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and Adam Piórkowski 4

1 Clinic of Locomotor Disorders, Andrzej Frycz Modrzewski Krakow University, 30-705 Krakow, Poland
2 Małopolska Orthopedic and Rehabilitation Hospital, Modrzewiowa 22, 30-224 Krakow, Poland
3 Department of Diagnostic Imaging, Jagiellonian University Medical College, Kopernika 19,

31-501 Krakow, Poland
4 Department of Biocybernetics and Biomedical Engineering, AGH University of Science and Technology,

30-059 Krakow, Poland
5 Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology,

30-059 Krakow, Poland
* Correspondence: rafalobuchowicz@su.krakow.pl

Abstract: The aim of this study was to establish a relationship between the textural parameters
observed in X-ray images of bones and the age of the individual. The study utilized a meticulous
visual analysis of the images to identify significant correlations between textural features and age.
Five distinct regions of interest, namely the Wing of the Ilium, Neck of the Femur, Greater Trochanter,
Ischium, and Shaft of the Femur, were identified on both sides of the body. Textural parameters
were then measured for each of these regions. The left femoral neck showed the most noteworthy
associations, with the textures generated from the histogram of oriented gradients and gray-level
co-occurrence matrix exhibiting the strongest correlations (ρ −0.52, p-value 4.95 × 10−14). The main
finding of the current study is that correlation of age-dependent bone structure differences in the
femoral neck area is higher than in other structures of the femur. This proposed methodology has the
potential to aid in the early detection of osteoporosis, which is crucial for devising treatment plans
and identifying potential risks associated with bone fragility.

Keywords: textural analysis; X-ray; radiographs; bone age; bone aging; osteoporosis

1. Introduction

Bone is a complex composite formed from both organic and inorganic components. It
serves as a supportive tissue that evolved to provide a great advantage for land animals,
despite being energy-consuming. From a mechanical point of view, bone tissue must
possess maximal strength and stiffness (resistant to failure and deformation) with the lowest
possible mass. Therefore, it has a complex internal organization, with an outer cortical
zone and an internal trabecular bone [1]. This three-dimensional architecture enables it to
withstand tension and compression forces that can be effectively dissipated throughout
the bone without producing mechanical damage [2]. To fulfill the mechanical needs of
the skeleton as a supportive tissue, bone is organized hierarchically with compact bone
(approximately 80% of the skeleton) and trabecular or spongy bone (20% of the skeleton) [3].
At the microstructure level, bone is composed of osteons, which are longitudinal canals
called Haversian canals surrounded by lamellae [1]. The Haversian canals house osteoblasts
and blood vessels, and they are about 20 to 100 µm in diameter [4]. Single lamellae are up
to 7 µm thick and up to 25 µm long. These are the locations where the inorganic phase
responsible for the mechanical properties of the bone is accumulated. The inorganic phase
consists of apatite-like mineral hydroxyapatite crystals (Ca10(PO4)6(OH)2) [3], which have a
hexagonal lattice structure and are formed as plates with an average size of 50 × 25 × 3 nm.
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These structures are adjacent to collagen I, an organic material formed from protein material
oriented parallel to the long axis of the bone [5]. The presence of inorganic structures
embedded in collagen fibrils is responsible for the interaction with electrons emitted from
the anode of the X-ray lamp [6]. Collisions with inorganic materials absorb electron energy,
which is responsible for the projection of the bone, detectable by the visual system. The
spatial resolution of the X-ray picture is high. For a 35 × 43 cm cassette and a 20 × 24 cm
cassette, three and five line pairs per millimeter are reported, respectively [7]. The range of
dimensions of bone structure accessible by X-ray imaging is up to 5 µm, which corresponds
to the bone microstructure.

