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Abstract: Greater numbers of power electronics (PEs) converters are being connected to energy
systems due to the development of renewable energy sources, high-voltage transmission, and PE-
interfaced loads. Given that power electronics-based devices and synchronous machines have very
different dynamic behaviours, some modelling approximations, which may commonly be applied to
run transient simulations of transmission systems, may not be optimal for future grids. Indeed, the
systematic utilisation of the phasor approximation for power lines, implemented in most transient
simulation programs, is increasingly not appropriate anymore. In order to avoid the requirement for
full electromagnetic transient simulations, which can be resource-demanding and time-consuming,
this paper proposes a combination of an event-based state residualisation approximation and the
Kron reduction technique. The proposed technique has the advantage of allowing accurate tran-
sient simulations based on the optimal reduction of the number of state variables, depending on
the observed variables, the considered events, and the tolerated approximation error, along with
simplifying power systems equations for accelerated simulations.

Keywords: electromagnetic transient model; phasor approximation; model order reduction; power
system simulation; grid-forming converters; small-signal stability analysis

1. Introduction

With the increasing integration of renewable energy sources, high-voltage long-
distance transmission, DC grids, and power electronic (PE) converter-interfaced loads,
very high PE shares are anticipated in future power systems [1]. Existing power converters
are mostly controlled as “grid-following”, using a phase-locked loop (PLL) to synchronise
the voltage angle and frequency at the connection point, in order to precisely follow the
active and reactive power setpoints [2]. Since grid-following converters (GFLs) rely on first
synchronising to the grid volage and then realise controlled and stable outputs, when their
share reaches a point they can no longer remain synchronised [3,4].

Therefore, the concept of “grid-forming” is proposed. The key difference with grid-
following converters is that grid-forming converters (GFMs) independently create their
own internal voltage angle and frequency without relying on using PLL, by, for example,
using an independent external power reference plus power feedback. One of the simplest
GFMs is mimicked ideal AC voltage sources, which work by fixing their frequency at the
rated one. Thus, GFMs can maintain their voltage angle and provide an immediate response
to voltage and frequency disturbances, and naturally, inherit the abilities of synchronous
generators (SGs), such as inertial response, offering blackstart capability and providing a
voltage reference for GFLs. Consequently, GFMs are often seen as a replacement for SGs in
future power grids.
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As PE converters have fast switching dynamics spanning a wide frequency range,
traditional phasor approximation (RMS) simulation programs, which neglect the fast
electromagnetic dynamics of power lines as they are faster than the electromechanical
dynamics of SGs, may not be suitable to investigate the stability of (future) power systems
and validate new converter control laws [5]. Electromagnetic (EMT) models can accurately
represent a power system [6], but they involve a larger number of variables, which leads to
high simulation computation times and complex analysis.

Model order reduction (MOR) can be useful to accelerate simulations and simplify
analysis [7,8]. Several MOR methods exist in the literature [9], including modal
truncation [10,11], balanced truncation [12–14], proper orthogonal decomposition
(POD) [15], proper generalised decomposition (PGD) [16], or Krylov methods [17,18].
These methods are seen to be accurate, and have been widely used in the power system
community [19,20], but, as they rely on a state projection on a new basis, they do not
preserve the physical structure of the system if directly applied [21]. As a result, analysis
is not straightforward with these methods. Indeed, the loss of the physical meaning of
the reduced models makes it difficult to analyse system behaviour. Instead, it is desirable
that the models rely upon the physical variables and parameters of the system, to simplify
later analysis and exchanges between transmission system operators (TSOs), and to make
it possible to conveniently evaluate new control laws or tuning processes. Moreover, they
need to capture fast transients with good accuracy, particularly overcurrents, to ensure
converter integrity.

A parametric MOR method is proposed in [22], where the specified parameters are
explicitly preserved in the reduced mathematical model that is obtained via balanced
truncation. This parametric MOR method is particularly useful for studying the impacts
of those preserved parameters on system behaviour at lower costs and comparing to the
original full EMT model. However, physical variables are not preserved in this method.

The MOR method in [23] consists of the aggregation of the same type of parallel
connected GFMs, the Kron reduction of the network, and the singular perturbation of the
aggregated converters. Since the method ignores all dynamics of the power lines except
the ones directly connected to converters, and discards states with short time constants, the
obtained fixed reduced model does not adapt to the type and location of practical events.

