1 should be adjusted to
make the congestion window grow at a linear speed. When network congestion occurs,
n ≤ 0 should be adjusted to maintain or reduce the length of the congestion window and
reduce the pressure of network congestion.

3.4. Reward Function Design

The reward from the environment at time t is referred to as reward rt, and the design
reward letter is as follows:

rt = α

(
O

Omax

)
− (1− α)

lmin

l
(15)

where O is the currently observed throughput rate and Omax is the maximum throughput
rate observed in history, and the ratio of the two reflects the throughput rate effect that
can be increased by the action at; l represents the average delay during the observation
period and lmin represents the smallest delay observed in history, and the ratio of the two
reflects the delay effect of action at improvement; and α, a hyperparameter that measures
the weight ratio of throughput rate and delays to the reward, is a weight factor. α defines
whether the congestion control algorithm’s optimization objective is more concerned with
throughput rate or delay. In this example, α = 0.5 is selected to balance throughput and
latency. In addition, the minimum throughput rate and the maximum delay of the history
are saved. When it is observed that the current throughput rate is less than or equal to the
minimum throughput rate or greater than or equal to the maximum delay, the reward is set
to −10 to avoid reaching these two extreme states.

3.5. Algorithm Description

The input of the Algorithm 1 is the current state of the network st, and the output is
the congestion window length cnew. The pseudocode is as follows.

Appl. Sci. 2023, 13, 6644 9 of 13

Algorithm 1. PPO2

1. Input: st = {congestion window length, the number of ACK packets, latency, throughput rate,
packet loss rate}.
2. Initialize the policy parameters θ0 = θold = θnew.
3. Run strategy πθk for a total of T time steps, collect {st, at}.
4. θold ← θnew

5. rt = α
(

O
Omax

)
− (1− α) lmin

l .

6. R̂ =
T
∑

t=0
γtrt.

7. Lclip(θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)].
8. Update the parameter θ by the gradient ascent method so that Lclip(θ) is the maximum.
9. Output: The length of the new congestion window after adjustment is c = cold + ns′.

4. Experiment
4.1. Experimental Environment
4.1.1. Hardware and Software Environment

The test was performed on a powerful server, and the specific configuration is as
follows: 1© CPU, AMD Ryzen 7 5800H with Radeon Graphics @3.19 GHz; 2© Memory,
16 GB DDR4; 3© GPU, NVIDIA GeForce RTX 3060 Laptop 6 GB; and 4© Operating System,
Windows 11.

The data space topology is simulated by the Mininet simulator, and the TCP-PPO2
and TCP-CUBIC algorithms are implemented, which are compared with the traditional
TCP congestion control algorithms.

4.1.2. PPO Algorithm Parameter Settings

The main parameters of PPO2 are set as follows: the neural network’s hidden layers
total 2, the number of neurons in the two layers is 32 and 16, respectively, the discount
factor is 0.99, the learning rate is 0.00025, the ε is 0.2, and the number of training steps when
running each update is 128.

4.2. Bandwidth Sensitivity Comparison

The amount of data that may be transmitted per unit of time is referred to as network
bandwidth (generally 1 s). The greater the bandwidth, the greater its traffic capacity.
Figure 4 shows the bandwidth sensitivity comparison, and the link bandwidth in our
Mininet is set to between 1 Mbps and 1000 Mbps, with 0 ms latency, 1000 packet queues,
and 0% random loss. TCP-PPO2 works well in this bandwidth range; when the link
bandwidth is less than 18 Mbps, both traditional and deep reinforcement learning-based
congestion control protocols produce large delays, mainly due to the narrow bandwidth
and too long queue length causing queuing problems, but when the bandwidth is higher
than 50 Mbps, TCP-PPO2 can achieve extremely low latency.

Appl. Sci. 2023, 13, 6644 10 of 13

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 13

9. Output: The length of the new congestion window after adjustment is old
c c ns′= +

.

4. Experiment

4.1. Experimental Environment

4.1.1. Hardware and Software Environment

The test was performed on a powerful server, and the specific configuration is as

follows: ① CPU, AMD Ryzen 7 5800H with Radeon Graphics @3.19 GHz; ② Memory, 16

GB DDR4; ③ GPU, NVIDIA GeForce RTX 3060 Laptop 6 GB; and ④ Operating System,

Windows 11.