Osteocytes are residual, long-lived bone cells that are interconnected with each other
with processes and form an important signaling network, which serves as mechanosen-
sory units directing the response of osteoclasts-bone-depleting cells and osteoblasts-bone-
forming cells [8]. Cellular action serves in constant longitudinal and transverse remodeling
of the bone, where matrix turnover makes complete matrix exchange every 10 years [9].
The process of mineral exchange serves adjustments to the specific loads of the bone ex-
creted by physical activity, but also the metabolic needs of the organism as the skeleton
is a reservoir of calcium ions and takes part in the interchange of inorganic substances
with the extracellular fluid (ECF) [10]. Bone turnover is precisely regulated by hormonal
action throughout life, which is one of the causative factors of the differences between
the skeletal systems of women and men observed from puberty to older age [11]. Patho-
logic changes in the regulatory process include an increase in cortical porosity, trabecular
thinning, and a decrease in trabecular interconnections [12]. This normal process of bone
degeneration can be markedly increased if the control of bone metabolism is dysregulated.
Moreover, of importance are physical activity and dietary habits, including alcohol and
calcium product consumption, but also the presence of diseases impacting hydrogen ions
and calcium/phosphorus equilibrium [13–15].

It is worth noting that vitamin D and calcium deficiency may lead to secondary
hyperparathyroidism, which promotes osteoclastic activation with an increase in calcium
bone to extracellular fluid conversion [16]. The most important recognized regulatory
factor is linked to estrogen action, which is involved in the control of bone resorption, as it
inhibits osteoclast activation [17]. The processes controlling bone are very complex, and
deterioration of bone architecture weakens the bone, making it susceptible to overload and
a potential cause of bone trauma. Therefore, meticulous determination of the status of the
bone is important at the early stages.

In the theoretical introduction above, we wish to point out that there are biology-based
reasons for investigating how bone age, and hence changes in its composition and physical
properties, correlate with changes in the X-ray image detectable by textural analysis. This
study investigated the relationship between the textural parameters determined on the
basis of radiographs of the hip bone and the age of the patients.

2. Materials and Methods
2.1. Dataset

The initial dataset comprised 3782 radiographic images of the hip and knee regions,
captured using an X-ray machine and stored in PNG8 format with 8-bit color depth. The
images were acquired from a group of 241 individuals of both sexes, with ages ranging
from 26 to 91 years. Following an initial screening, all radiographs that did not portray the
hip joint bones were excluded from the subsequent analysis. The images depicting the hip
joint were obtained prior to endoprosthesis surgery or in a condition indicating the need
for reoperation. In addition, images with artifacts from elements such as the mattress or
endoprosthesis were also excluded. Finally, 481 radiographs from 132 patients were used
for analysis, where 93 patients had a longitudinal study (several X-rays taken at intervals),
and 39 patients had a single study (having only one image at one time point).
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2.2. Data Acquisition

In the study X-ray machine, Del Medical EV-650, manufactured in 2008, was used.
The X-ray machine was supplied with a cassette feeder (Poersch Metal Manufacturing Co.,
Chicago, IL 60624, USA), a portable detector DFMTS equipped with exposure tube C52
Super with an X-ray lamp RTM 101 HS manufactured by I.A.E Spa. The system is powered
by a high-voltage generator (Via Sistemi Medicali). Lamp usage is carefully monitored,
and the system was equipped with a new X-ray lamp (2015). System equipped with a valid
technical passport to assure patient safety.

2.3. ROI Annotation

To annotate the ROIs (Regions of Interest) on the preselected images, the qMaZda
software (release version 19.02) was used [18]. In each radiograph, rectangular ROIs
were selected to correspond to specific anatomical structures. Where endoprostheses
were present, the ROIs were refrained from being marked, resulting in a lower number
of analyzed areas. A detailed description of the ROI delineation process is provided in
Figure 1 and Table 1.
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Figure 1. Regions of interest are depicted on the radiograph.

Table 1. Table of ROIs with corresponding anatomical areas.

ROI Anatomical Structure

L 01 Wing of ilium—left side
L 02 Neck of femur—left side
L 03 Greater trochanter—left side
L 04 Ischium—left side
L 05 Shaft of femur—upper left side
R 01 Wing of ilium—right side
R 02 Neck of femur—right side
R 03 Greater trochanter—right side
R 04 Ischium—right side
R 05 Shaft of femur—upper right side
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2.4. Textural Analysis

Texture analysis is a type of image processing that examines image patterns and
structural features. It calculates the various statistical measurements of the grey-level
intensity values of the pixels in the image and can provide information on the spatial
distribution and arrangement of those pixels. Textural analysis can be used to extract
contrast, entropy, and homogeneity, which express subtle changes in the X-ray image and
reflects different bone tissue organization [19].

