
Citation: Ban, T.; Takahashi, T.;

Ndichu, S.; Inoue, D. Breaking Alert

Fatigue: AI-Assisted SIEM

Framework for Effective Incident

Response. Appl. Sci. 2023, 13, 6610.

https://doi.org/10.3390/

app13116610

Academic Editor: Wenbo He

Received: 1 April 2023

Revised: 11 May 2023

Accepted: 25 May 2023

Published: 29 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Breaking Alert Fatigue: AI-Assisted SIEM Framework for
Effective Incident Response
Tao Ban * , Takeshi Takahashi , Samuel Ndichu and Daisuke Inoue

Cybersecurity Research Institute, National Institute of Information and Communications Technology,
Tokyo 184-8795, Japan; dai@nict.go.jp (D.I.)
* Correspondence: bantao@nict.go.jp; Tel.: +81-42-327-7529

Abstract: Contemporary security information and event management (SIEM) solutions struggle to
identify critical security incidents effectively due to the overwhelming number of false alerts gener-
ated by disparate security products, which results in significant alert fatigue and hinders effective
incident response. To overcome this challenge, we propose a next-generation SIEM framework that
integrates security orchestration automation and response capabilities and utilizes a divide-and-
conquer strategy to mitigate the impact of low-quality IDS alerts. The proposed framework leverages
advanced machine learning and data visualization tools—including a cost-sensitive learning method
and an event segmenting algorithm—to filter and correlate alerts plus an augmented visualization
tool to expedite the triage process. The proposed framework was evaluated experimentally on a
dataset collected from a real-world enterprise network, and we report highly convincing results. The
alert screening scheme demonstrates significant potential for real-world security operations. We
believe that our findings will contributing to the development of a next-generation SIEM system that
effectively addresses alert fatigue and lays the foundation for future research in this field.

Keywords: network security; intrusion detection; incident response; SIEM; alert fatigue; AI and
machine learning

1. Introduction

Increased usage has exposed the Internet infrastructure and other network-connected
systems to cyberthreats with increasing sophistication. In the past few years, the global cyber-
security landscape has seen a steady number of reported incidents ranging from conventional
attacks, e.g., ransomware, phishing, and denial of service (DoS) attacks, to novel, hybrid,
and emerging threats that exhibit an upward trend and strong impacts [1,2].

Thus, intrusion detection is a critical component to realize the operational and strate-
gic goals of enterprise security operation centers (SOCs) to defend against these threats.
Intrusion detection systems (IDS) can provide this capability by monitoring a network or
systems and raising alerts when abnormal activities or policy violations are detected [3].
IDSs can be categorized into host-based IDSs (HIDSs) and network-based IDSs (NIDSs) [4].
HIDSs are installed on individual hosts or systems, and they are used to detect intrusions
based on internal evidence, e.g., the modification or deletion of critical system files. In con-
trast, NIDSs are distributed at various network access points, and they detect intrusions
by inspecting the communications between network-connected devices. Depending on
the difference in their detection mechanisms, NIDSs lean toward proactive detection and
prevention of intruding activities before a breach occurs, and HIDSs act as a second layer
of defense, i.e., they operate at the endpoint level when a system is breached. In practice,
NIDS and HIDS are frequently deployed to work in a collaborative and complementary
mode to provide better security.

Due to their comprehensive and proactive nature, enterprise SOCs often rely heavily
on NIDSs to acquire a holistic perspective of the security situation and to prevent intrusions

Appl. Sci. 2023, 13, 6610. https://doi.org/10.3390/app13116610 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13116610
https://doi.org/10.3390/app13116610
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9616-3212
https://orcid.org/0000-0002-6477-7770
https://orcid.org/0000-0001-9632-2407
https://orcid.org/0000-0002-4373-0834
https://doi.org/10.3390/app13116610
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13116610?type=check_update&version=1

Appl. Sci. 2023, 13, 6610 2 of 29

at an early stage [5,6]. Examples of widely adopted NIDSs include open-source projects,
e.g., Snort [7], Zeek [8], and Suricata [9], and their commercial counterparts provided by
security vendors, e.g., LastLine, which is now part of VMware [10], FireEye [11], and Trend-
Micro [12]. However, NIDS effectiveness is frequently hampered by the low quality of the
issued alerts. As reported by Vaarandi et al. [13], when deployed in large financial insti-
tutions, Snort can produce more than 4,000,000 alerts per day on average. It is obviously
unfeasible to process this many alerts manually in a common SOC, and the vast majority of
low-quality alerts result in a considerable waste of valuable resources.

Moreover, to maximize the detection rate for crucial incidents, many companies are
now employing multiple IDSs in tandem with other security appliances. Nevertheless, this
growing number of integrated security appliances generally worsens the security situation
due to the so-called alert fatigue issue, where security analysts become desensitized to the
security alarms (alerts) after constant exposure to a large volume of promiscuous alerts with
uncontrolled false positives. This desensitization can result in delayed incident responses
and overlooked critical incidents, ultimately leading to increased network security risks
and reduced service quality. A recent survey conducted by the Cloud Security Alliance [14]
found that half of the enterprises surveyed utilize six or more security tools that generate
alerts. Additionally, nearly one-third of IT security professionals who participated in the
survey admitted to ignoring alerts due to the frequent occurrence of false positives.

Alert fatigue is a serious barrier to implementing a consolidated security solution
by integrating multiple security appliances. Currently, the common practice to mitigate
the alert fatigue problem is to leverage a security information and event management
(SIEM) system [15] to combine outputs from multiple sources for a consolidated security
solution. Ideally, an SIEM should provide integrated functionalities, e.g., log data collection,
efficient data retention, log indexing and searching, automated reporting, threat detection
alerting, and event correlation. Unfortunately, the effectiveness of contemporary SIEMs
is frequently hindered by various challenges that make them as much of a burden as a
benefit. In addition, many advanced qualities, including enhanced visualization, open-
source intelligence, and artificial intelligence (AI)/machine learning (ML) capabilities, are
attractive features for next-generation SIEMs [15].

Thus, in this paper, by leveraging the latest AI, ML, and visualization technologies, we
propose a framework for a next-generation SIEM system that integrates genuine security
orchestration automation and response (SOAR) capabilities to realize effective incident de-
tection and response. We address the key issue of alert fatigue caused by high numbers of
low-quality IDS alerts using a divide-and-conquer strategy. First, we decompose alert fatigue
into two causal sub-problems, i.e., filtering and correlation problems [16]. Second, we employ
advanced AI and data visualization methods to solve each sub-problem. Specifically, we
model the filtering problem as a supervised learning task to screen out false alerts in the IDS
output using an instance-weighted support vector machine (IWSVM), which is a cost-sensitive
learning method. The correlation problem is addressed by grouping correlated alerts into
events using a procedure that exploits their homogeneity and temporal coincidence. We then
introduce a novel visualization tool to confirm the results of this grouping procedure.

The proposed solution provides an alternative perspective on the alert fatigue problem,
which is commonly recognized as a key issue in enterprise SOC operations. By synergisti-
cally exploiting advanced AI/ML and data visualization tools, we provide an integrated
solution and prototype for a next-generation SIEM. Our primary contributions are summa-
rized as follows.

• We propose a comprehensive framework to design and implement a next-generation
SIEM system, and we demonstrate its effectiveness by prototyping the key components
of the framework.

• We formalize a divide-and-conquer strategy to mitigate the alert fatigue problem and
introduce practical solutions for each of its component problems, i.e., the filtering
and correlation problems. We also present practical solutions to these problems,
including the use of the cost-sensitive IWSVM learning method to address the issue

Appl. Sci. 2023, 13, 6610 3 of 29

of imbalanced learning in the filtering process and an algorithm that leverages the
proximity, spatial, and temporal homogeneity of alerts to effectively summarize them
into events for more efficient incident handling.

• We present an augmented visualization tool, which we refer to as augmented tile
graph (ATG), and demonstrate its ability to improve the performance of data analysis
against security alerts.

Overall, this paper offers a valuable contribution toward the development of a next-
generation SIEM system that effectively addresses the challenge of alert fatigue and paves
the way for future research in this field.

The remainder of this paper is organized as follows. Section 2 provides the necessary
background for efficient incident handling in an SOC and reviews related work on alert
fatigue. Section 3 introduces the proposed system framework, and Section 4 discusses the
design and implementation of the component systems to address alert fatigue. Section 5
presents experimental results that demonstrate the effectiveness of the proposed approach
on real enterprise network data. Section 6 discusses the limitations of the proposed frame-
work and identifies potential directions for further improvement. Finally, the paper is
concluded in Section 7.

2. Background and Related Work

In this section, we provide an overview of current practices to detect and mitigate
network intrusions. We also discuss the challenges of alert fatigue due to high numbers
of false alerts, and we review previous studies on reducing false alerts to improve the
effectiveness of incident-handling operations.

2.1. Incident Response with NIDS, SIEM, and SOAR

Computer security incident management involves monitoring and detecting security
events on a computer or network and executing appropriate responses. Events detected by
NIDSs and HIDSs are observable changes to a system’s expected behavior. There are three
types of events: normal, escalation, and emergency, each requiring different responses.
A normal event does not affect critical components or require change controls prior to the
implementation of a resolution. An escalated event affects critical production systems and
requires a change to the control process, i.e., participation of senior personnel and notifi-
cation to the stakeholders associated with the event, before implementing the resolution.
An emergency event can impact the health or safety of human beings, breach the primary
controls of critical systems, and/or materially affect component performance. NIDS, SIEM,
and SOAR are security technologies used at different stages of incident management.

2.1.1. IDSs

It is critical to detect intrusions to handle incidents efficiently. Detection capabilities can
be provided by HIDSs installed on critical systems or NIDSs distributed at various network
access points, which issue alerts to security incident management when unauthorized activities
are detected on monitored systems. Numerous commercial IDS products are available,
and research into new IDS implementations is ongoing. IDS products can be signature-
based or anomaly-based. Signature-based detection relies on a database of known malicious
patterns, and anomaly-based detection uses a model of normal traffic to detect deviations.
An NIDS with response capabilities, e.g., blocking traffic when an intrusion is detected, is
typically referred to as an intrusion prevention system [17]. As surveyed in the literature [18],
recent research on IDSs has focused on applying the most recent AI and ML methods to
detect intrusions [19,20]. Noteworthy work includes extending IDS schemes to protect
network environments, e.g., the Internet of Things [21,22], cloud environments [23,24],
software-defined networks [25], and automation and control systems [26].

Appl. Sci. 2023, 13, 6610 4 of 29

2.1.2. SIEM

SIEM solutions are crucial to enhance the security posture of an enterprise network [27].
The goal of these solutions is to collect, integrate, and analyze security-related data from
multiple sources, including logs from firewalls, IDSs, and endpoint security tools. As a
result, SIEM solutions provide a comprehensive view of the activities occurring in the IT
infrastructure, and they can detect potential security incidents before they cause significant
damage. In addition to threat intelligence, many SIEM solutions employ user and entity
behavior analytics [28] to monitor network activities and detect and mitigate attacks. This
helps simplify security operations and reduces the administrative burden of incident
response, allowing organizations to enhance their overall security posture and respond to
security incidents effectively and efficiently. Recently, increasing interest has been placed
on deploying SIEM solutions for security threat detection and response [29]. However,
various challenges, e.g., false positive alerts and alert fatigue, remain, and efforts are being
made to address these issues using ML and incident response workflows.

2.1.3. SOAR

As a collection of security software solutions and tools for browsing and collecting data
from various sources, SOAR systems automate the incident response process, streamline
the handling of security incidents, and improve the efficiency and effectiveness of incident
response teams [30]. According to Gartner [31], SOAR systems integrate with multiple
security tools, e.g., SIEMs, firewalls, and IDSs, to automate various tasks, including triage,
investigation, and remediation. These tasks are performed according to defined rules
and playbooks, which can be customized to respond to specific types of incidents. Thus,
SOAR can help organizations improve their overall security posture, reduce response times,
and minimize the risk of human error during incident handling [32]. As summarized by
Gupta et al. [33], despite the potential benefits of SOAR, research in this area is still in an
early stage, and further work is required to advance capabilities in orchestration, incident
response automation, and reporting.

2.2. Previous Studies on Alert Fatigue

The evolving cybersecurity landscape presents challenges for current IDSs due to the
sophisticated techniques used by threat actors. Missed critical events and high false alarm
rates can result in severe consequences, e.g., data breaches and reputational damage [18].
To address these challenges, enterprises deploy multiple IDSs and complex SIEM solutions;
however, this can result in alert fatigue and reduced productivity among security personnel.