The data space topology is simulated by the Mininet simulator, and the TCP-PPO2

and TCP-CUBIC algorithms are implemented, which are compared with the traditional

TCP congestion control algorithms.

4.1.2. PPO Algorithm Parameter Settings

The main parameters of PPO2 are set as follows: the neural network’s hidden layers

total 2, the number of neurons in the two layers is 32 and 16, respectively, the discount

factor is 0.99, the learning rate is 0.00025, the ɛ is 0.2, and the number of training steps

when running each update is 128.

4.2. Bandwidth Sensitivity Comparison

The amount of data that may be transmitted per unit of time is referred to as network

bandwidth (generally 1 s). The greater the bandwidth, the greater its traffic capacity. Fig-

ure 4 shows the bandwidth sensitivity comparison, and the link bandwidth in our Mininet

is set to between 1 Mbps and 1000 Mbps, with 0 ms latency, 1000 packet queues, and 0%

random loss. TCP-PPO2 works well in this bandwidth range; when the link bandwidth is

less than 18 Mbps, both traditional and deep reinforcement learning-based congestion

control protocols produce large delays, mainly due to the narrow bandwidth and too long

queue length causing queuing problems, but when the bandwidth is higher than 50 Mbps,

TCP-PPO2 can achieve extremely low latency.

Figure 4. Under the condition that only the bandwidth size is changed, comparison of the latency

of the traditional congestion control strategy and the congestion control strategy based on deep re-

inforcement learning.

4.3. Latency Sensitivity

RTT represents the time it takes for a packet to be sent from sent to receive to

acknowledged, reflecting the current network latency. Figure 5 shows a comparison of

Figure 4. Under the condition that only the bandwidth size is changed, comparison of the latency
of the traditional congestion control strategy and the congestion control strategy based on deep
reinforcement learning.

4.3. Latency Sensitivity

RTT represents the time it takes for a packet to be sent from sent to receive to acknowl-
edged, reflecting the current network latency. Figure 5 shows a comparison of latency
sensitivity, with the link bandwidth set to 700 Mbps, a queue of 1000 packets, and 0%
random loss in our Mininet. When the link delay is less than 50 ms, the system latency
of the traditional congestion control protocol is much higher than that of the intelligent
congestion control strategy, indicating that TCP-PPO2 can adapt to today’s low-latency
networks, thereby ensuring more efficient data transmission. When the link delay is higher
than 90 ms, the delay of both is greatly reduced, but the delay of the intelligent system is
still lower than the system delay of the TCP-CUBIC protocol.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 13

latency sensitivity, with the link bandwidth set to 700 Mbps, a queue of 1000 packets, and

0% random loss in our Mininet. When the link delay is less than 50 ms, the system latency

of the traditional congestion control protocol is much higher than that of the intelligent

congestion control strategy, indicating that TCP-PPO2 can adapt to today’s low-latency

networks, thereby ensuring more efficient data transmission. When the link delay is

higher than 90 ms, the delay of both is greatly reduced, but the delay of the intelligent

system is still lower than the system delay of the TCP-CUBIC protocol.

Figure 5. Under the condition that only the network latency is changed, comparison of the latency

of the traditional congestion control strategy and the congestion control strategy based on deep re-

inforcement learning.

4.4. Queue Sensitivity

The queue represents the size of the packets sent at one time; Figure 6 shows the

queue sensitivity comparison, and we changed the queue size between 1 and 10,000 pack-

ets. Other configurations of the links in Mininet are a bandwidth of 700 Mbps, a latency

of 40 ms, and a random loss of 0%. When the queue size is greater than 10, the delay of

the traditional congestion control strategy is significantly higher than that of TCP-PPO2.

Figure 6. Under the condition that only the queue size is changed, comparison of the latency of the

traditional congestion control strategy and the congestion control strategy based on deep reinforce-

ment learning.

Figure 5. Under the condition that only the network latency is changed, comparison of the latency
of the traditional congestion control strategy and the congestion control strategy based on deep
reinforcement learning.