The textural analysis for each ROI was also carried out using qMaZda software, which
provides a plethora of different textural parameters. The qMaZda software computes
multiple textural features, including histogram-based, co-occurrence-matrix-based, run-
length-matrix-based, gradient-map-based, autoregressive model-based, and Haar wavelet
transform-based features. All these parameters can be calculated directly from the original
image histogram or based on a normalized histogram by setting different (4 to 12) bits per
pixel [18].

Initially, more than 10,000 parameters were determined for each ROI. Subsequently,
the parameters that contained NaN values were eliminated. As a result, 10 datasets were
generated, corresponding to each ROI, containing a total of 6836 features.

2.5. Statistical Analysis

Statistical analysis was aimed at showing which textural features correlate significantly
with age (age distribution presented in Figure 2).
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Figure 2. Age distribution, including SEX differences.

In the first step, the Shapiro–Wilk test [20] and Q-Q plot were used to evaluate the
distribution of continuous variables. Continuous data were presented as mean (standard
deviation, SD) or median (interquartile range, IQR) and compared using Student’s t-
test and Mann–Whitney–Wilcoxon U test, respectively. When one of the subgroups in
the study groups had a non-normal type distribution, data were presented as median
(IQR) and Mann–Whitney–Wilcoxon U test. Categorical data were presented as numbers
(percentages), and Fisher’s exact test was used to compare them. This determined the steps
for further analysis, which was the calculation of Spearman’s Rank correlation or Pearson’s
coefficient for each ROI. Regression models were used as quantitative methods to assess
whether and how the predictor; AGE correlates with the selected textures. Further, mixed-
effects regression models were used as an extension of fixed-effects regression models
to account for hierarchical data structures (Tables 2 and 3 show comparison results of
generated models). Such analysis takes into account intra-individual association between
variables because we had a mixed data set; some data were collected for participants at
several different time points. LME4 R packages were used to develop mixed-effect models.
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Table 2. Summary of standard regression (fixed-effect models) for the most prominent textures.

Model Variable Estimate (β
Coefficients) SE p-Value Adjusted

R2 AIC

MODEL_L02_YM6HogO8b4
fixed_regression AGE −0.009 0.001 2.4 × 10−14 0.271 −161.1173

MODEL_L02_YM4GlcmH4DifEntrp
Fixed_regression AGE −0.002 0.0003 1.55 × 10−13 0.2565 −602.232

Table 3. Summary of mixed models for the most prominent textures.

Model Variable
Estimate
(β Coeffi-
cients)

SE T p-Value Lower_2.5 Upper_97.5 AIC

MODEL_L02_YM6HogO8b4
mixed_regression AGE −0.008 0.001 −5.444 0 −0.011 −0.005 −159.9161

MODEL_L02_YM4GlcmH4DifEntrp
mixed_regression AGE −0.002 0.0004 −4.998 0 −0.003 −0.001 −588.468

The idea behind regression analysis is expressed in the equation below where f(x)
is the y-value we want to predict, α is the intercept (the point where the regression line
crosses the y-axis at x = 0), β is the coefficient (the slope of the regression line).

f(x) = α + βix + ε

SE is a measure that tells how much the coefficients would vary if the same regression
were applied to multiple samples from the same population. Thus, a relatively small SE
value indicates that the coefficients will remain very stable if the same regression model is
fitted to many different samples with identical parameters. A large SE value, on the other
hand, says that the model is variable and not very stable or reliable because the coefficients
change substantively if the model is applied to many samples.

StandardError(SE) =
∑(x−xi )

2

N−1√
N

=
SD√

N

The equation below represents a formal representation of a mixed-effects regression
with varying:

f(x) = αi + βix + ε

In this model, each level of the random variable has a different intercept and a dif-
ferent slope. So, to predict the value of a data point, it takes the appropriate intercept
(model intercept + random effect intercept) and adds the level factor of that random effect
multiplied by the value of x.

The inclusion of a random effect structure with random intercepts is justified as the AIC
(Akaike Information Criterion) of the model with random intercepts is substantially lower
than the AIC of the model without random intercepts. The Akaike Information Criterion
is a mathematical method for evaluating how well a model fits the data it was generated
from. In statistics, AIC is used to compare different possible models and determine which
one is the best fit for the data. The lower the AIC score, the better.