2.2.1. Filtering- and Correlation-Based Approaches

Incident handling performance is strongly affected by the alert fatigue issue caused by
low-quality IDS alerts. A common solution to false and redundant alerts in IDS outputs is
to make them less sensitive. However, this approach conflicts with the need to not overlook
incidents and to possess detailed information in post-detection analyses. It also results
in experts wasting time tuning IDSs during setup and daily operations. A more effective
approach is to allow the IDSs to be overly sensitive and address the filtering and correlation
problems in a preprocessing step. Here, the filtering problem refers to the overwhelming
number of false alerts in the IDS output that are caused by imperfections in the detection
mechanism. The correlation problem refers to the extra number of reported alerts, which
are caused by the presence of replicated or correlated alerts in the IDS output due to
imperfections in the reporting mechanism. Numerous related works have investigated this
approach and have shown it to achieve good results. The proposed solutions have been
adopted by commercial products [5,34,35].

One of the approaches is the correlation-based method introduced by Valeur et al. [36],
which can reduce the number of alerts by up to 99.2% for honeypot datasets. However,
its effectiveness drops to 53.0% on the MIT/LL 2000 dataset, and its dependence on
correlation components makes it impractical in scenarios where access rights to the host

Appl. Sci. 2023, 13, 6610 5 of 29

may not be available. To tackle the issue of alert fatigue, Hassan et al. [37] proposed
the NoDoze method, which incorporates an automated provenance triage process. This
method adjusts the suspiciousness level of each event in the provenance graph based
on its neighboring events, performs behavioral execution partitioning, and generates
a dependency graph of accurate alerts to avoid dependency explosion resulting from
prior data provenance. Another effective method is the Isolation Forest (IF) technique,
as employed by Sun et al. [38], which detects deviations from normal employee behavior
by considering the temporal aspect. This technique involves collecting data for a specific
period and conducting anomaly detection on the entire dataset.

2.2.2. Alert Prioritization

By taking too many irrelevant, low-quality alerts as inputs, preprocessing techniques
based on filtering and correlation can provide imprecise results due to the noisy input.
To solve this problem, alert prioritization attempts to address the difficulty in managing
a large number of alerts and improve the accuracy of results by reducing the number of
unrelated alerts.

Chakir et al. [39] proposed an alert prioritization model that employs risk assessment
to assess the impact of IDS-generated alerts on the security status of an information system.
This model incorporates various factors, e.g., priority, reliability, and asset value, to calculate
the risk associated with each alert and prioritize the most critical alerts based on their risk
levels. The model was evaluated on the KDD Cup 1999 dataset to assess its effectiveness.
Aminanto et al. [40] utilized an isolation forest technique to filter out low-level threat alerts.
Here, they considered temporal information in alerts, allowing for real-time prediction
of incoming threats. This study demonstrated the potential of unsupervised learning in
reducing alert fatigue. The method was then improved [41] by adding a one-class stacked
autoencoder that reduced false positives by selecting outliers with high reconstruction error
rates as candidates.

2.3. Feature Engineering

The alerts generated by various NDSs may have various formats, thereby making
it challenging to analyze the data effectively. Effective analyses of such heterogeneous
data typically require a preprocessing step to convert the data into a standardized format.
However, emerging methods attempt to avoid the need for data transformation and work
directly with heterogeneous formats.

2.3.1. Feature-Based Approach

Several studies have aimed to standardize the format of security alert logs to facilitate
analysis and improve threat detection. Madani et al. [42] highlighted the challenges
associated with handling logs in various formats generated by different security appliances.
These formats include the log event extended format (LEEF) [43], common event format
(CEF) [44], intrusion detection message exchange format (IDMEF) [45], and the common
event expression format (CEE) [46]. The lack of a standard format makes it challenging to
analyze and compare threat alerts across different systems.

To address this issue, Azodi et al. [47] proposed a model that can read and normal-
ize different log formats using named-group regular expressions and a knowledge base.
Similarly, Sapegin et al. [48] introduced a new common log format that consolidates all
necessary information from different formats into a single format. These efforts towards
standardization can improve the efficiency and effectiveness of security operations and
enable more accurate threat detection.

2.3.2. Featureless Approach

Despite its high performance, the feature engineering process has been criticized for
reducing adaptability and being tedious and time consuming [49]. It has been referred to

Appl. Sci. 2023, 13, 6610 6 of 29

as a pain point in building trained systems, and it requires a high level of computer science
expertise [50].

A recent study [16] proposed a method to correlate and filter data without relying
on domain knowledge or feature engineering. Here, the alerts from an IDS are processed
as text strings and transformed into numerical representations. These representations are
then grouped into representative profiles using clustering methods. The authors presented
two implementations of their approach using a long short-term memory recurrent neural
network and latent semantic analysis. Although these implementations did not perform as
well as existing methods that rely on feature engineering when evaluated using common
detection metrics, they demonstrated promise when evaluated using practical metrics for
filtering and correlating.

3. Proposed SIEM Framework

In this section, we present the proposed SIEM framework, which is designed to
address alert fatigue in security operations. The proposed framework combines AI and
data visualization techniques to streamline the incident handling process. As shown in
Figure 1, the framework comprises four key modules.

• The alert generation module collects alerts from multiple IDS sources.
• The feature processing module standardizes diverse log formats and encodes relevant

information as numerical vectors for uniform representation.
• The ML module employs supervised learning algorithms on labeled alerts to develop

a prediction model to detect critical alerts.
• The investigation module assesses the performance of the prediction models and

enables rapid incident investigation through data visualization and alert correlation,
which summarize alerts into high-priority events.

Figure 1. Proposed SIEM system framework The NIDs are represented by circled thunder icons. The
orange arrows illustrate the flow of data among the data processing components implemented within
the framework. The cross symbol indicates the ability to select and integrate the components based
on the specific situation. The other icons in the figure are used purely for illustrative purposes and do
not possess specific connotations.

3.1. Alert Generation Module

Although integrating multiple security appliances into an SIEM can aggravate the
issue of alert fatigue, our extensive experimental analysis of a substantial number of alerts
generated by six IDSs revealed that these systems work together in a complementary
manner, enabling the identification and detection of a more extensive range of anomalies
within the network. Alerts generated by different IDSs can offer valuable insights and
information, even if they are triggered by the same attack, as each IDS has its own unique
detection mechanisms. Thus, we believe that integrating multiple security appliances
in SIEM can enhance the security of the monitored network as long as the alert fatigue
problem can be solved.

The framework we propose advocates for the deployment of multiple security appli-
ances within enterprise networks to ensure comprehensive protection against cyberthreats.

Appl. Sci. 2023, 13, 6610 7 of 29

However, previous research [51] has demonstrated that deploying these appliances in
a serial manner can result in performance degradation at high packet rates. Thus, we
recommend deploying these appliances in parallel, provided it is cost-effective, to maintain
multiple security appliances.

3.2. Feature Processing Module

The feature processing module attempts to address integrating security alert logs of
varying log formats from different devices. The CEF [44] was introduced by ArcSight and
is now part of HPE. The CEF has been widely adopted; however, many IDSs continue to
use unique log formats. The proposed data unification component resolves this issue by
parsing alert messages and converting them into standard JavaScript object notation (JSON)
objects [52]. By consolidating data from different vendors into a single, centralized view,
a comprehensive and precise depiction of the network’s security status can be obtained. In
Appendix A.1, we present a sample alert log in the CEF format and demonstrate how it is
parsed and converted into a structured JSON object.

The JSON objects generated by the data unification component contain crucial event
information, e.g., event descriptions, unique identifiers, the IP addresses involved in
the communication, event impacts, the URLs of risky Internet resources, and the hash
values of downloaded files. These attributes are categorized into numerical, categorical,
and signature types, with the most relevant attributes selected based on their descriptive
and generalizable nature to represent the corresponding event. Each alert message in the
log file is transformed into a numerical vector using one-hot encoding, which converts
categorical features into binary attributes.

To ensure accurate labeling of critical alerts, the data are initially examined manually
by security personnel in the SOC. However, to mitigate the risk of misjudgment and
alert fatigue, AI experts review the labeled data using information visualization tools to
validate the accuracy of the label information. Additional details about the data used in the
evaluation are provided in Section 5.

3.3. Machine Learning Module

The ML module leverages AI and ML algorithms to implement the filtering function,
which reduces the number of unrelated alerts in subsequent processing. To achieve this, we
must formulate the filtering problem as a common learning problem, and we must select a
suitable ML method to solve the problem effectively.

3.3.1. Problem Formulation

The goal of the filtering process is to assign each vector with an indicator of its impor-
tance (or, more directly, assess its significance). Given the superior accuracy of supervised
learning algorithms compared to other learning models, we propose to formulate the
filtering problem as a supervised learning task. The supervised learning model takes the
vector representation of the alert as input and predicts a class label indicating whether the
sample is a critical alert.

3.3.2. Class Imbalance

With a sufficiently large training set, the filtering problem can be solved by any classi-
fication algorithm that can categorize incoming alerts as critical or noncritical. However,
class imbalance poses a challenge. An imbalanced dataset refers to a situation where there
is a significant disproportion in the number of instances for each class [53]. This problem is
prevalent in security alert data, where the frequency of critical alerts is much lower than
that of noncritical alerts [54,55]. As a result, conventional classifiers may be biased toward
noncritical alerts, thereby hindering the detection of crucial alerts associated with critical
incidents. Thus, a method is required to address class imbalance in security alert data to
ensure rapid responses to incidents in SOCs.

Appl. Sci. 2023, 13, 6610 8 of 29

Class imbalance is commonly addressed by resampling the training data through
subsampling, oversampling, or hybrid methods. Subsampling can reduce performance
due to information loss in the reduced sample size, and oversampling can be effective
through data augmentation algorithms, e.g., the synthetic minority oversampling tech-
nique (SMOTE) [56], adaptive synthetic sampling [57], and SVMSMOTE [58]. However,
conventional oversampling methods may be ineffective for datasets with a large number
of categorical attributes. A previous study [59] demonstrated that incorporating multi-
ple oversampling methods can synthesize samples with more diversity and higher qual-
ity. Another approach to address class imbalance is to adopt cost-sensitive approaches,
e.g., WSVMs [60,61]. A weighted support vector machine (WSVM) assigns distinct weights
to positive and negative samples, which scales the margin in proportion to the class signif-
icance. This makes it more efficient in managing imbalanced datasets. In this paper, we
propose an improved WSVM, which considers the different weights assigned to samples
from different classes and reduces the sample size by summarizing the replicated counts
into an instance weight. This results in improved training and prediction performance. We
refer to this approach as the IWSVM, which is described in detail in Section 4.

To determine the best approach to mitigate class imbalance in security alert data
with a large number of categorical attributes, we compare the proposed method with
popular oversampling techniques and the hybrid approach proposed by Ndichu et al. [59].
The experimental results (Section 5) demonstrate the effectiveness of the proposed IWSVM
over conventional oversampling methods and the hybrid approach.

3.3.3. Baseline Classification Methods

As baseline methods for comparison, we evaluated six classification methods that can
efficiently handle high-dimensional sparse data [62]: K nearest neighbors (KNN), naive
Bayes (NB), linear discriminant analysis (LDA), decision tree (DT), AdaBoost, and SVM.
These methods were used to create prediction models for the alert dataset (Section 5).
The proposed IWSVM and the reference WSVM are described in Section 4.

KNN is a well-known machine learning algorithm used for classification and regres-
sion tasks. It finds the K closest training samples in the feature space and assigns the class
of the test sample based on majority vote of these neighbors. It is simple and effective
but sensitive to irrelevant features and computationally expensive for large datasets or
high-dimensional feature spaces.

NB is a probabilistic machine learning algorithm used for classification tasks. It
works by computing the probability of a test sample belonging to each class based on
the probabilities of the features given to each class and then assigning the class with the
highest probability. It assumes independence between features, making it efficient for
high-dimensional datasets. It is simple and fast, but the independence assumption may not
hold in some cases.

LDA is a supervised machine learning algorithm used for classification tasks. It works
by projecting the data onto a lower-dimensional space while maximizing the separation
between the classes. It assumes normality and equal covariance matrices but may not work
well if these assumptions do not hold.

DT is a supervised machine learning algorithm used for classification and regression
tasks. It works by recursively splitting the data into subsets based on the values of features,
with the goal of maximizing the purity of each subset. It is simple and easy to interpret,
but can be prone to overfitting and may not generalize well. Techniques such as pruning
and ensemble methods can help address these issues.

AdaBoost is a supervised machine learning algorithm used for classification tasks. It
works by combining several weak classifiers into a strong one by iteratively training them
on weighted versions of the data and giving higher weights to misclassified samples. It is
powerful and less prone to overfitting but can be sensitive to noisy data and outliers.