In reference [24], a new MOR technique based on a non-projection-based state resid-
ualisation approximation technique is proposed, which computes the Hankel Singular
Values and identifies the most observable and reachable states in the balanced realisation.
However, to maintain the physical structure and retain the variables during the MOR, it
does not truncate the system; instead, it links the most observable and reachable states in
the balanced realisation’s system back to the states in the original physical system by using
the fact that the eigenvalues in both systems are the same. The method is straightforward,
but it may not result in a much-reduced system as two participation factor analyses are
performed in a row, and it is unable to take into account each simulated event separately.

In reference [25], another non-projection and state residualisation approximation-
based MOR technique is proposed. This technique, belonging to the family of singular
perturbation methods [26], preserves the physical variables and parameters of the system,
achieves a bounded approximation error, and adapts to the simulated event and the ob-
served system variables. Since the size of the reduced model was arbitrarily chosen in [25],
this paper proposes a systematic method, i.e., alignment with the phasor approximation
model, which improves the accuracy of the reduced model. Guidance is also provided here
regarding the choice of the criterion, εpart, which affects the form of the reduced models in
subsequent steps and may eventually affect the final result, i.e., selected according to the
event type.

In addition to applying a state residualisation approximation technique and indicating
which differential equations should be made algebraic, Kron reduction is applied to the
algebraic power network equations, leading to a reduced simulation time.
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The next section, Section 2, presents the modelling of grid-forming converters (GFMs)
and other power components. The non-projection-based state residualisation approxi-
mation and Kron technique are then described in Section 3. Subsequently, in Section 4,
the accuracy and efficiency of the approach are illustrated on a modified IEEE 39-bus
system, where all generation is assumed to be renewable and connected through
GFM-based converters.

2. Power System Modelling

In the following, the equations for modelling each device are listed and the function
of each equation is only briefly described, because an important thing to highlight in this
paper is the number of algebraic and differential equations rather than the function of each
equation. The difference between an algebraic and differential equation is that a differential
equation is with a differential term d/dt.

2.1. Grid-Forming Converter

Grid-forming converters (GFMs) are designed to act as voltage sources instead of
current sources (which is the case for grid-following converters), and therefore they can
replace synchronous machines (which create the voltage in today’s power systems). The
physical structure of a GFM and its control, as studied in this paper, are shown in Figure 1,
representing the classical structure seen in [4,27–29]. The GFM is composed of a DC/AC
converter (here, the DC voltage source and DC/AC converter are assumed to be ideal) and
an RLC filter and transformer, while the control hierarchy consists of external cascaded
voltage and current loops.

Figure 1. Physical structure of a grid-forming converter and its control loops.

2.1.1. Modelling the Grid-Forming Converter Control Loops

The equations for active power and frequency, P/ f , droop control are given as (1)–(4),
which model the active power injected by the converter, the measure of this power, the P/ f
droop control, and the angle of the converter, respectively.

P = vodiod + voqioq, (1)

dpm

dt
+ ωc pm = ωcP, (2)

ωvsm = ω0 + mp

(
Pre f − pm

)
, (3)
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1
ωb

dδvsm

dt
= ωvsm −ω, (4)

where ω = ω0 = 1 is the rotating frequency of the common DQ0 reference frame.
The equations for reactive power and voltage amplitude (Q/V), droop control, along

with a damping enhancement control and virtual impedance (VI)-based current-limiting
control (the principle of the VI current-limiting control is that an emulated impedance
is added to the R f L f filter once the converter’s current is larger than Inom, so that the
converter’s current is limited), are given as (5)–(15). Equations (5) and (6) model the
reactive power injected by the converter and the measure of this power, (7) and (8) model
the reactive droop control, (9) and (10) model the damping enhancement control, (11)–(14)
model the VI current control, and (15) calculates the converter’s current.

Q = voqiod − vodioq, (5)

dqm

dt
+ ωcqm = ωcQ, (6)

v∗od = Vre f + mq(Q∗ − qm) +
(

MADd − k f f iod

)
− ∆vVId, (7)

v∗oq =
(

MADq − k f f ioq

)
− ∆vVIq, (8)

dMADd
dt

= ω f f

(
k f f iod −MADd

)
, (9)

dMADq

dt
= ω f f

(
k f f ioq −MADq

)
, (10)

∆vVId = RVI icd − XVI icq, (11)

∆vVIq = RVI icq + XVI icd, (12)

RVI = KVImax(0, ic − Inom), (13)