3. Results

Of the 10 anatomical areas analyzed, only ROI L 02 contained features that showed
significant correlations (Table 4). The lowest correlation values were obtained when ana-
lyzing the ROI L 04 area, whose features describe the texture parameters of the ischium
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texture on the left side of the hip joint. The highest value for this area was characterized by
the feature YM5Gab8Z4Mag, with a value of only −0.14.

Table 4. Summary of parameters with the highest Spearman’s rank correlation coefficient and p-value
for each ROI.

ROI Parameter rho Spearman p-Value

L 01 YD4DwtHaarS4HH 0.35 1.38 × 10−9

L 02 YM6HogO8b4 −0.52 4.95 × 10−14

L 03 YS4Gab24H12Mag −0.27 0.24 × 10−3

L 04 YM5Gab8Z4Mag −0.14 0.4 × 10−2

L 05 YS5GrlmHMGLevNonUn 0.32 1.60 × 10−5

R 01 YS6GlcmZ5SumAverg 0.26 1.60 × 10−4

R 02 YLbpCs8n5 0.31 7.54 × 10−5

R 03 YN8DwtHaarS1HH 0.37 4.62 × 10−6

R 04 YD4GrlmHRLNonUni 0.17 0.53 × 10−4

R 05 YN4Gab24Z12Mag −0.27 0.90 × 10−3

ROI L 02 was the most prominent, reaching as high as −0.52 in correlation with
YM6HogO8b4 texture. The features determined in this area describe the textural parameters
of the left femoral neck. The parameters determined in the right femoral neck area were
characterized by lower values and did not coincide with the features determined on the
left side (YLbpCs8n5: 0.31).

The results for the parameter YM6HogO8b4 are additionally illustrated in Figure 3
and YM4GlcmH4InvDfMom in Figure 4.
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Figure 3. Correlation of YM6HogO8b4 values with age for ROI L 02. The p-value of the test is less
than the significance level alpha = 0.05; it concludes that age and selected texture are significantly
correlated with a correlation coefficient of −0.52 and p-value of 5 × 10−14. This graph shows a
negative correlation, which means that every time AGE increases, YM6HogO8b4 values decrease.
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Figure 4. Correlation of YM4GlcmH4InvDfMom values with age for ROI L 02. The p-value of the
test is less than the significance level alpha = 0.05; it concludes that age and selected texture are
significantly correlated with a correlation coefficient of 0.51 and p-value of 1.9 × 10−13. This graph
shows a positive correlation. It means that YM4GlcmH4InvDfMom values increase with AGE.

In addition, the most relevant results for ROI L 02 are provided in Table 5.

Table 5. Texture parameters with corresponding rho Spearman correlation results and p-values for
ROI L 02.

Parameter rho Spearman p-Value

YM6HogO8b4 −0.5194 4.95 × 10−14

YM5HogO8b4 −0.5143 9.55 × 10−14

YM8HogO8b4 −0.5139 1.00 × 10−13

YM7HogO8b4 −0.5130 1.12 × 10−13

YM4GlcmH4DifEntrp −0.5100 1.65 × 10−13

YM4HogO8b4 −0.5100 1.70 × 10−13

YM4GlcmH4InvDfMom 0.5088 1.93 × 10−13

YM4GlcmH4Contrast −0.5085 1.99 × 10−13

YM4HogO8b5 −0.5078 2.19 × 10−13

YM5GlcmH4Contrast −0.5071 2.38 × 10−13

YM7GlcmH4Contrast −0.5070 2.42 × 10−13

All textural parameters of the femoral neck showing the most significant correlation
with age are derived from a histogram of oriented gradients (HOG) or the gray-level
co-occurrence matrix (GLCM).