SVM is a supervised machine learning algorithm used for classification and regression
tasks. It works by finding the hyperplane that separates the data into classes with the

Appl. Sci. 2023, 13, 6610 9 of 29

largest margin possible. The hyperplane is chosen to maximize the distance between the
closest samples of each class, which are called support vectors. SVM is powerful and less
prone to overfitting but can be computationally expensive and sensitive to the choice of
kernel function and regularization parameters. We chose to use the Radio Basis Function
(RBF) kernel-based SVM in the experiment because it is good at dealing with complex,
non-linear datasets and has a feature that prevents overfitting.

3.3.4. Evaluation Schemes

Two performance evaluation schemes were considered to assess the performance
of our models, i.e., stratified cross validation (SCV) and rolling origin validation (ROV).
The SCV [63] method (Figure 2a) evaluates ML models by partitioning the data into folds,
where each fold is used as a validation set and the remaining data are used as a training
set. The main objective of SCV is to ensure that the distribution of the target variable is
represented equally across all folds, which is achieved by ensuring that each fold contains
approximately the same proportion of each target class. The validation outcomes are then
averaged across all folds to provide an assessment of the model’s prediction performance.

ROV is a time-series validation technique frequently used when working with time-
series data [64,65]. As shown in Figure 2b, the data are divided into training and validation
sets, where the validation set begins at a certain point in time and rolls forward through
time, which means that the most recent data are used as the validation set and older data are
used as the training set. The advantage of ROV is that it provides a more realistic simulation
of how a model would be used in practice because it reflects the scenario wherein the model
would be making predictions using the most recent data available.

Figure 2. Performance evaluation scheme. (a) Cross validation; (b) Rolling origin. The subset with a
green background indicate it is the testing set for the CV-round. In (a), the subset distinguished by
a green background signifies its designation as the testing set, while those identified with a white
background indicate their inclusion in the training set for each cross-validation round.

3.4. Investigation Module

Security appliances often generate multiple alerts over a long period of time to detect
attacks. This can result in an excessive number of alerts, for instance, in the case of a
bot-infected host that repeatedly probes multiple targets on a network. While most IDSs
log related information about a specific rule violation triggered by certain network com-
munication, not all IDSs effectively group alerts related to the same attack campaign. As a
consequence, the number of false alerts may increase unnecessarily. The improper configu-
ration of detection rules and the generation of recurring alerts for persistent unsolicited
communications can also significantly increase the number of false positives.

The investigation module incorporates data visualization techniques to simplify the
complex process of investigating alerts. By working in tandem with the SOAR tools
integrated into the SIEM solution, the security analysis process is streamlined, which
empowers analysts to respond to threats with greater speed and precision. The integration
of data visualization allows security analysts to identify trends and anomalies in the data

Appl. Sci. 2023, 13, 6610 10 of 29

quickly through graphical formats, e.g., charts and graphs. It also provides a user-friendly
interface to interact with the SIEM and helps engage stakeholders in the communication of
security risks and priorities.

A previously proposed visualization tool [61] has undergone enhancements to visu-
alize correlated alerts, and the updated version (Section 4) offers a clear graphical inter-
pretation of the analyzed alert, thereby helping security analysts discern the links and
correlations between various security incidents.

4. Methodology

In this section, we describe the implementation of our approach to addressing the
alert fatigue issue with the proposed SIEM framework. Our framework consists of two
key components: a filtering module and a correlation module. The filtering module uses
IWSVM to identify and remove false alerts, thereby reducing the number of alerts that
need to be further investigated. The correlation module groups alerts into events based on
their homogeneity and temporal coincidence. To confirm the results of the alert correlation
process, we introduce an ATG, which is an improved version of the tile graph [61].

4.1. Filtering Problem

The filtering problem involves identifying critical alerts from a given set of alerts.
Recall the three event types defined in Section 2.1: normal, escalation, and emergency.
Emergencies are relatively rare in environments controlled by an intrusion response team,
and using such events as direct targets for learning may be overly aggressive. Thus, we
propose to use escalations as positive samples for the target classification task. As a result,
the classifier imitates the process of the intrusion response team by selecting escalations
from the outputs of IDSs.

The following two reasons further explain the rationale behind this choice. First,
selecting escalations from normal events typically only requires the information contained
in the alert, whereas determining if an escalation is an emergency typically requires evi-
dence beyond that provided in the alert. Second, the daily number of escalations reflects
the throughput of the intrusion response team; thus, the predicted number of alerts and
vigilance levels for ML methods targeting escalations should be reasonably appropriate.

The following definition formally describes the filtering problem as a binary classifica-
tion task.

Definition 1 (Filtering Problem). Let {xi, yi|i = 1, . . . , N} denote a labeled alert set, where
xi ∈ D is a d-dimensional vector obtained from the one-hot encoding representation of an alert,
where yi = 1 if the alert is an escalation; otherwise, yi = 0. The filtering problem is solved by a
decision function f (xi; θ) with a loss function L(f (·; θ), xi, yi). Specifying the functional form of
f and L completely specifies the classification algorithm. θ = arg minθ L(θ) defines the classifier.
A sample x is predicted to be positive (a critical alert) if f (x; θ) > 0; otherwise, it is classified as
negative (a noncritical alert).

4.1.1. Filtering by Cost-Sensitive Learning

In this context, the filtering problem can be addressed by utilizing the classifier algo-
rithms discussed in the previous section. However, the classification problem defined by
the filtering problem is frequently associated with two main challenges. First, there is an ex-
tremely imbalanced distribution of positive and negative classes, which can make it difficult
for the classifier to learn from the data effectively. Second, the impact of classification errors
varies, with false positives and false negatives having different levels of harm to the system.
Here, false positives refer to noncritical alerts that are misclassified as critical, and false
negatives refer to critical alerts that are missed or classified as noncritical. This means that
it is crucial to use an approach that considers the asymmetric costs of misclassification and
the severe class imbalance present in the filtering problem. A promising technique that
can address these challenges is cost-sensitive learning [66], which assigns different costs to
false positives and false negatives based on their impact on the system, and it can optimize

Appl. Sci. 2023, 13, 6610 11 of 29

the overall cost of misclassification. This is consistent with the requirement for setting a
higher weight for the minority class, commonly critical alerts, to improve the prediction
accuracy for such samples.

Cost-sensitive learning [66] can help encode prior knowledge about the class impor-
tance and sample instance importance differently in the classifier. In this study, we adopt
the SVM classifier. Assigning a high weight to a class suggests that the learning algorithm
should attempt to classify samples from that class correctly, possibly at the expense of
misclassifying samples from the other class. This heuristic can be applied successfully to
critical alerts because they require higher detection accuracy than noncritical alerts. This
weight factor should be considered as class weights. However, information, e.g., source and
destination IP addresses, timestamps, file names, and file hashes, that does not generalize
well for classification is removed from the alerts during the processing; thus, the one-hot
encoding yields many identical numerical vectors with very similar alerts corresponding
to the same attack detected in different occasions. Training a classifier with many repli-
cated samples is inefficient, and this can be addressed by assigning weights that reflect the
frequency of the alerts to the samples. Note that this weight factor is deemed an instance
weight. To differentiate it from the WSVM [61], we refer to this SVM classifier, which
considers class weight and instance weight simultaneously, as the IWSVM.

To adopt the proposed IWSVM in the learning process, we first group the numerical
vectors to obtain a set of unique vectors and their instance weights following the definition
given below.

Definition 2 (Instance Weight). In the context of alert databases, we define the instance weight
of a vector ui as follows. Let h : S → N be a function that maps each vector to its frequency
in the database and let C be a set of categories. Let w : C → R be a function that assigns a
weight to each category to indicate its importance. Define g : S → C as a function such that
g(ui) = cj if and only if ui belongs to category cj. Then, the instance weight W(ui) for ui is given
by W(ui) = h(ui)w(g(ui)).

The instance weight of a sample vector is determined by the frequency of the corre-
sponding alert in the database and the class weight, which is a predefined empirical value
indicating the importance of the class. Using the unique sample vectors and their instance
weights, an SVM solver optimizes the following weighted loss function [67]:

L̂w(f) = ∑
ui∈S

W(ui)L(yi, f (ui)), (1)

where L(yi, f (ui)) is the loss function that penalizes the difference between the true label yi
and the predicted label f (ui). In our experiments, we utilized the SVM and WSVM solvers
implemented in the LIBSVM toolbox [60]. We adopted the 0-1 loss function, which is widely
recognized as the most common loss function, in the experiments. In mathematical terms,
it can be expressed as:

L(yi, f (ui)) =

{
0 if f (ui) = yi,
1 if f (ui) 6= yi.

(2)

4.2. Correlation Problem

In the previous section, we introduced a cost-sensitive learning scheme that filters out
noncritical alerts and outputs only those that require further investigation. This method
significantly reduces the number of alerts to be processed; however, it only operates on
individual alerts and lacks the ability to reduce redundancy caused by duplicate and
correlated critical alerts. To address this issue, we employ alert correlation—based on
the compactness in terms of behavioral, spatial, and temporal factors—to group alerts
into events and summarize them as an “event profile”. These groups can be considered a

Appl. Sci. 2023, 13, 6610 12 of 29

collection of alerts detected in the same attack campaign, thereby enabling a single-point
investigation of the entire event.

When implementing correlation, behavioral similarity is a necessary but insufficient
condition for grouping alerts into an attack event. To illustrate this, we consider two Emotet
(Emotet, also known as Heodo,is a notorious malware strain and cybercrime operation that
has caused havoc in the cybersecurity world since 2014 and is believed to have originated
from Ukraine [68]) warnings: one detected a month ago on a finance department server
and the other triggered this morning on an HR department server. Although the behavior
of these alerts is similar and they should be categorized into the same group, the differences
in communication targets and timing require they be treated as separate incidents. Thus,
alert correlation requires careful consideration and tuning to ensure that only genuinely
related alerts are grouped as part of the same event.

Definition 3 (Correlation Problem). Let X = {xi|i = 1, . . . , N} denote the alert set, and for
each alert in X, the three-tuple ([Si, Di, Pi])] represents the source IP address, destination IP address,
and service port. Let ti denote the issuing timestamp associated with alert x in X and let τ represent
the maximum duration (in seconds) for an event to exist before being terminated. A correlation
problem involves grouping alerts in X based on their compactness in terms of behavioral, spatial,
and temporal factors. Here, behavioral compactness is achieved by satisfying similarity conditions
based on numerical representation of the alerts. Spatial compactness is achieved by satisfying the
three-tuple condition defined in (3), where alerts in each event share the same source IP address,
destination IP address, and service port. Temporal compactness is realized by satisfying the timeout
condition defined in (4), which limits the duration of each event to a maximum value τ.

∀xi, xj ∈ E, Si ≡ Sj, Di ≡ Dj, Pi ≡ Pj, (3)

∀xi, xj ∈ E, |ti − tj| ≤ τ. (4)

4.2.1. Implementing Alert Correlation

A two-step method can be employed to address the correlation problem efficiently.
The first step utilizes a clustering algorithm to group alerts in X based on their similarity.
This algorithm partitions alerts into k (k ≤ N) clusters using the numerical representations
in X, thereby ensuring that alerts within each cluster are more similar to each other than to
alerts in other clusters. In the second step, a segmenting algorithm is employed to divide
alerts in each cluster into sets of candidate events (denoted Ej) that satisfy the three-tuple
and timeout conditions. This procedure ensures that each candidate event comprises alerts
exhibiting compactness in behavioral, spatial, and temporal aspects. Finally, to enable
effective incident investigation, an event profile is generated for the identified group of
alerts. The profile includes various information, such as attack type, attack time, affected
assets, and attack methods.

When clustering the filtered alerts into events, selection of the similarity threshold has
a critical impact on the resulting groups, where a lower threshold reduces the number of
events to be investigated but increases the complexity of alerts within each event, thereby
making incident handling more challenging. Conversely, a higher threshold reduces
the complexity of alerts in each event but increases the number of events that require
investigation. Practically, events with high purity are preferable because they do not
involve dealing with multiple types of alerts within a single event, which makes the
investigation more efficient.

Using numerical representations provided by one-hot encoding, which can result in a
large number of replicated alerts, is equivalent to setting the similarity threshold to 1 in
a hierarchical clustering algorithm. In our implementation, we leveraged this feature by
requiring alerts in the same cluster to be homogeneous in terms of the one-hot encoding
features for the selected categorical fields. This ensures that the resulting events comprise

Appl. Sci. 2023, 13, 6610 13 of 29

alerts with consistent attributes, thereby improving the efficiency and accuracy of the
incident investigation.