4.4. Queue Sensitivity

The queue represents the size of the packets sent at one time; Figure 6 shows the queue
sensitivity comparison, and we changed the queue size between 1 and 10,000 packets.
Other configurations of the links in Mininet are a bandwidth of 700 Mbps, a latency of

Appl. Sci. 2023, 13, 6644 11 of 13

40 ms, and a random loss of 0%. When the queue size is greater than 10, the delay of the
traditional congestion control strategy is significantly higher than that of TCP-PPO2.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 13

latency sensitivity, with the link bandwidth set to 700 Mbps, a queue of 1000 packets, and

0% random loss in our Mininet. When the link delay is less than 50 ms, the system latency

of the traditional congestion control protocol is much higher than that of the intelligent

congestion control strategy, indicating that TCP-PPO2 can adapt to today’s low-latency

networks, thereby ensuring more efficient data transmission. When the link delay is

higher than 90 ms, the delay of both is greatly reduced, but the delay of the intelligent

system is still lower than the system delay of the TCP-CUBIC protocol.

Figure 5. Under the condition that only the network latency is changed, comparison of the latency

of the traditional congestion control strategy and the congestion control strategy based on deep re-

inforcement learning.

4.4. Queue Sensitivity

The queue represents the size of the packets sent at one time; Figure 6 shows the

queue sensitivity comparison, and we changed the queue size between 1 and 10,000 pack-

ets. Other configurations of the links in Mininet are a bandwidth of 700 Mbps, a latency

of 40 ms, and a random loss of 0%. When the queue size is greater than 10, the delay of

the traditional congestion control strategy is significantly higher than that of TCP-PPO2.

Figure 6. Under the condition that only the queue size is changed, comparison of the latency of the

traditional congestion control strategy and the congestion control strategy based on deep reinforce-

ment learning.

Figure 6. Under the condition that only the queue size is changed, comparison of the latency
of the traditional congestion control strategy and the congestion control strategy based on deep
reinforcement learning.

4.5. Packet Loss Sensitivity

The packet loss rate is an important indicator to measure the reliability of network
transmission protocols, and Figure 7 shows the packet loss sensitivity comparison, setting
a random loss rate of up to 8%. Other configurations of links in Mininet are a bandwidth
of 700 Mbps, a latency of 40 ms, and queues of 1000 packets. When the random loss rate
increases from zero, the latency of both congestion control strategies decreases rapidly,
while the delay at the beginning of TCP-PPO2 is significantly lower than that of traditional
congestion control strategies.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 13

4.5. Packet Loss Sensitivity

The packet loss rate is an important indicator to measure the reliability of network

transmission protocols, and Figure 7 shows the packet loss sensitivity comparison, setting

a random loss rate of up to 8%. Other configurations of links in Mininet are a bandwidth

of 700 Mbps, a latency of 40 ms, and queues of 1000 packets. When the random loss rate

increases from zero, the latency of both congestion control strategies decreases rapidly,

while the delay at the beginning of TCP-PPO2 is significantly lower than that of traditional

congestion control strategies.

Figure 7. Under the condition that only the packet loss rate is changed, comparison of the latency of

the traditional congestion control strategy and the congestion control strategy based on deep rein-

forcement learning.

5. Conclusions

Aiming at the problems of poor adaptability of mainstream TCP congestion control

algorithms and inability to effectively use virtual data space network borrowing, a TCP

congestion control strategy based on deep reinforcement learning is proposed, which ef-

fectively improves the data transmission efficiency. The main conclusions of this paper

are as follows:

(1) Optimize the traditional TCP congestion control strategy by using the near-end pol-

icy optimization algorithm, map the system’s send rate to the behavior of deep rein-

forcement learning, set the reward function by balancing throughput, latency, and

packet loss, and use a simple deep neural network to approximate the final strategy.

Through the comparison of a large number of experimental data, the parameters such

as the number of neural network layers, the number of neurons, and the length of the

history were determined, and the optimization of TCP-PPO2 was successfully real-

ized.