XVI = KX/RRVI , (14)

ic =
√

i2cd + i2cq. (15)

The equations for the proportional integral (PI) control loop of the output voltage
across the capacitor C f are given as (16)–(19), where (16) and (17) represent the integrator
and (18) and (19) create the current reference for the inner current control loop.

dξd
dt

= kiv(v∗od − vod), (16)

dξq

dt
= kiv

(
v∗oq − voq

)
, (17)

i∗cd = k f f iiod + kpv(e∗d − vod)−ωvsmC f voq + ξd, (18)

i∗cq = k f f iioq + kpv

(
e∗q − voq

)
+ ωvsmC f vod + ξq. (19)
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Finally, the equations for the PI control loop of the converter current through the
R f , L f filter are given as (20)–(23), where (20) and (21) represent the integrator and (22) and
(23) create the voltage reference of the DC/AC converter.

dσd
dt

= kii(i∗cd − icd), (20)

dσq

dt
= kii

(
i∗cq − icq

)
, (21)

v∗cd = k f f vvod + kpi(i∗cd − icd)−ωvsmL f icq + σd, (22)

v∗cq = k f f vvoq + kpi

(
i∗cq − icq

)
+ ωvsmL f icd + σq. (23)

2.1.2. Modelling the Grid-Forming Converter Physical Hardware

The Equations (24)–(29) represent the RL filter (24) and (25), the C filter (26) and (27),
and the DC/AC converter (28) and (29), based upon a DQ0 reference frame of the angular
frequency ωvsm given by the external loop.

L f

ωb

dicd
dt

= vcd − vod − R f icd + ωvsmL f icq, (24)

L f

ωb

dicq

dt
= vcq − voq − R f icq −ωvsmL f icd, (25)

C f

ωb

dvod
dt

= icd − iod + ωvsmC f voq, (26)

C f

ωb

dvoq

dt
= icq − ioq −ωvsmC f vod, (27)

v∗cd = vcd, (28)

v∗cq = vcq. (29)

Equations (28) and (29) indicate that the DC/AC converter is assumed to be ideal.
The output voltage and current in (24)–(27) need to be converted to the common DQ0

reference frame rotating at a frequency of ω, with a base capacity of 100 MVA. Given a
converter capacity of Sb, the conversions are presented as follows.

100
Sb

[
iod
ioq

]
=

[
cos(δvsm) −sin(δvsm)
sin(δvsm) cos(δvsm)

][
ig
od

ig
oq

]
, (30)

[
vod
voq

]
=

[
cos(δvsm) −sin(δvsm)
sin(δvsm) cos(δvsm)

][
vg

od
vg

oq

]
. (31)

2.2. Transformers

The RL transformer is represented in Figure 2a and given in (32)–(35). These equations
are given in pu, and in the common DQ0 reference frame of a frequency ω and base capacity
of 100 MVA. A change in the transformer ratio n is incorporated.

n2 Lt

ωb

dipd

dt
= nvsd − vpd + n2

(
−Rtipd + ωLtipq

)
, (32)
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n2 Lt

ωb

dipq

dt
= nvsq − vpq + n2

(
−Rtipq −ωLtipd

)
. (33)

nipd = −isd, (34)

nipq = −isq. (35)

Figure 2. (a) Transformer model, (b) Pi-line model, and (c) RL-load model.

2.3. Branches

It is assumed here that transmission lines are modelled as pi-models with a common
DQ0 reference frame at frequency ω. The pi-line model is shown in Figure 2b with the
equations summarised as (36)–(38), where (36) models the RL line, and (37) and (38) account
the capacitive effects of the line.

Lb
ωb

did
dt = v1d − v2d − Rbid + ωLbiq,

Lb
ωb

diq
dt = v1q − v2q − Rbiq −ωLbid.

(36)

Cb
2ωb

dv1d
dt = −iid − id + ω Cb

2 v1q,
Cb

2ωb

dv1q
dt = −iiq − iq −ω Cb

2 v1d.
(37)

Cb
2ωb

dv2d
dt = id − ijd + ω Cb

2 v2q,
Cb

2ωb

dv2q
dt = iq − ijq −ω Cb

2 v2d.
(38)

2.4. Loads

The loads are represented here as RL-loads, as shown in Figure 2c, with the dynamic
Equations (39) and (40) given in pu, and in the DQ0 reference frame at frequency ω.