The segmentation algorithm used to divide a group of alerts into events ensures that
alerts in the same event exhibit spatial compactness. Many existing NIDSs group alerts into
events based on a four-tuple [source IP, destination IP, source port, destination port] or a
three-tuple [source IP, destination IP, destination port] for ease of implementation. After
carefully observing a substantial number of alerts and using the ATG as a visualization aid,
we discovered that using a three-tuple consisting of [source IP, destination IP, service port]
combined with a strict similarity criterion resulted in a noteworthy improvement on the
grouping of security alerts into separate events. Additionally, our choice of the service port
over the source or destination port corresponds to the incident handling expertise of SOC
operators, as evidenced by the escalation set utilized during the assessment. Further details
can be found in Appendix A.2. Here, the service port refers to the port whose vulnerability
is exploited in the attack campaign. The source port on the attacker side is typically selected
randomly, which makes it less useful for correlating alerts from the same attack campaign.
For example, in a DoS attack against a web server, the source port may differ, but the
service port (e.g., port 80 for HTTP services and port 8080 for HTTPS services) remains the
same. Grouping alerts based on the proposed three-tuple provides an appropriate level of
granularity for segmenting alerts into events.

We propose a simple technique to identify the service port in a group of alert messages
produced by an IDS. Here, we assume that the alerts originate from a pair of IP addresses
and that they occur within a short time span, which allows them to be merged into a single
event. However, at least one of the source or destination ports may have multiple values.
To determine the service port, we utilize the heuristic that, as the target of a series of similar
attacks, it should appear in the alerts more frequently than randomly selected attacking
ports. By comparing the information entropy of the source and destination ports, we can
determine the service port as the one with lower entropy (with relatively high confidence).
If the comparison does not yield a clear advantage, we utilize a combination of the source
and destination ports as the service port identifier to merge alerts into events.

An implementation of the event segmenting algorithm is presented in Algorithm 1.
The function takes a set of events, including source ports, destination ports, and issuing
timestamps (si, di, and ti), as well as a timeout parameter (τ) and threshold parameter (β).
First, the algorithm calculates the number of unique source and destination ports, and then
it divides the alerts into multiple events if there are several unique source and/or destina-
tion ports. Here, it utilizes entropy to measure the level of uncertainty along different ports.
A higher entropy value indicates greater uncertainty in the specific port. The algorithm
splits the events based on the port with lower entropy. The “SplitByTimeout” function
then further segments events with the same service port. This function is straightforward
to implement based on the temporal condition in Equation (4). Specific implementation
details are omitted here for brevity. The β parameter controls the degree of bias toward one
port, and in our experiment, this was set to 0.58.

Definition 4 (Entropy [69]). Let Z be a random variable representing a set of source or destination
ports observed in IDS alerts, with individual observations denoted zi. Typically, zi takes on integer
values in the range 0–65,535. In addition, assume that Z is distributed according to a probability
distribution p : Z → [0, 1]. Thus, the entropy of Z can be obtained as follows:

H(Z) = −∑
z

p(z) log p(z). (5)

The value of the timeout parameter (τ) used to define an event associated with an
attack campaign may vary depending on several factors, including the specific use case,
the network being monitored, the types of detected attacks, and the alert-issuing IDS
settings. Typically, this parameter is used to set a maximum time interval for grouping a
series of related alerts or activities as part of the same attack campaign. In common IDSs,

Appl. Sci. 2023, 13, 6610 14 of 29

timeout values for reissuing alerts can range from several seconds to several minutes (or
even longer in some cases).

When using the timeout parameter to group closely related alerts that satisfy the
three-tuple condition, it is more suitable to set a larger value to avoid the negative impact
of repetitive escalation candidates, as found in our experiment. For example, we found
that a timeout value of 7200 s was suitable to group hourly recurring, identical alerts into a
single event and notifying the operator about alerts of the same type only if there is a gap
of at least two hours between alerts.

Algorithm 1 Event Segmenting.

Require: 0 ≤ ti+1 − ti ≤ τ for i = 2, . . . , N − 1
1: function SEGMENTING({[si, di, ti]}, τ, β)
2: ns ← CountUnique({si})
3: nd ← CountUnique({di})
4: if ns = 1 or nd = 1 then . 1×multi or multi ×1
5: E← {[si, di, ti]}
6: else . multi ×multi
7: es ← Entropy({si})
8: ed ← Entropy({di})
9: if es/ed < β then . source as service

10: E← SplitByTimeout({si}, {ti}, τ)
11: else if ed/es < β then . dest. as service
12: E← SplitByTimeout({di}, {ti}, τ)
13: else . port pair as service
14: E← SplitByTimeout({[si, di]}, {ti}, τ)
15: end if
16: end if
17: return E
18: end function

4.3. Augmented Tile Graph Visualization

In this section, we reintroduce the tile graph method [61] as a way to visualize massive
and interconnected alerts. The tile graph divides the plot area into two sub-panels, namely
the source panel on the left and the destination panel on the right (Figure 3a). The x-
axis of the source panel represents the timestamp of the triggered alert, while the y-axis
indicates the source IP addresses involved in the communication. In contrast, the x-axis
and y-axis of the destination panel represent the destination IP addresses and destination
ports involved in the communication, respectively. To ensure the distinguishability of IP
addresses, they are uniformly positioned on the axes based on their occurrence order. A
line is drawn between a source IP address and a destination IP address to represent each
alert. The color of the line reflects the status of the source and destination IP addresses,
as indicated in Figure 3b. For instance, a blue line represents an alert triggered by an
internal host communicating with an external host on the Internet.

Figure 3a shows an ATG illustrating the “HTTP login brute-force detected” attack over
a one-week period. The ATG reveals that a considerable number of alerts were triggered
by communications between internal hosts and the proxy server, as highlighted by the blue
lines toward the proxy server enclosed by ellipse A. Although such erroneous communica-
tions may not be significant to a security operator, the operator may wish to concentrate
on the more distinct attack attempts that display a periodic nature, as highlighted by
ellipses B and C. The ATGs provide a valuable perspective of the complexity of cyberattack
campaigns, which can help security operators reduce the costs associated with log parsing;
thus, they can focus their attention on more critical incidents.

Appl. Sci. 2023, 13, 6610 15 of 29

Figure 3. Visualization of “HTTP login brute-force detected” attacks using the tile graph. (a) Tile
graph and (b) Color-coded legend illustrating host locations and attack orientations within the tile
graph. Hosts are represented by disks, with colors indicating their locations (green for internal, blue
for external, orange for DMZ, purple for proxy server, and gray for missing information). Alerts are
depicted by lines connecting source and destination hosts in the panels, with colors representing
communication orientations (blue for outbound, red for inbound, green for internal, yellow for
external, orange for DMZ-related, and gray for unknown). Ellipses A, B, and C in (a) highlight
distinct host groups. Ellipse A emphasizes a proxy server, exhibiting outbound alerts between
source internal hosts and the proxy server as the destination. Ellipse B exemplifies a source host
triggering periodic outbound alerts to external destination hosts. Ellipse C demonstrates internal
hosts triggering periodic internal alerts between other internal destination hosts. IP addresses in
this example were anonymized through random shuffling, ensuring the absence of identifiable
information.

The ATG is a powerful framework for visualizing complex datasets, particularly those
containing source and destination information found in alert messages. By encoding this
information into a set of coordinate variables, the ATG creates an intuitive visualization
that facilitates pattern discovery. This approach can visualize various data types, as demon-
strated in the context of visualizing the results of the proposed event segmenting algorithm.
In this case, alerts occurring between two fixed IP addresses are visualized, thereby freeing
up axes previously used to display IP addresses to encode other relevant information.

In the examples shown in Figure 4, the source plane uses the x-axis to represent
time and the y-axis to represent source ports, and the destination plane uses the x-axis
to represent attack types and the y-axis to represent destination ports. The color of the
connecting line in the ATG represents the event label assigned by the algorithm. Here,
related events are assigned the same color, which makes it easier to identify event clusters
and draw conclusions regarding network behavior.

Figure 4a shows the effectiveness of the event segmenting algorithm. Here, ellipse A
contains a group of alerts notifying attacks against port 22, detected as the same type of
attack but divided into different events due to exceeding the timeout threshold. Ellipse B
contains attacks targeting the same port with varying source ports in a short period, thereby
satisfying the conditions of the proximal, spatial, and temporal compactness; thus, these
attacks can be merged into a single event. In Figure 4b, ellipse C shows alerts notifying
attacks against the same target port that were detected as different types of attacks. These
attacks are divided into two events due to a relatively strict proximal criterion, and the
same situation is observed with the alerts in ellipse D, indicating that the imposed proximal
criterion may be too strong. Thus, there is room to implement a milder criterion to reduce
the number of escalation candidates.

Appl. Sci. 2023, 13, 6610 16 of 29

Figure 4. Visualization of the event segmentation algorithm results using ATGs. (a) Example 1 of
event segmentation; (b) Example 2 of event segmentation. In the ATGs, hosts are depicted as disks,
adhering to the color scheme defined in Figure 3b. Alerts are illustrated by lines connecting the
source and destination hosts in the panels, with colors indicating the grouping outcome—alerts
belonging to the same group share a common color. Ellipse A highlights a cluster of alerts indicating
attacks on port 22 with prolonged time intervals. Ellipse B exemplifies a cluster of alerts targeting the
same destination port but originating from different source ports within a short timeframe. Ellipse C
highlights a cluster of alerts targeting the same destination port. However, alerts within this cluster
are associated with distinct attack types, resulting in their grouping into multiple events. Ellipse
D showcases another example where alerts targeting the same port are distributed across multiple
events due to inconsistencies in other attack characteristics.

Overall, the ATG visualizes complex datasets effectively, as demonstrated by the
results of the event segmentation algorithm. The power of data visualization is evident in
this example because patterns are readily apparent through a visual inspection.

5. Experiments

In this section, we present the results of experiments conducted to evaluate the pro-
posed scheme as applied to log data collected from multiple IDSs deployed in SOC oper-
ations in an enterprise network. We conducted two sets of experiments. The first aimed
to make a horizontal comparison of the proposed cost-sensitive approach with previous
methods to address the filtering problem. To enable comparison and citation, we used the
performance evaluation results obtained through five-fold SCV. In the second set of experi-
ments, we examined the effectiveness of the proposed method in a real-world SOC context,
where we adopted ROV for the evaluation. In addition, we evaluated the enhancement
of incident handling performance resulting from utilizing the proposed event segmenting
algorithm to address the correlation problem.

5.1. Data Preparation

In this study, we analyzed real-world data from a class-B network with over 1000 users
and 30,000 network devices, e.g., personal computers, servers, and mobile devices [59,61,70].
For anonymity purposes, the six IDSs are referred to as appliances A–F. We used two
datasets collected from the same network at different times, which we refer to as the
NSOC2017 and NSOC2022 datasets. The NSOC2017 dataset contains alert logs generated
by all six IDSs from 1 January to 31 October 2017. The NSOC2022 dataset comprises
alert logs from two appliances (A and B) from 18 June 2021 to 30 November 2022. These
two appliances are considered the main sources of information for incident handling due
to their long operation time and high-quality alert information. Appliances C–F were

Appl. Sci. 2023, 13, 6610 17 of 29

discontinued for performance and commercial reasons. Using these datasets, we assessed
the performance of the proposed SIEM scheme to improve incident handling.

The SOC security team examined the alerts and escalated those that could potentially
impact critical systems. They analyzed the communication content associated with each
escalation, checked the accessed URLs against commercial blacklists, analyzed downloaded
files using a sandbox, and then recorded the results in the system. To minimize the impact
of overlooked critical alerts caused by alert fatigue and single alerts that were escalated
accidentally, we performed a review using data grouping techniques, ATGs, and signature-
matching using various information, e.g., the URLs and hash values of the downloaded
files, to identify alerts that were closely related to escalations. The SOC investigation
and subsequent secondary review process helped us accurately identify critical alerts and
improve the quality of the dataset.

5.2. Parameter Tuning

The effectiveness of machine learning algorithms is heavily influenced by the hyper-
parameters utilized during the training process. In order to tune the classifiers’ parameters,
we implemented the 10-fold SVC procedure explained in Section 3.3.4. Following this, we
chose the optimal setting to create a model based on the entire training set, which was
then assessed using the test set. The parameter values we examined for each classifier
are presented in Table 1. For standard classifiers such as KNN, NB, LDA, DT, AdaBoost,
and SVM, we utilized the parameter tuning function available in MATLAB to select the best
parameters for the final assessment [71]. It is important to note that we used this parameter
tuning method to find a weight parameter that could effectively balance the loss between
positive and negative alerts.

Table 1. Experimental settings for parameter tuning.