(2) Through Mininet simulation experiments, it is determined that the TCP congestion

control algorithm based on the proximity policy optimization adapts to network

changes faster than the traditional TCP congestion control algorithm, changes the

real-time congestion window size, improves transmission efficiency, and reduces the

data transmission delay by 11.7–87.5%.

Author Contributions: Conceptualization, H.S.; methodology, H.S.; software, H.S.; validation, H.S.

and J.W.; formal analysis, H.S. and J.W.; investigation, H.S. and J.W.; resources, H.S. and J.W.; data

curation, H.S.; writing—original draft preparation, H.S.; writing—review and editing, J.W.; visual-

ization, H.S.; supervision, J.W.; project administration, J.W.; funding acquisition, J.W. All authors

have read and agreed to the published version of the manuscript.

Figure 7. Under the condition that only the packet loss rate is changed, comparison of the latency
of the traditional congestion control strategy and the congestion control strategy based on deep
reinforcement learning.

5. Conclusions

Aiming at the problems of poor adaptability of mainstream TCP congestion control
algorithms and inability to effectively use virtual data space network borrowing, a TCP

Appl. Sci. 2023, 13, 6644 12 of 13

congestion control strategy based on deep reinforcement learning is proposed, which
effectively improves the data transmission efficiency. The main conclusions of this paper
are as follows:

(1) Optimize the traditional TCP congestion control strategy by using the near-end
policy optimization algorithm, map the system’s send rate to the behavior of deep
reinforcement learning, set the reward function by balancing throughput, latency, and
packet loss, and use a simple deep neural network to approximate the final strategy.
Through the comparison of a large number of experimental data, the parameters such
as the number of neural network layers, the number of neurons, and the length of
the history were determined, and the optimization of TCP-PPO2 was successfully
realized.

(2) Through Mininet simulation experiments, it is determined that the TCP congestion
control algorithm based on the proximity policy optimization adapts to network
changes faster than the traditional TCP congestion control algorithm, changes the
real-time congestion window size, improves transmission efficiency, and reduces the
data transmission delay by 11.7–87.5%.

Author Contributions: Conceptualization, H.S.; methodology, H.S.; software, H.S.; validation, H.S.
and J.W.; formal analysis, H.S. and J.W.; investigation, H.S. and J.W.; resources, H.S. and J.W.;
data curation, H.S.; writing—original draft preparation, H.S.; writing—review and editing, J.W.;
visualization, H.S.; supervision, J.W.; project administration, J.W.; funding acquisition, J.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Xi’an Key Laboratory of Clean Energy: 2019219914SYS014C
G036; Key R&D Program of Shaanxi Province: 2023-ZDLGY-24.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Henderson, T.; Floyd, S.; Gurtov, A. The NewReno Modification to TCP’s Fast Recovery Algorithm. 2012. Available online:

https://www.rfc-editor.org/rfc/rfc6582.html (accessed on 12 April 2023).
2. Ha, S.; Rhee, I.; Xu, L. CUBIC: A new TCP-friendly high-speed TCP variant. ACM SIGOPS Oper. Syst. Rev. 2008, 42, 64–74.

[CrossRef]
3. Mascolo, S.; Casetti, C.; Gerla, M.; Sanadidi, M.Y.; Wang, R. TCP Westwood: Bandwidth estimation for enhanced transport over

wireless links. In Proceedings of the 7th Annual International Conference on Mobile Computing and Networking, New York, NY,
USA, 16 July 2001.

4. Van Der Hooft, J.; Petrangeli, S.; Claeys, M.; Famaey, J.; Turck, F. A learning-based algorithm for improved bandwidth-awareness
of adaptive streaming clients. In Proceedings of the 2015 IFIP/IEEE International Symposium on Integrated Network Management
(IM), Ottawa, ON, Canada, 11–15 May 2015.