L
ωb

did
dt

= −vd − Rid + ωLiq, (39)

L
ωb

diq

dt
= −vq − Riq −ωLid. (40)

3. Model Order Reduction by Combination of the State Residualisation and Kron
Reduction Technique
3.1. State Residualisation Technique
3.1.1. State Residualisation Principle

A power system can be modelled as a nonlinear differential-algebraic system of
equations (DAE) as (41).

dxd
dt = f (xd, xa, u)
0 = g(xd, xa, u)
y = h(xd, xa, u)

, xd ∈ RNd , xa ∈ RNa , u ∈ Rp, y ∈ Rq, (41)



Appl. Sci. 2023, 13, 6593 7 of 21

where xd, xa, u and y represent the algebraic input and output variables, and Nd, Na, p and
q are the related orders.

The residualisation of a state variable consists of changing the state variable into
an algebraic variable by neglecting its derivative in the associated differential equation,
transforming it into an algebraic equation [9]. It represents a well-known process applied
in the phasor approximation to state variables modelling power lines, and is used by most
transient simulation programs [30].

The reduced system obtained by state residualisation can be written as in (42).
E dxd

dt = f (xd, xa, u)
0 = g(xd, xa, u)
y = h(xd, xa, u)

E = diag(δi), δi = {0, 1}, ∀i

xd ∈ RNd , xa ∈ RNa , u ∈ Rp, y ∈ Rq. (42)

The diagonal matrix E is called the residualisation matrix, consisting of 1 or 0 on
its diagonal. Each diagonal element E(i, i) indicates whether the state variable xd(i) is
residualised or not. If E(i, i) = 0, the state variable xd(i) is residualised, and otherwise
E(i, i) = 1. The size of the reduced system is given by tr(E).

The objective of state residualisation is to choose E, providing a trade-off between the
order of the reduced model and the expected modelling error.

It is seen that the variables and parameters of the full and reduced models are exactly
the same, which ensures that the steady state values of the full and reduced models are
the same, as they are computed with the same system. It is also straightforward to directly
consider the reduced system for analysis, or tuning and designing of controllers. Finally,
state residualisation can be implemented in classical DAE solvers, as it involves substituting
some derivative terms by 0.

A method to achieve state residualisation, consisting of state categorisation and modal
state residualisation, as proposed by [25], is summarised in Figure 3.

Figure 3. (a) Synoptic describing the state categorisation [25], and (b) synoptic describing the modal
state residualisation [25].

3.1.2. State Categorisation

Adopting the state residualisation method proposed by [25], the residualisation of
state variables for a nonlinear model is linked to discarding some poles in the linearised
model around its operating point and preserving the other poles. By acknowledging links
between the states and poles of a linearised system, it is possible to choose which states to
residualise in the nonlinear system. This process, illustrated in Figure 3a, is described step
by step in the following.
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(1) Linearisation. The non-linear DAE model in (20) is linearised around a steady-state
operating point [30], resulting in a linear time invariant system that can be represented
in state space as in (43).

{ dx
dt = Ax + Bu
y = Cx + D

, x ∈ RNd , u ∈ Rp, y ∈ Rq. (43)

(2) Participation Factor. Participation factors are a linear algebraic tool, introduced
in [31], which quantify the links between the eigenvalues of a linear system and
its state variables. More precisely, the participation factor pki is a complex number
whose modulus gives the participation of the state xk in the eigenvalue λi(and vice
versa) and indicates how much the state variable influences the considered pole. The
participation factor is calculated as in (44):

pki = ui(k)yi(k), (44)

where ui(k) and yi(k) are the kth entry of the left and right eigenvector ui and yi of A
associated with eigenvalue λi. ui and yi can be defined as (45).

Ayi = λiyi,
uT

i A = λiuT
i .

(45)

The left and right eigenvectors of A should be normalised, such that the sum of all the
participation factors of all states for an eigenvalue is equal to 1 (for example, ∑Nd

k=1 pki = 1,
associated with eigenvalue λi). Subsequently, the degree of participation of each state to an
eigenvalue can be compared.

(3) Groups of States and Eigenvalues. With pki obtained, the states that participate the
most in each eigenvalue can be grouped together, with the rest discarded. Thus, Nd
groups (states that do not belong to any group can be set to zero, as they do not
significantly contribute to any eigenvalue) are obtained, as there are Nd eigenvalues.
This process can be achieved by ordering pki in descending order and summing the
first j terms larger than a threshold, εpart.