Parameter Classifiers Physical Meaning Grid Values

W WSVM, IWSVM Weight for positive class {1, 10, 100, 1000, 10,000}

γ SVM, WSVM, IWSVM Width parameter for SVM with RBF kernels {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}

C SVM, WSVM, IWSVM Penalty parameter for prediction error {10, 100,1000, 10,000}

5.3. Evaluation Metrics

The generalization performance of the selected algorithms was evaluated using four
common supervised learning metrics: accuracy, precision, recall, and false positive rate
(FPR). In addition, as the alert filtering task has a highly imbalanced class distribution, we
also used the F1-score, true negative rate (TNR), and balanced classification rate (BCR) to
provide a comprehensive evaluation [72]. The definitions of these metrics are related to the
following intermediate measures.

True positive (TP) refers to the number of records correctly predicted as positive by the
classifier, and false positive (FP) is the number of records incorrectly predicted as positive
by the classifier. True negative (TN) is the number of records correctly predicted as negative
by the classifier, and false negative (FN) is the number of records incorrectly predicted as
negative by the classifier.

Accuracy represents the percentage of test label data correctly identified by the classi-
fier, calculated as:

Accuracy =
TP + TN

N
, (6)

where N is the size of the test set.
Precision is the probability that the predicted positive records are classified correctly:

Precision =
TP

TP + FP
. (7)

Appl. Sci. 2023, 13, 6610 18 of 29

Recall is the probability that a record from the positive class is classified correctly:

Recall =
TP

TP + FN
. (8)

The FPR measures the probability that a negative record is predicted incorrectly as a
positive record by the classifier:

FPR =
FP

FP + TN
. (9)

The F1-score is the harmonic mean of precision and recall:

F1 = 2× Recall× Precision
Recall + Precision

=
2× TP

2× TP + FP + FN
. (10)

TNR is the number of negative samples classified correctly divided by the total number
of negative samples:

TNR =
TN

FP + TN
. (11)

BCR is the average of the recall and the positive class TNR:

BCR =
Recall + TNR

2
. (12)

5.4. Experiment I

The statistics for the NSOC2017 dataset are given in Table 2, revealing a wide variation
in the number of alerts depending on different detection mechanisms, with some IDSs
generating only a few dozen alerts and others producing several hundred thousand. Out of
the 133.77 million alerts in the dataset, only 593 were escalated as part of incident handling.
To expedite the review process, we downsampled the negative class, resulting in an eval-
uation dataset with approximately 0.488% negative samples while retaining all positive
samples. This process led to a substantial increase in the number of positive samples (from
593 to 2239). The NSOC2017 dataset includes 2239 positive samples and 672,000 negative
samples, with a positive sample ratio of approximately 0.333%, highlighting the challenge
of class imbalance in the classification task. Note that we adopted a subsampling approach
used in previous studies [70] to maintain comparability.

Table 2. Statistics of NSOC2017 dataset.

Appliance #Total #Daily Average #Subsampled Sampling
Ratio (%) #Positive Positive Ratio

(%)

A 36.68 M 39,005 226,784 0.618 1286 0.567
B 0.56 M 1857 5944 1.053 617 10.380
C 11.86 M 39,005 30,837 0.260 169 0.548
D 15.80 M 51,953 36,145 0.229 20 0.055
E 66.21 M 217,804 372,161 0.562 53 0.014
F 6498 21 129 1.985 94 72.868

Total 137.77 M 452,958 672,000 0.488 2239 0.333

A prominent ’#’ symbol in the header line indicates that the corresponding item represents a count of a
specific entity.

5.4.1. Visualization by t-SNE

To gain a deeper understanding of the data distribution, we used the t-SNE [73]
technique to generate a 2D visualization of the data. The t-SNE approach is highly effective
at reducing the dimensionality of nonlinear data, enabling the approximation of complex
relationships among high-dimensional data in a lower-dimensional space. The method is

Appl. Sci. 2023, 13, 6610 19 of 29

computationally efficient and can effectively handle complex data distributions in high-
dimensional spaces.

The visualization result is shown in Figure 5, where each colored disk represents a
unique sample, and its size is proportional to the number of alerts with the same numerical
representation. Positive alerts are marked by black circles around the respective disks.
As can be seen, although most IDSs conform to the CEF convention, alerts from different
IDSs are spread throughout the space, and those from the same IDSs tend to cluster together.
To better understand the formed clusters, we examined the alerts from IDS A (represented
by red disks). We found that loose clusters were initially formed by alerts belonging
to the same genre, e.g., HTTP communications, which share common features of TCP
protocol-based communication. Subsequently, tighter clusters were formed by samples
belonging to the “suspicious malware downloading” category. The differences in alert
features, e.g., detection rules, download file types, and alert severity, result in clusters with
closer proximity within this category.

Figure 5. Visualization of unique alerts using t-SNE. The size of the disks is directly proportional to
the weight of the sample being evaluated. The six NIDSs (A to F) included in the NSOC2017 dataset I
are differentiated by the unique colors assigned to them. Disks that are associated with critical alerts
are encompassed by a prominent dark boundary.

The most significant observation from this visualization is that positive samples
(enclosed in black circles) form tight clusters and are clearly separable from negative
samples. This high degree of separability between positive and negative samples suggests
that the performance of the malware detection model is likely good.

5.4.2. Numerical Results

Table 3 compares the performance of various ML algorithms on the NSOC2017 dataset.
The compared algorithms include unsupervised learning methods [40,41], the common su-
pervised learning methods in Section 3.3, oversampling methods [59,70], and cost-sensitive
methods, including the WSVM and IWSVM methods (Section 4.1.1). Note that the unsu-
pervised methods [40,41] (IF and IF + DC) were not designed for the heterogeneous alerts
in the NSOC2017 dataset; however, we refer to their results for reference (even though they
are not directly comparable to the classification methods used in this study).

The results clearly demonstrate that the highly imbalanced class distribution causes
poor generalization performance with the existing classifiers. In terms of the F1-measure,

Appl. Sci. 2023, 13, 6610 20 of 29

the top-three performing algorithms are IWSVM, WSVM, and AdaBoost, which outper-
formed the other methods by a substantial margin.

Among the supervised learning methods, the LDA and AdaBoost methods obtained
a very high recall rate of 99.732%, with slightly higher FPR values of 0.016% and 0.002%,
respectively. The SVM method obtained the lowest FPR of 0.001% with a relatively low
recall rate of 97.901%.

Table 3. Performance comparison on NSOC2017 dataset.

Category Algorithm Accuracy (%) Recall (%) Precision (%) FPR (%) TNR (%) F1 (%) BCR (%)

Unsupervised IF [40] 90.705 100.000 0.551 9.300 90.700 1.097 95.350
learning IF + DC [41] 94.141 95.876 0.837 5.860 94.140 1.659 95.008

Supervised KNN 99.955 98.749 89.046 0.041 99.959 93.647 99.354
learning NB 89.741 93.390 2.950 10.271 89.729 5.719 91.559

LDA 99.983 99.732 95.387 0.016 99.984 97.511 99.858
DT 99.916 99.285 80.137 0.082 99.918 88.689 99.602

AdaBoost 99.997 99.732 99.466 0.002 99.998 99.599 99.865
SVM 99.992 97.901 99.682 0.001 99.999 98.783 98.950

Over- RF-SMOTE [70] 99.914 99.048 95.632 0.072 99.928 97.310 99.488
sampling DT-SMOTE [70] 99.573 99.286 78.977 0.422 99.578 87.975 99.432

RF-SVMSMOTE [70] 99.925 98.571 96.729 0.053 99.947 97.642 99.259
DT-SVMSMOTE [70] 99.562 99.286 78.531 0.443 99.567 87.697 99.426

XGBoost-MAS-OSS [59] 99.875 99.519 93.034 0.119 99.881 96.167 99.700

Cost-sensitive WSVM 99.998 99.598 99.687 0.001 99.999 99.643 99.799
learning IWSVM 99.998 99.643 99.687 0.001 99.999 99.665 99.821

Bold numbers signify the utmost values attained on the particular evaluation criteria.

For the oversampling-based methods, the combination of random forest (RF) and
SVMSMOTE yielded comparatively good results, while the DT method did not exhibit
significant improvement. The XGBoost-MAS-OSS algorithm [59] leverages four distinct
oversampling methods to generate more diverse artificial data and utilizes data cleaning
for preprocessing, which results in notable performance enhancements.

The WSVM assigns a high weight to positive samples to address imbalanced class
distribution, which allowed it to outperform the conventional SVM method on all seven
evaluation criteria, achieving a recall rate of 99.598% and the lowest FPR of 0.001%. IWSVM,
which extends the WSVM method by assigning different weights to samples with differ-
ent importance, further improved the recall rate to 99.643% with the lowest FPR value.
In addition, the WSVM and IWSVM methods both achieved recall rates greater than 99.5%,
indicating that very few critical alerts were missed by the filtering process, which is a sig-
nificant advantage for SOC operation. The extremely low FPR values obtained by WSVM
and IWSVM suggest that false alerts were minimized to ensure efficient incident response.

5.5. Experiment II

The IDS alerts collected in the NSOC2022 dataset comprise a vast amount of data,
with 7.3 million lines of alert logs extracted from only two appliances between 18 June 2021
and 30 November 2022. We employed ROV to evaluate the effectiveness of the proposed
SIEM scheme in a real-world SOC context. To present the results clearly, we only report the
outcome for IWSVM in this experiment due to its exceptional performance.

Table 4 summarizes the training and testing dataset used to evaluate model accuracy
in terms of ROV. In the first configuration, we trained the model using alert data collected
between June 2021 and June 2022, and we tested it on data from July 2022 to November 2022.
For the subsequent four configurations, we gradually removed the earliest month’s data
from the testing set and added these data to the training dataset. This allowed us to observe
the changes in prediction accuracy when the training and testing datasets had different
time intervals.

Appl. Sci. 2023, 13, 6610 21 of 29

Table 4. ROV settings to evaluate IWSVM on NSOC2022 dataset.

Training Set Testing Set #Escalated

Setting Interval #All #Positive #Negative Interval #All #Positive #Negative #All

1 June 2021–June 2022 5.112 M 56,530 5.056 M July 2022–November
2022 2.213 M 25,591 2.187 M 4165

2 June 2021–July 2022 5.648 M 61,250 5.587 M August
2022–November 2022 1.677 M 20,871 1.656 M 3428

3 June 2021–August
2022 6.130 M 67,116 6.063 M September

2022–November 2022 1.195 M 15,005 1.180 M 2935

4 June 2021–September
2022 6.546 M 71,758 6.475 M October

2022–November 2022 0.779 M 10,363 0.768 M 2567

5 June 2021–October
2022 6.989 M 77,692 6.912 M November 2022 0.336 M 4429 0.331 M 693

A prominent ‘#’ symbol in the header line indicates that the corresponding item represents a count of a
specific entity.

5.5.1. Filtering Result

Table 5 summarizes the performance of the IWSVM models obtained using different
ROV settings on the NSOC2022 dataset. The last row of the table shows the results obtained
by randomly sampling the dataset with 70% of the data used for training and 30% for
testing. The results show that as the time interval between training and testing data
collection decreases, the predictive accuracy of IWSVM increases. In a follow-up study, we
confirmed that the prediction errors are primarily due to alerts triggered by new attacks.
Thus, updating the training dataset to reflect the latest attack information is crucial for
enhancing predictive accuracy. Across all settings, IWSVM achieved an F1-score of over
99.3% and a recall value approaching 99.0%, conclusively demonstrating its effectiveness
in addressing the filtering problem.

Table 5. ROV performance with different prediction intervals by IWSVM on NSOC2022 dataset.

Setting Interval Accuracy (%) Recall (%) Precision (%) FPR (%) TNR (%) F1 (%) BCR (%)

1 5 months 99.986 98.945 99.822 0.002 100.000 99.381 99.472
2 4 months 99.995 99.731 99.846 0.002 100.000 99.788 99.865
3 3 months 99.994 99.732 99.812 0.002 99.998 99.772 99.865
4 2 months 99.991 99.611 99.728 0.004 99.996 99.669 99.804
5 1 month 99.999 99.932 99.977 0.000 100.000 99.954 99.966

Random
Shuffle - 100.000 1.000 99.996 0.000 100.000 99.998 50.500

We then obtained a precise estimate of the performance improvements that can be
achieved by implementing the proposed SIEM scheme for incident handling. Here, we must
minimize the impact of labeling inaccuracies caused by operator alert fatigue. To achieve
this objective, we used the preliminary escalation set that was initially selected by the secu-
rity team. This set comprises alerts that have undergone some level of manual confirmation
prior to escalation. This set is best suited as a validation set to measure the effectiveness of
the proposed scheme. The information of the preliminary escalation set is summarized in
the last column of Table 4 (labeled “Escalated”).