5. Cui, L.; Yuan, Z.; Ming, Z.; Yang, S. Improving the congestion control performance for mobile networks in high-speed railway via
deep reinforcement learning. IEEE Trans. Veh. Technol. 2020, 69, 5864–5875. [CrossRef]

6. Gu, L.; Zeng, D.; Li, W.; Guo, S.; Zomaya, A. Intelligent VNF orchestration and flow scheduling via model-assisted deep
reinforcement learning. IEEE J. Sel. Areas Commun. 2019, 38, 279–291. [CrossRef]

7. Xie, R.; Jia, X.; Wu, K. Adaptive online decision method for initial congestion window in 5G mobile edge computing using deep
reinforcement learning. IEEE J. Sel. Areas Commun. 2019, 38, 389–403. [CrossRef]

8. Xiao, K.; Mao, S.; Tugnait, J.K. TCP-Drinc: Smart congestion control based on deep reinforcement learning. IEEE Access 2019, 7,
11892–11904. [CrossRef]

9. Bachl, M.; Zseby, T.; Fabini, J. Rax: Deep reinforcement learning for congestion control. In Proceedings of the ICC 2019—2019
IEEE International Conference on Communications (ICC), Shanghai, China, 20–24 May 2019.

10. Li, W.; Zhou, F.; Chowdhury, K.R.; Meleis, W. QTCP: Adaptive congestion control with reinforcement learning. IEEE Trans. Netw.
Sci. Eng. 2018, 6, 445–458. [CrossRef]

11. Watkins, C.J.; Daya, P. Technical Note: Q-Learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
12. Ha, T.; Masood, A.; Na, W.; Cho, S. Intelligent Multi-Path TCP Congestion Control for Video Streaming in Internet of Deep

Space Things Communication. 2023. Available online: https://www.sciencedirect.com/science/article/pii/S2405959523000231
(accessed on 12 April 2023).

https://www.rfc-editor.org/rfc/rfc6582.html
https://doi.org/10.1145/1400097.1400105
https://doi.org/10.1109/TVT.2020.2984038
https://doi.org/10.1109/JSAC.2019.2959182
https://doi.org/10.1109/JSAC.2019.2959187
https://doi.org/10.1109/ACCESS.2019.2892046
https://doi.org/10.1109/TNSE.2018.2835758
https://doi.org/10.1007/BF00992698
https://www.sciencedirect.com/science/article/pii/S2405959523000231

Appl. Sci. 2023, 13, 6644 13 of 13

13. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal policy optimization algorithms. arXiv 2017,
arXiv:1707.06347.

14. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016.
15. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
16. Rummery, G.A.; Niranjan, M. On-Line Q-Learning Using Connectionist Systems; University of Cambridge: Cambridge, UK, 1994.
17. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Andrei, A.; Rusu, J.; Marc, B.; Alex, G.; Martin, R.; Andreas, F.; Georg, O.; et al. Human-level

control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]
18. Van Hasselt, H.; Guez, A.; Silver, D. Deep reinforcement learning with double q-learning. In Proceedings of the AAAI Conference

on Artificial Intelligence, Palo Alto, CA, USA, 22 February–1 March 2016.
19. Puterman, M.L. Markov decision processes. Handb. Oper. Res. Manag. Sci. 1990, 2, 331–434.
20. Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust Region Policy Optimization. In Proceedings of the International

Conference On Machine Learning. 2015. Available online: https://proceedings.mlr.press/v37/schulman15.html (accessed on 12
April 2023).

21. Schulman, J.; Moritz, P.; Levine, S.; Jordan, M.; Abbeel, P. High-dimensional continuous control using generalized advantage
estimation. arXiv 2015, arXiv:150602438.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/nature14236
https://www.ncbi.nlm.nih.gov/pubmed/25719670
https://proceedings.mlr.press/v37/schulman15.html

	Introduction
	Related Work
	Fundamentals of Congestion Control
	Deep Reinforcement Learning-Based Congestion Control

	Methods
	Deep Reinforcement Learning
	Background
	Proximal Policy Optimization Algorithms
	Policy Gradient
	Trust Region Methods
	Proximal Policy Optimization Algorithm
	PPO2 Principle

	State Space Design
	Action Space Design
	Reward Function Design
	Algorithm Description

	Experiment
	Experimental Environment
	Hardware and Software Environment
	PPO Algorithm Parameter Settings

	Bandwidth Sensitivity Comparison
	Latency Sensitivity
	Queue Sensitivity
	Packet Loss Sensitivity

	Conclusions
	References