HOG represents an image by calculating the distribution of gradient orientations
and magnitudes in small regions of the image called cells. The “8b” in the feature name
indicates the number of bins used to create the histogram. The GLCM texture feature
proposed by Haralick and Shanmugam [21] is widely recognized as a useful tool for
textural feature extraction [22]. It defines how often a combination of pixels occurs in
an image by analyzing the spatial relationship between pixels. Another shared feature,
including the other ROIs that have been analyzed, is the color component—coded as the
first sign Y, which stands for the brightness component from the YUV color space. Another
thing worth noting is the recurring last abbreviation defining the descriptor InvDfMom,
which stands for Inverse Difference Moment. The higher levels of this parameter represent
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an increased pixel uniformity and homogeneity [23]. The meaning of other abbreviations
can be retrieved from [18].

4. Discussion

The objective of the current investigation was to establish a relationship between alter-
ations observed in X-ray scans of bones and the age of the individual. Such changes may
not be perceptible to the imaging specialist. The utilization of mathematical algorithms to
analyze the surrounding pixel environment affords an avenue for examining modifications
in the bone microstructure that exceed the capabilities of human vision [24]. Our study
focused on establishing correlations between bone structure in varied regions of interest
within the proximal femur. X-ray appraisal is a firmly established method for assessing the
skeletal system [25].

The high mineral matrix content adjacent to collagen fibrils resists X-ray propagation,
which is the basis for determining the bone shape and clinical changes [26]. Bone is a
dynamic organ that interacts with the endocrine system to maintain ion equilibrium and
acid-base balance. This interaction relies on the action of osteoblasts and osteoclasts, which
are differentiated and activated from osteogenic cells (stem cells) progenitors [12]. The
lifespan of both cells is relatively short, with osteoblasts and osteoclasts surviving for three
months and one month, respectively [27]. The actions of osteoblasts and osteoclasts are
necessary for normal bone metabolism, including bone formation and depletion, and for
remodeling bone to provide skeletal support, which varies in different locations depending
on the load [28].

Although bone remodeling is a continuous process that involves the complete ex-
change of bone matrix every ten years, the overall bone mass is not significantly de-
creased [29]. However, advancing age and menopause are significant factors in reducing
bone mass [30]. The gradual decrease in osteons and lamellae, as well as the organic and
inorganic matrix associated with functional imbalances between osteoclast and osteoblasts,
functions that favor osteoclast function, results in a gradual decline in the volume of os-
teons and overall bone [31]. The decrease in interconnections between bone trabeculae
that form lamellae weakens the bone and makes it fragile and susceptible to pathological
fractures [32]. This process of bone deterioration is ongoing in both cancellous and compact
bone, which is crucial for load transmission [33]. In this study, two regions of interest
(ROIs) were analyzed based on correlations of visual-based textural features. One ROI was
located in the metaphysis region, where spongy osteocyte-containing bone with complex
architecture is present, directed toward withstanding compression and extension forces
concentrated along the main axes (lines) of support [34]. The second ROI was located in
the peri-trochanteric region, where the compact bone is prevalent.

The peak of bone mass is typically reached after puberty (around 20 years) and
gradually declines over one’s lifetime [35]. This process, although it can be slowed by
physical activity and good dietary habits, is inevitable and cannot be stopped. As trabeculae
are overall of lower mass, the effect of the gradual reduction of bone mass is higher in
locations with initially smaller bony mass, which is consistent with previous studies on
the phenomenon of gradual depletion of bony mass [36]. Such changes are visible on
traditional X-rays very late—only a loss of about 30% of the bone mass is visible on X-ray.
Dual-energy X-ray absorptiometry (DEXA) is much more sensitive, but it is a less thorough
examination and is performed in groups of patients at a certain risk of osteoporosis. The
reduction in bone mass in the region of the trochanter is significant due to the influence of
estrogen cessation [37]. Estrogens are known to be the most powerful stimuli for inhibiting
the action of osteoclasts, which are known for their strong remodeling action on bone [38].

Although, for many years, the reference for diagnostic imaging of bone in humans was
the interpretation of a radiologist [25], who is a specialist in diagnostic imaging, the ability
of the observer to detect image details does not necessarily reflect the amount of information
present in the image [24]. Therefore, many attempts have been made to evaluate bone tissue
structure, which is especially susceptible to textural analysis [39]. The idea of using textural
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analysis for the evaluation of human tissue visualized in diagnostic imaging techniques is
not new. It has been implemented for brain tissue [40–42], breast [43], and even muscle [44].
In the context of bone-based analysis, textural parameters are used, e.g., for the prediction
of incident radiographic hip osteoarthritis [45], age-texture correlation analysis [46,47], and
association with bone mineral density [48] and bone quality [49].