Using the experimental setup of the previous trial, we conducted an evaluation on
the preliminary escalation set included in the NSOC2022 dataset. The results are shown
in Table 6. Consistent with the results given in Table 5, the IWSVM obtained exceptional
performance on this dataset, achieving an F1-score of over 98% for all settings. As can be
seen, a shorter time interval between the training and testing samples yielded superior pre-

Appl. Sci. 2023, 13, 6610 22 of 29

dictive performance. In addition, the table summarizes the alert reduction rate (ARR) [16],
which is calculated as follows:

ARR = (1− TP + FP
N

)× 100%. (13)

The ARR assesses the reduction of irrelevant alerts resulting from the application of
IWSVM. Across all settings, IWSVM achieved close to or greater than a 50% ARR value.

Table 6. ROV performance with different prediction intervals by IWSVM on preliminary escalations
on NSOC2022 dataset.

Setting Interval Accuracy (%) Recall (%) Precision (%) FPR (%) TNR (%) F1 (%) BCR (%) ARR

1 5 months 98.079 97.561 98.940 1.284 98.716 98.246 98.138 45.850
2 4 months 97.987 97.109 99.314 0.872 99.128 98.199 98.119 45.010
3 3 months 98.331 97.361 99.394 0.634 99.366 98.367 98.364 49.400
4 2 months 98.091 96.928 99.292 0.712 99.289 98.096 98.108 50.490
5 1 month 99.423 99.180 99.725 0.306 99.694 99.452 99.437 47.470

5.5.2. Correlation Result

By utilizing the event segmenting algorithm, related alerts can be consolidated into a
single event, reducing the burden of the incident handling workload. In our experiment,
we applied the proposed event segmenting algorithm to merge alerts from the preliminary
escalation set into events. We then evaluated the performance of IWSVM based on the derived
events. As shown in Table 7, the proposed correlation algorithm effectively consolidates related
alerts, resulting in a significant reduction in the number of events to investigate.

Table 7. ROV performance of preliminary escalation sets on an event basis.

Setting Interval #Event Accuracy
(%) Recall (%) Precision

(%) FPR (%) TNR (%) F1 (%) BCR (%) GARR
(%)

1 5 months 1512 96.958 97.171 98.611 3.606 96.394 97.886 96.783 74.070
2 4 months 1173 96.249 96.261 98.397 3.779 96.221 97.317 96.241 76.340
3 3 months 888 97.072 97.152 98.472 3.093 96.907 97.808 97.030 79.930
4 2 months 718 96.379 96.288 98.000 3.462 96.538 97.137 96.413 82.470
5 1 month 206 99.029 99.099 99.099 1.053 98.947 99.099 99.023 83.980

To evaluate the efficacy of combining filtering and correlation methods to reduce the
number of alerts requiring investigation, we introduced the generalized ARR (GARR) concept:

GARR =

(
1− TPe + FPe

N

)
× 100%, (14)

where TPe and FPe are TP and FP events, respectively. GARR assesses the rate at which
alerts are safely reduced by combining the filtering and correlation methods. As shown in
Table 7, combining these techniques reduced the alert volume by nearly or greater than 75%
on the preliminary escalation set, indicating the effectiveness of the proposed methodology.

In terms of generalizability, IWSVM maintained high accuracy, with an F1-score of
over 97% under all settings throughout the event-based evaluation.

6. Discussion, Limitations, and Future Work

In this section, we discuss the limitations of the proposed framework and identify
potential directions for further improvement.

6.1. Limitation of Scope

In this paper, we have focused on using AI/ML and visualization techniques to
enhance the efficiency of SIEM systems by eliminating redundant and irrelevant alerts.

Appl. Sci. 2023, 13, 6610 23 of 29

While the discussion is limited to this specific issue, the proposed framework can potentially
be applied to other security tasks and integrated into various security systems, and these
possibilities will be explored in future work.

6.2. Ethical Implications

Integrating the outcomes of NIDSs and other security devices can enhance the effec-
tiveness of the proposed SIEM scheme by reducing irrelevant and duplicate alerts, leading
to improved incident handling performance. However, the use of an NIDS raises ethical
concerns that must be considered. Below we list some ethical implications of conducting
integration and analysis on security alerts using SIEMs [74,75].

• Privacy: Security alerts contain sensitive data, e.g., personal information, usernames,
and passwords. Thus, analyzing security alerts can raise privacy concerns if these
alerts are stored without appropriate safeguards.

• Data security: NIDS-collected data integrated in the SIEM can be of great value to
attackers. Thus, the SIEM must have robust security measures in place to protect the
collected data.

• False positives: The proposed SIEM scheme attempts to reduce the number of FPs;
however, some may remain. This can result in unnecessary investigations and harm
innocent users. To ensure accountability, the proposed visualization technique can
summarize the security situation associated with the alert.

• Legal compliance: Similar to NIDSs, the SIEM must comply with applicable laws and
regulations, particularly those related to data protection and privacy.

Organizations can mitigate these ethical concerns by implementing appropriate policies
and procedures for NIDS and SIEM usage. These policies should include comprehensive
data collection and retention guidelines as well as procedures to handle FPs and protect user
privacy. In addition, organizations must ensure that NIDSs and SIEMs comply with legal and
regulatory requirements, and that these systems are audited and reviewed regularly.

6.3. Technical Limitations

In the following, we discuss the technical limitations of the proposed SIEM scheme
and provide guidelines for its deployment in real enterprise SOCs.

6.3.1. Bias in the Results

In this study, we analyzed real-world data in a SOC using the proposed scheme
and evaluated it based on an escalation set obtained through actual daily operations.
The reported improvements in the escalation results indicate a significant enhancement
in the system’s performance. However, incident response practices are influenced by
various factors. In particular, the escalation set was initially obtained from installed
security appliances, integrated by the SIEM system currently in use, and then manually
selected by the security operators. The results are heavily reliant on the security policy and
implementation of the enterprise network as well as the experience and condition of the
technicians and analysts involved in the process, e.g., the occurrence of alert fatigue.

Thus, rather than pursuing an all-encompassing security solution, we presented a SIEM
scheme that shows promise for a specific SOC implementation as well as easy adaptability
and customization. Achieving a fully objective and impartial comparison on a larger scale
dataset that covers more attack types and different case studies considering other network
environments is beyond the scope of this paper. These issues will be pursued in future work.

6.3.2. Coping with Detection Errors

The primary objective of this study is to improve the efficiency of incident handling
by reducing false positives in the escalation set. Therefore, performance evaluation in the
experiment focused on the positive class, i.e., critical alerts that serve as the escalation set in
incident response. However, it is crucial to note that eliminating all false positives may not
always be feasible and could even lead to an increased risk of false negatives, which could

Appl. Sci. 2023, 13, 6610 24 of 29

compromise the security of the network infrastructure. In such scenarios, we recommend
setting a high threshold value for the expected recall rate, such as 99%, and opting for a
detection model that meets this requirement while having the fewest number of false positives.

In addition, incident response is primarily a manual process conducted by security
operators, who can help identify false positives by manually reviewing alerts selected by
the SIEM system. Integrating feedback from the security operations can refine the algorithm
and reduce false positives over time. To achieve this, it is essential for the security operators
to have a clear understanding of the SIEM system’s mechanism and provide valuable
feedback for performance improvement.

6.3.3. Emerging Threats and Adversarial Attacks

The effectiveness of the proposed framework relies heavily on the accuracy and re-
liability of input data. However, changes in the network infrastructure or new attack
vectors, including intentional adversarial attacks, can negatively impact the framework’s
performance by resulting in false negatives. To address this limitation, it is important to
fine-tune the NIDS detection rules and use machine learning-based NIDS with anomaly
detection capabilities to ensure that emerging threats and adversarial attacks are success-
fully detected. Additionally, advanced machine learning techniques and data cleaning
methods can be employed to further improve the framework’s effectiveness. Moreover,
continuously monitoring for and adapting to new threats is also crucial to ensure that the
framework remains effective in the long term.

6.3.4. Guidelines for Model Updating

Experiment II showed that the detection performance gradually degrades as the
interval between the training and testing sets increases. To keep an AI model up-to-date
and to adapt to new threats, regularly updating the detection model is crucial. Here are
guidelines to follow:

Regularly update the training dataset with the latest threat intelligence; Incorporate
new features to capture emerging attack techniques; Periodically retrain the AI model with
the latest dataset and new features; Continuously evaluate the model’s performance and
identify areas that require improvement; Incorporate feedback from security teams to refine
the AI model and improve its detection capabilities.

6.4. Future Work

While this study has provided insights into the potential benefits of utilizing AI and
visualization techniques in the SOC alert management context, there are several avenues for
future work. For example, the proposed framework should be implemented and evaluated
in a real-world environment. Thus, to address concerns about implementation and scalabil-
ity, we plan to collaborate with industry partners to conduct a pilot study in a real-world
SOC environment. This will provide an opportunity to gather feedback from security ana-
lysts and IT professionals and to assess the framework’s ability to integrate with existing
security systems and to scale in order to satisfy the requirements of large organizations.

Finally, we recognize the need to conduct a more comprehensive evaluation of the
proposed framework using a larger dataset and to cover a wider range of attack types and
network environments. We believe that these future directions will further advance the field
of AI in cybersecurity and contribute to the development of more effective and efficient
SOC solutions.

7. Conclusions

This paper has proposed an effective solution to the alert fatigue problem in enterprise
SOC operations. The proposed framework utilizes advanced AI/ML and data visualization
tools to address the filtering and correlation problems. By breaking down the problem into
these components and introducing practical solutions, including a cost-sensitive learning
method and an algorithm to summarize alerts into closely related events, the proposed

Appl. Sci. 2023, 13, 6610 25 of 29

framework effectively reduces FPs and increases the recall rate. In addition, an ATG
visualization tool was introduced to improve the performance of data analysis against
security alerts. This study offers valuable contributions toward the development of a
next-generation SIEM system and opens opportunities for further research in this field.

Author Contributions: Conceptualization, T.B., T.T. and D.I.; methodology, T.B.; software, T.B. and
S.N.; validation, T.B.; formal analysis, T.B.; investigation, T.B.; resources, T.B., and D.I.; data curation,
T.B.; writing-original draft preparation, T.B.; writing-review and editing, T.B.; visualization, T.B.;
project administration, T.T.; funding acquisition, T.T. and D.I. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by Ministry of Internal Affairs and Communications grant
number JPJ000254.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The enterprise datasets produced and examined in this study are not
accessible to the public, and we are unable to provide them under any circumstances. The source
code will be available upon request.

Acknowledgments: This research was conducted under a contract of “MITIGATE” among “Research
and Development for Expansion of Radio Wave Resources (JPJ000254)”, which was supported by the
Ministry of Internal Affairs and Communications, Japan.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Appendix A

Appendix A.1. Example of Security Log in CEF and JSON Format

In this appendix, we provide an example alert issued by an NIDS and its correspond-
ing JSON object parsed from the alert with a unified list of item and value pairs. Figure A1a
shows the CEF log of the alert, which contains event information such as unique identi-
fiers, impacted IP addresses, risky URLs, and file hash values. This information is then
interpreted and transformed into a structured JSON object, as shown in Figure A1b.

Figure A1. Example alert before and after reformatting. To protect sensitive information in the
alert, identifying textual content is partially replaced with “X” symbols, and numbers are partially
replaced with “#” symbols. (a) Example alert in CEF format; (b) Example alert formatted as a unified
JSON object.

Appl. Sci. 2023, 13, 6610 26 of 29

Appendix A.2. Using Service Port for Effective Alert Correlation

This appendix delves deeper into the three-tuple [source IP, destination IP, service
port] that is used to correlate and group alerts into events.

In Figure A2, we present several real-life examples to illustrate why the service port is
a better option than the source and destination ports in this context. Each ATG in the figure
depicts alerts generated during communication between two hosts over a specific period.
The x-axis of the source panel shows the time of issuance, while the y-axis represents the
source port of the communication. The x-axis of the destination panel denotes the type
of alerts (with detailed information omitted for clarity), while the y-axis represents the
destination port. To distinguish groups of alerts with different features, we used red and
blue circles. The red circles indicate groups of alerts that share the same source ports,
while the blue circles highlight groups that share the same destination ports. It is clear
that selecting either the source or destination port as one of the three tuples for correlation
analysis cannot cover both cases simultaneously. However, by utilizing the technique
proposed in Section 4.2.1 to determine the service port and using it to correlate alerts into
events, we can effectively address all the cases demonstrated in the figure.

Figure A2. Using ATGs to visualize correlations between alerts. (a) Alert correlation example 1;
(b) Alert correlation example 2; (c) Alert correlation example 3; (d) Alert correlation example 4. In the
ATGs, hosts are represented as disks, adhering to the color scheme defined in Figure 3b. Alerts are
depicted as lines connecting the source and destination hosts within the panels, with unique colors
signifying the grouping outcome. Alerts belonging to the same group are assigned a consistent color.
The red circles emphasize selected alert clusters characterized by shared source ports, while the blue
circles highlight selected groups demonstrating shared destination ports.

Appl. Sci. 2023, 13, 6610 27 of 29

References
1. European Union Agency for Cybersecurity. ENISA Threat Landscape. 2021. Available online: https://www.enisa.europa.eu/

publications/enisa-threat-landscape-2021 (accessed on 30 January 2023).
2. European Union Agency for Cybersecurity. ENISA Threat Landscape. 2022. Available online: https://www.enisa.europa.eu/

publications/enisa-threat-landscape-2022 (accessed on 30 January 2023).
3. Mishra, P.; Varadharajan, V.; Tupakula, U.; Pilli, E.S. A Detailed Investigation and Analysis of Using Machine Learning Techniques

for Intrusion Detection. IEEE Commun. Surv. Tutorials 2019, 21, 686–728. [CrossRef]
4. Mohammadpour, L.; Ling, T.C.; Liew, C.S.; Aryanfar, A. A Survey of CNN-Based Network Intrusion Detection. Appl. Sci. 2022,

12, 8162. [CrossRef]
5. Gu, G.; Zhang, J.; Lee, W. BotSniffer: Detecting Botnet Command and Control Channels in Network Traffic. In Proceedings of the

2008 Network and Distributed System Security Symposium, NDSS, The Internet Society, San Diego, CA, USA, 10–13 February 2008.
6. O’Kane, P.; Sezer, S.; McLaughlin, K. Obfuscation: The Hidden Malware. IEEE Secur. Priv. 2011, 9, 41–47. [CrossRef]
7. Roesch, M. Snort: Lightweight intrusion detection for networks. In Proceedings of the LISA, Seattle, WA, USA, 7–12 November

1999; pp. 229–238.
8. Paxson, V. Bro: A system for detecting network intruders in real-time. Comput. Netw. 1999, 31, 2435–2463. [CrossRef]
9. Julien, V. Suricata IDS. 2015. Available online: https://suricata.io/ (accessed on 30 January 2023).
10. VMware. Advanced Threat Prevention with VMware NSX Distributed Firewall. 2021. Available online: https://business-iq.net/

assets/8079-advanced-threat-prevention-with-vmware-nsx-distributed-firewall (accessed on 30 January 2023).
11. Fireeye2022. FireEye Network Security: Effective Protection against Cyber Breaches for Midsize to Large Organizations. 2022.

Available online: https://docplayer.net/81314407-Fireeye-network-security.html (accessed on 30 January 2023).
12. TrendMicro. Machine Learning and Next-Generation Intrusion Prevention System (NGIPS). 2022. Available online: https:

//documents.trendmicro.com/assets/wp/WP01_Machine_Learning_170608US.pdf (accessed on 30 January 2023).
13. Vaarandi, R.; Podins, K. Network IDS alert classification with frequent itemset mining and data clustering. In Proceedings of the

International Conference on Network and Service Management, Niagara Falls, ON, Canada, 25–29 October 2010; pp. 451–456.
14. McAfee. Alert Fatigue: 31.9% of IT Security Professionals Ignore Alerts. 2017. Available online: https://www.mcafee.com/

blogs/enterprise/cloud-security/alert-fatigue-31-9-of-it-security-professionals-ignore-alerts/ (accessed on 30 January 2023).
15. González-Granadillo, G.; González-Zarzosa, S.; Diaz, R. Security Information and Event Management (SIEM): Analysis, Trends,

and Usage in Critical Infrastructures. Sensors 2021, 21, 4759. [CrossRef]
16. Kidmose, E.; Stevanovic, M.; Brandbyge, S.; Pedersen, J. Featureless Discovery of Correlated and False Intrusion Alerts. IEEE

Access 2020, 8, 108748–108765. [CrossRef]
17. Bijone, M. A Survey on Secure Network: Intrusion Detection & Prevention Approaches. Am. J. Inf. Syst. 2016, 4, 69–88.
18. Walling, S.; Lodh, S. A Survey on Intrusion Detection Systems: Types, Datasets, Machine Learning methods for NIDS and Chal-

lenges. In Proceedings of the 2022 13th International Conference on Computing Communication and Networking Technologies
(ICCCNT), Kharagpur, India, 3–5 October 2022; pp. 1–7. [CrossRef]

19. Liu, C.; Gu, Z.; Wang, J. A Hybrid Intrusion Detection System Based on Scalable K-Means+ Random Forest and Deep Learning.
IEEE Access 2021, 9, 75729–75740. [CrossRef]

20. Donkol, A.A.E.B.; Hafez, A.G.; Hussein, A.I.; Mabrook, M.M. Optimization of Intrusion Detection Using Likely Point PSO and
Enhanced LSTM-RNN Hybrid Technique in Communication Networks. IEEE Access 2023, 11, 9469–9482. [CrossRef]

21. Jayalaxmi, P.L.S.; Saha, R.; Kumar, G.; Conti, M.; Kim, T.H. Machine and Deep Learning Solutions for Intrusion Detection and
Prevention in IoTs: A Survey. IEEE Access 2022, 10, 121173–121192. [CrossRef]

22. Ali, I.; Enezi, S.; Ali, F.; Kehar, A.; Fatima, K.; Uddin, M.; Karuppayah, S. Detection of Real-Time Malicious Intrusions and Attacks in
IoT Empowered Cybersecurity Infrastructures. IEEE Access 2023, 11, 9136–9148. . [CrossRef]

23. Okey, O.D.; Melgarejo, D.C.; Saadi, M.; Rosa, R.L.; Kleinschmidt, J.H.; Rodríguez, D.Z. Transfer Learning Approach to IDS on
Cloud IoT Devices Using Optimized CNN. IEEE Access 2023, 11, 1023–1038. [CrossRef]

24. Alohali, M.A.; Elsadig, M.; Al-Wesabi, F.N.; Al Duhayyim, M.; Mustafa Hilal, A.; Motwakel, A. Enhanced Chimp Optimization-
Based Feature Selection with Fuzzy Logic-Based Intrusion Detection System in Cloud Environment. Appl. Sci. 2023, 13, 2580.
[CrossRef]

25. Bour, H.; Abolhasan, M.; Jafarizadeh, S.; Lipman, J.; Makhdoom, I. A multi-layered intrusion detection system for software
defined networking. Comput. Electr. Eng. 2022, 101, 108042. [CrossRef]

26. Awotunde, J.B.; Folorunso, S.O.; Imoize, A.L.; Odunuga, J.O.; Lee, C.C.; Li, C.T.; Do, D.T. An Ensemble Tree-Based Model for
Intrusion Detection in Industrial Internet of Things Networks. Appl. Sci. 2023, 13, 2479. [CrossRef]

27. Swift, D. A Practical Application of SIM/SEM/SIEM, Automating Threat Identification. 2006. Available online: https://www.
sans.org/white-papers/1781/ (accessed on 30 January 2023).

28. Tian, Z.; Luo, C.; Lu, H.; Su, S.; Sun, Y.; Zhang, M. User and Entity Behavior Analysis under Urban Big Data. ACM/IMS Trans.
Data Sci. 2020, 1, 1–19. [CrossRef]

29. Podzins, O.; Romanovs, A. Why SIEM is Irreplaceable in a Secure IT Environment? In Proceedings of the 2019 Open Conference
of Electrical, Electronic and Information Sciences (eStream), Vilnius, Lithuania, 25 April 2019; pp. 1–5. [CrossRef]

30. Shea, S. SOAR (Security Orchestration, Automation and Response). 2019. Available online: https://www.techtarget.com/
searchsecurity/definition/SOAR (accessed on 30 January 2023).

https://www.enisa.europa.eu/publications/enisa-threat-landscape-2021
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2021
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2022
https://www.enisa.europa.eu/publications/enisa-threat-landscape-2022
http://doi.org/10.1109/COMST.2018.2847722
http://dx.doi.org/10.3390/app12168162
http://dx.doi.org/10.1109/MSP.2011.98
http://dx.doi.org/10.1016/S1389-1286(99)00112-7
https://suricata.io/
https://business-iq.net/assets/8079-advanced-threat-prevention-with-vmware-nsx-distributed-firewall
https://business-iq.net/assets/8079-advanced-threat-prevention-with-vmware-nsx-distributed-firewall
https://docplayer.net/81314407-Fireeye-network-security.html
https://documents.trendmicro.com/assets/wp/WP01_Machine_Learning_170608US.pdf
https://documents.trendmicro.com/assets/wp/WP01_Machine_Learning_170608US.pdf
https://www.mcafee.com/blogs/enterprise/cloud-security/alert-fatigue-31-9-of-it-security-professionals-ignore-alerts/
https://www.mcafee.com/blogs/enterprise/cloud-security/alert-fatigue-31-9-of-it-security-professionals-ignore-alerts/
http://dx.doi.org/10.3390/s21144759
http://dx.doi.org/10.1109/ACCESS.2020.3001374
http://dx.doi.org/10.1109/ICCCNT54827.2022.9984320
http://dx.doi.org/10.1109/ACCESS.2021.3082147
http://dx.doi.org/10.1109/ACCESS.2023.3240109
http://dx.doi.org/10.1109/ACCESS.2022.3220622
http://dx.doi.org/10.1109/ACCESS.2023.3238664
http://dx.doi.org/10.1109/ACCESS.2022.3233775
http://dx.doi.org/10.3390/app13042580
http://dx.doi.org/10.1016/j.compeleceng.2022.108042
http://dx.doi.org/10.3390/app13042479
https://www.sans.org/white-papers/1781/
https://www.sans.org/white-papers/1781/
http://dx.doi.org/10.1145/3374749
http://dx.doi.org/10.1109/eStream.2019.8732173
https://www.techtarget.com/searchsecurity/definition/SOAR
https://www.techtarget.com/searchsecurity/definition/SOAR

Appl. Sci. 2023, 13, 6610 28 of 29

31. Gartner. Gartner: 2022 Market Guide for Security Orchestration, Automation and Response Solutions. 2022. Available online:
https://swimlane.com/resources/gartner-soar-market-guide-2022 (accessed on 30 January 2023).

32. Johnson Kinyua, L.A. AI/ML in Security Orchestration, Automation and Response: Future Research Directions. Intell. Autom.
Soft Comput. 2021, 28, 527–545. [CrossRef]

33. Gupta, N.; Traore, I.; de Quinan, P.M.F. Automated Event Prioritization for Security Operation Center using Deep Learning. In
Proceedings of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019;
pp. 5864–5872. . [CrossRef]

34. Tjhai, G.C.; Furnell, S.M.; Papadaki, M.; Clarke, N.L. A preliminary two-stage alarm correlation and filtering system using SOM
neural network and K-means algorithm. Comput. Secur. 2010, 29, 712–723. [CrossRef]

35. Shittu, R.; Healing, A.; Ghanea-Hercock, R.; Bloomfield, R.; Muttukrishnan, R. OutMet: A new metric for prioritising intrusion
alerts using correlation and outlier analysis. In Proceedings of the 39th Annual IEEE Conference on Local Computer Networks,
Edmonton, AL, Canada, 8–11 September 2014; pp. 322–330.

36. Valeur, F.; Vigna, G.; Kruegel, C.; Kemmerer, R.A. Comprehensive approach to intrusion detection alert correlation. IEEE Trans.
Depend. Secur. Comput. 2004, 1, 146–169. [CrossRef]

37. Hassan, W.U.; Guo, S.; Li, D.; Chen, Z.; Jee, K.; Li, Z.; Bates, A. NODOZE: Combatting Threat Alert Fatigue with Automated
Provenance Triage. In Proceedings of the Network and Distributed Systems Security (NDSS) Symposium, San Diego, CA, USA,
24–27 February 2019.

38. Sun, L.; Versteeg, S.; Boztas, S.; Rao, A. Detecting Anomalous User Behavior Using an Extended Isolation Forest Algorithm: An
Enterprise Case Study. arXiv 2016, arXiv:1609.06676.

39. Chakir, E.M.; Moughit, M.; Idrissi Khamlichi, Y. An efficient method for evaluating alerts of Intrusion Detection Systems. In
Proceedings of the 2017 International Conference on Wireless Technologies, Embedded and Intelligent Systems (WITS), Fez,
Morocco, 19–20 April 2017; pp. 1–6. [CrossRef]

40. Aminanto, M.E.; Zhu, L.; Ban, T.; Isawa, R.; Takahashi, T.; Inoue, D. Combating Threat-Alert Fatigue with Online Anomaly
Detection Using Isolation Forest. In Proceedings of the Lecture Notes in Computer Science, Neural Information Processing (ICONIP)
2019; Springer: Cham, Switzerlan, 2019; pp. 756–765.