Contemporary emphasis must be placed on the role of artificial intelligence (AI), in
particular deep learning (DL), in the broad field of bone analysis. It is a revolutionary tool
that allows researchers to the generation of radiological reports for fractures of the proximal
femur [50] and detects fractures directly on the image from different modalities [51–53].
AI-based methods have also demonstrated the potential to predict a patient’s age or gender
based on images of the bone [54,55]. Furthermore, neural networks can be a valuable
support for bone segmentation [56,57] and the detection of a range of bone diseases [58,59].

The textural analysis presents certain benefits when compared to AI. In our theoretical
overview, we elucidated the biological basis for changes in bone texture and demonstrated
that there are certain specific parameters that are correlated with age. Textual analysis is
more suitable for interpretation and, in this particular study, allows us to conclude that
the microstructure of bone changes with age, which is accentuated in the images as an
increase in the homogeneity and uniformity of pixel values. Furthermore, textural analysis
can derive meaningful insights from smaller datasets compared to deep learning. Optional
research may be conducted on bone corticalization [60].

This is a relatively new approach as, to the best of our knowledge, there are no similar
approaches presented, excluding the work of our team [61] and the work of Dieckmayer [62],
who evaluated age among different parameters with the use of deep learning methods;
therefore, the approach was very different. Existing works where textures are used for bone
assessment are focused on the evaluation of the presence of osteoporosis [63,64]. Textural
bone assessment for osteoporosis evaluation was provided on different parts of the skeletal
system, such as the jaw [65] and head [66], and with the use of different modalities as CT
and MR [67]. Studies on bone mineralization were also evaluated in children [68]. However,
bone mineral density was studied already with the use of textural methods, and works
where age assessment was performed are lacking; therefore, we assume that our study will
have an important contribution to the current literature status.

This study also has several limitations that merit discussion. First, the image acqui-
sition was collected as digitalized images, which may have impacted the quality of the
obtained images. In addition, a subset of the acquired images contained endoprostheses,
resulting in a lower number of marked regions of interest (ROIs) and possibly affecting
the overall distribution of the data. Another limitation of our study was the use of a broad
demographic group with the inclusion of extremes of participants’ age (youngest and
oldest). The demographic is also limited to Caucasian origin with an extended group of
participants aged 25–91; however, most of the examined group are above the sixth decade
of life. Differences in bone mineral composition may influence the presented results. In
future investigations, we aim to conduct more comprehensive analyses on a dataset that
does not exhibit the aforementioned limitations and that includes a larger patient cohort.

5. Conclusions

In conclusion, the use of meticulous visual analysis based on textural features of X-ray
images was applied, and important correlations of textural features with age were found.
Implementation of textural analysis methods proved to be sensitive to changes in bone
architecture. The correlation with age found in the bone shaft can be explained by the rela-
tively lower mass of trabecular bone, even in areas of formation of compression supporting
lines. The proposed method might be useful in the early diagnosis of osteoporosis. Early
diagnosis of changes in bone mechanical strength might be essential in treatment planning
and the diagnosis of potential threats associated with bone fragility. The most important
statistical correlations were found in the femur neck. This is also the area of the highest
clinical importance where most orthopedic urgencies are found. Therefore obtained results



Appl. Sci. 2023, 13, 6618 10 of 13

are important from a clinical point of view as they enable us to evaluate accurately areas
where a potential bone loss might be a source of serious morbidities and further disabilities
for the patient if not properly diagnosed.
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The meaning of texture feature abbreviations used in the article:
e.g., YM4GlcmH4Contrast
#1 {Y}: Y channel of YCbCr—luminance (also for grayscale images)
#2 {D, M, S}: method of normalization—D (no normalization), M—(min-max normalization),

S—normalization to <µ − 3σ, µ + 3σ>
#3 {8, 7, 6, 5, 4}—number of depth bits (after quantization)
#4 {DwtHaar, Gab, Glcm, Grlm, Hog, Lbp}—texture name
#5 parameters of textures (direction, length}
#6 statistical function—described in detail in [61].
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