41. Aminanto, M.E.; Ban, T.; Isawa, R.; Takahashi, T.; Inoue, D. Threat Alert Prioritization Using Isolation Forest and Stacked Auto
Encoder With Day-Forward-Chaining Analysis. IEEE Access 2020, 8, 217977–217986. [CrossRef]

42. Madani, A.; Rezayi, S.; Gharaee, H. Log management comprehensive architecture in Security Operation Center (SOC). In
Proceedings of the IEEE 2011 International Conference on Computational Aspects of Social Networks (CASoN), Salamanca,
Spain, 19–21 October 2011; pp. 284–289.

43. IBM. Log Event Extended Format (LEEF). 2016. Available online: https://www.ibm.com/support/knowledgecenter/SS42VS_
DSM/b_Leef_format_guide.pdf (accessed on 9 May 2019).

44. McAfee. McAfee Enterprise Security Manager 10.2.0 Product Guide (Unmanaged). 2017. Available online: https:
//docs.mcafee.com/bundle/enterprise-security-manager-10.2.0-product-guide-unmanaged/page/GUID-984F5DA6-8
D84-4549-855B-C77D53CF96B9.html (accessed on 30 September 2020).

45. Debar, H.; Curry, D.; Feinstein, B. The intrusion detection message exchange format (IDMEF). 2007. Available online: https:
//www.ietf.org/rfc/rfc4765.txt (accessed on 30 January 2023).

46. MITRE. Common Event Expression—CEE, a Unified Event Language for Interoperability. Available online: http:
//makingsecuritymeasurable.mitre.org/docs/cee-intro-handout.pdf (accessed on 30 January 2023).

47. Azodi, A.; Jaeger, D.; Cheng, F.; Meinel, C. A new approach to building a multi-tier direct access knowledgebase for ids/siem
systems. In Proceedings of the 2013 IEEE 11th International Conference on Dependable, Autonomic and Secure Computing,
Chengdu, China, 21–22 December 2013; pp. 118–123.

48. Sapegin, A.; Jaeger, D.; Azodi, A.; Gawron, M.; Cheng, F.; Meinel, C. Hierarchical object log format for normalisation of security
events. In Proceedings of the IEEE 2013 9th International Conference on Information Assurance and Security (IAS), Gammarth,
Tunisia, 4–6 December 2013; pp. 25–30.

49. Anderson, M.; Antenucci, D.; Bittorf, V.; Burgess, M.; Cafarella, M.; Kumar, A.; Niu, F.; Park, Y.; Ré, C.; Zhang, C. Brainwash: A
data system for feature engineering. Proc. CIDR 2013, 2013, 1–4.

50. Khurana, U.; Turaga, D.; Samulowitz, H.; Parthasrathy, S. Cognito: Automated feature engineering for supervised learning. In
Proceedings of the IEEE 16th International Conference on Data Mining Workshops (ICDMW), Barcelona, Spain, 12–15 December
2016; pp. 1304–1307.

51. Li, D.; Kotani, D.; Okabe, Y. Improving Attack Detection Performance in NIDS Using GAN. In Proceedings of the 2020 IEEE
44th Annual Computers, Software, and Applications Conference (COMPSAC), Madrid, Spain, 13–17 July 2020; pp. 817–825.
[CrossRef]

52. Pezoa, F.; Reutter, J.L.; Suarez, F.; Ugarte, M.; Vrgoč, D. Foundations of JSON schema. In Proceedings of the 25th International
Conference on World Wide Web. International World Wide Web Conferences Steering Committee, Montreal, QC, Canada, 11–15
April 2016; pp. 263–273.

53. Joloudari, J.H.; Marefat, A.; Nematollahi, M.A.; Oyelere, S.S.; Hussain, S. Effective Class-Imbalance Learning Based on SMOTE
and Convolutional Neural Networks. Appl. Sci. 2023, 13, 4006. [CrossRef]

https://swimlane.com/resources/gartner-soar-market-guide-2022
http://dx.doi.org/10.32604/iasc.2021.016240
http://dx.doi.org/10.1109/BigData47090.2019.9006073
http://dx.doi.org/10.1016/j.cose.2010.02.001
http://dx.doi.org/10.1109/TDSC.2004.21
http://dx.doi.org/10.1109/WITS.2017.7934678
http://dx.doi.org/10.1109/ACCESS.2020.3041837
https://www.ibm.com/support/knowledgecenter/SS42VS_DSM/b_Leef_format_guide.pdf
https://www.ibm.com/support/knowledgecenter/SS42VS_DSM/b_Leef_format_guide.pdf
https://docs.mcafee.com/bundle/enterprise-security-manager-10.2.0-product-guide-unmanaged/page/GUID-984F5DA6-8D84-4549-855B-C77D53CF96B9.html
https://docs.mcafee.com/bundle/enterprise-security-manager-10.2.0-product-guide-unmanaged/page/GUID-984F5DA6-8D84-4549-855B-C77D53CF96B9.html
https://docs.mcafee.com/bundle/enterprise-security-manager-10.2.0-product-guide-unmanaged/page/GUID-984F5DA6-8D84-4549-855B-C77D53CF96B9.html
https://www.ietf.org/rfc/rfc4765.txt
https://www.ietf.org/rfc/rfc4765.txt
http://makingsecuritymeasurable.mitre.org/docs/cee-intro-handout.pdf
http://makingsecuritymeasurable.mitre.org/docs/cee-intro-handout.pdf
http://dx.doi.org/10.1109/COMPSAC48688.2020.0-162
http://dx.doi.org/10.3390/app13064006

Appl. Sci. 2023, 13, 6610 29 of 29

54. Oliveira, N.; Praça, I.; Maia, E.; Sousa, O. Intelligent Cyber Attack Detection and Classification for Network-Based Intrusion
Detection Systems. Appl. Sci. 2021, 11, 1674. [CrossRef]

55. Jadhav, A.; Mostafa, S.M.; Elmannai, H.; Karim, F. An Empirical Assessment of Performance of Data Balancing Techniques in
Classification Task. Appl. Sci. 2022, 12, 3928. [CrossRef]

56. Liu, C.; Cao, L.; Yu, P.S. A hybrid coupled k-nearest neighbor algorithm on imbalance data. In Proceedings of the IEEE 2014
International Joint Conference on Neural Networks (IJCNN), Beijing, China, 6–11 July 2014; pp. 2011–2018. [CrossRef]

57. He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In Proceedings
of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence),
Hong Kong, China, 1–8 June 2008; pp. 1322–1328.

58. Nguyen, H.M.; Cooper, E.W.; Kamei, K. Borderline over-sampling for imbalanced data classification. Int. J. Knowl. Eng. Soft Data
Paradig. 2011, 3, 4–21. [CrossRef]

59. Ndichu, S.; Ban, T.; Takahashi, T.; Inoue, D. AI-Assisted Security Alert Data Analysis with Imbalanced Learning Methods. Appl.
Sci. 2023, 13, 1977. [CrossRef]

60. Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. Available
online: http://www.csie.ntu.edu.tw/~cjlin/libsvm (accessed on 30 January 2023). [CrossRef]

61. Ban, T.; Samuel, N.; Takahashi, T.; Inoue, D. Combat Security Alert Fatigue with AI-Assisted Techniques. In Proceedings of the
2021 Cyber Security Experimentation and Test Workshop, CSET, New York, NY, USA, 9 August 2021; pp. 9–16. [CrossRef]

62. Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification, 2nd ed.; Wiley-Interscience: New York, NY, USA, 2000.
63. Sammut, C.; Webb, G.I. (Eds.) Stratified Cross Validation. In Encyclopedia of Machine Learning; Springer: Boston, MA, USA, 2010;

pp. 928–928. [CrossRef]
64. Tashman, L.J. Out-of-sample tests of forecasting accuracy: An analysis and review. Int. J. Forecast. 2000, 16, 437–450. CrossRef
65. Svetunkov, I.; Petropoulos, F. Old dog, new tricks: A modelling view of simple moving averages. Int. J. Prod. Res. 2018,

56, 6034–6047. [CrossRef]
66. He, H.; Garcia, E.A. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009, 21, 1263–1284. [CrossRef]
67. Lapin, M.; Hein, M.; Schiele, B. Learning using privileged information: SVM+ and weighted SVM. Neural Netw. 2014, 53, 95–108.

[CrossRef]
68. Cimpanu, C. Emotet, tOday’S Most Dangerous Botnet, Comes Back to Life. 2019. Available online: https://www.zdnet.com/

article/emotet-todays-most-dangerous-botnet-comes-back-to-life/ (accessed on 30 January 2023).
69. Pathria, R.K.; Beale, P.D. Statistical Mechanics, 3rd ed.; Academic Press: Cambridge, MA, USA, 2011.
70. Ndichu, S.; Ban, T.; Takahashi, T.; Inoue, D. A Machine Learning Approach to Detection of Critical Alerts from Imbalanced

Multi-Appliance Threat Alert Logs. In Proceedings of the 2021 IEEE International Conference on Big Data (Big Data), Orlando,
FL, USA, 15–18 December 2021; pp. 2119–2127. [CrossRef]

71. Mathworks. Hyperparameter Optimization in Classification Learner App. 2023. Available online: https://www.mathworks.
com/help/stats/hyperparameter-optimization-in-classification-learner-app.html (accessed on 30 January 2023).

72. Powers, D.M.W. Evaluation: From Precision, Recall and F-measure to ROC, Informedness, Markedness & Correlation. Int. J.
Mach. Learn. Technol. 2011, 2, 37–63.

73. van der Maaten, L.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
74. Petrila, J.; Cohn, B.; Pritchett, W.; Stiles, P.; Stodden, V.V.; Humowiecki, M.; Rozario, N. Legal Issues for IDS Use: Finding a

Way Forward. 2017. Available online: https://aisp.upenn.edu/wp-content/uploads/2016/07/Legal-Issues.pdf (accessed on 30
January 2023).

75. Quality, N.; Commission, S. NDIS Code of Conduct. 2019. Available online: https://www.ndiscommission.gov.au/about/ndis-
code-conduct (accessed on 30 January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3390/app11041674
http://dx.doi.org/10.3390/app12083928
http://dx.doi.org/10.1109/IJCNN.2014.6889798
http://dx.doi.org/10.1504/IJKESDP.2011.039875
http://dx.doi.org/10.3390/app13031977
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://dx.doi.org/10.1145/1961189.1961199
http://dx.doi.org/10.1145/3474718.3474723
http://dx.doi.org/10.1007/978-0-387-30164-8_788
http://dx.doi.org/10.1016/S0169-2070(00)00065-0
http://dx.doi.org/10.1080/00207543.2017.1380326
http://dx.doi.org/10.1109/TKDE.2008.239
http://dx.doi.org/10.1016/j.neunet.2014.02.002
https://www.zdnet.com/article/emotet-todays-most-dangerous-botnet-comes-back-to-life/
https://www.zdnet.com/article/emotet-todays-most-dangerous-botnet-comes-back-to-life/
http://dx.doi.org/10.1109/BigData52589.2021.9671956
https://www.mathworks.com/help/stats/hyperparameter-optimization-in-classification-learner-app.html
https://www.mathworks.com/help/stats/hyperparameter-optimization-in-classification-learner-app.html
https://aisp.upenn.edu/wp-content/uploads/2016/07/Legal-Issues.pdf
https://www.ndiscommission.gov.au/about/ndis-code-conduct
https://www.ndiscommission.gov.au/about/ndis-code-conduct

	Introduction
	Background and Related Work
	Incident Response with NIDS, SIEM, and SOAR
	IDSs
	SIEM
	SOAR

	Previous Studies on Alert Fatigue
	Filtering- and Correlation-Based Approaches
	Alert Prioritization

	Feature Engineering
	Feature-Based Approach
	Featureless Approach

	Proposed SIEM Framework
	Alert Generation Module
	Feature Processing Module
	Machine Learning Module
	Problem Formulation
	Class Imbalance
	Baseline Classification Methods
	Evaluation Schemes

	Investigation Module

	Methodology
	Filtering Problem
	Filtering by Cost-Sensitive Learning

	Correlation Problem
	Implementing Alert Correlation

	Augmented Tile Graph Visualization

	Experiments
	Data Preparation
	Parameter Tuning
	Evaluation Metrics
	Experiment I
	Visualization by t-SNE
	Numerical Results

	Experiment II
	Filtering Result
	Correlation Result

	Discussion, Limitations, and Future Work
	Limitation of Scope
	Ethical Implications
	Technical Limitations
	Bias in the Results
	Coping with Detection Errors
	Emerging Threats and Adversarial Attacks
	Guidelines for Model Updating

	Future Work

	Conclusions
	Appendix A
	Appendix A.1. Example of Security Log in CEF and JSON Format
	Appendix A.2. Using Service Port for Effective Alert Correlation

	References