In a coupled system, a state variable may participate in several eigenvalues, which
means that some of the previously created groups can be merged to form new groups,
where each new group is associated with one or more eigenvalues. After this process, fewer
than Nd groups are normally left. The state variables in the same group can be residualised
together, or not at all (using an optimisation method describe in the next subsection). In
other words, the associated poles will be discarded together, or not.

Based on the above approach, the criterion εpart indicates the precision of the state
categorisation. If εpart is high, interactions between the states are well recognised, but since
the number of groups is reduced, the possibilities for reductions are limited. Alternatively,
if εpart is low, the reduction possibilities are improved but the precision with which the
poles are retained will be poor. The choice of this criterion is empirical, but different values
can easily be tested. This paper demonstrated that the choice of εpart can be based on the
type of event.

3.1.3. Modal State Residualisation

The developed state residualisation in [25] is based on finding E, which minimises an
error criterion while respecting the state categorisation deduced in the previous subsection.
It is a modal state residualisation, as the residualisation preserves some poles of the
linearised system.

The error criterion to minimise is chosen to be ‖ yi − yri ‖2, the square of the norm
of the difference between the ith output of the full model and the reduced model, excited
by the jth input with a Dirac function for a chosen norm. This choice is motivated by the
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objective of tracking the transient of some sensitive variables, such as the output current of
some converters, for a specific simulated event, modelled here by input j.

Since it can be complicated to calculate this error criterion for nonlinear models, both
systems are linearised. For the full model, (43) is obtained, and for the reduced model,
(46) is obtained. {

E dxr
dt = Axr + Bu
yr = Cxr + D

, xr ∈ RNd , u ∈ Rp, y ∈ Rq. (46)

It is also difficult to calculate the error criterion in the time domain. Hence, the error
is calculated in the frequency domain. Based on (43)–(46), the transfer functions from the
chosen input to output can be obtained as (47) and (48).

Y(ω) = C
(

jωINd − A
)−1BU + DU, (47)

Yr(ω) = C(jωE− A)−1BU + DU (48)

The difference between the two transfer functions gives (49).
Y(ω)−Yr(ω) = e(ω)U

e(ω) = C
[(

jωINd − A
)−1 − (jωE− A)−1

]
B

e(ω) ∈ Cq×p
(49)

The difference in the Fourier domain between the ith output of the full model and of
the reduced model when simulating a Dirac function for input j is given by ei,j(ω), where
e(ω) represents the element in the ith row and jth column. The energy of the error, ei,j, is
defined in (50).

eij =
∫ ∞

−∞

∣∣∣ ei,j(ω)
∣∣2 dω =

∫ ∞

−∞

∣∣∣Y(ω)−Yr(ω)|2 dω. (50)

By minimising the energy, eij, the optimisation problem can be presented as in (51).

E = arg


mineij =

∫ ∞
−∞

∣∣∣Y(ω)−Yr(ω)|2 dω ≈ ∑m
i=1

∣∣∣Y(ωi)−Yr(ωi)|2

subject to :
{

E ∈ Eεpart

tr(E) ≤ n

. (51)

where Eεpart represents that the states in the same group must be residualised (or not) to-
gether to discard (or keep), and n is the desired size of the reduced model. In reference [25],
n is chosen arbitrarily, but here a systematic way is applied for choosing the order, so it is
the same as the phasor approximation. The results in Section 4 will demonstrate that the
reduced model leads to improved model accuracy.

A genetic algorithm [32]-based approach is used here to solve the optimisation problem
(51), which allows a low computation time compared to bruteforce methods [33] (which
involves listing all possible E matrices, calculating the error eij, and choosing E, which
minimises all eij).

The modal state residualisation process is summarised in Figure 3b, where it is seen
that the obtained E is specific to the chosen output-input couple (i, j). In other words, the
obtained reduced models can be different for each considered test case: observed variables-
output/simulated event-input. It follows that the method is flexible and can be adapted to
any considered events and concerned variables (e.g., converter current).

3.2. The Kron Reduction Technique

After the above process, sections of the network are modelled as algebraic equations.
Kron reduction can then be used to eliminate the passive nodes (i.e., no current injected). A
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passive node k in the node admittance matrix can be eliminated by replacing the elements
of the remaining n− 1 rows and columns by

y′ij = yij −
yikykj

ykk,
(52)

for i = 1, 2, . . . , k− 1, k + 1, . . . , n and j = 1, 2, . . . , k− 1, k + 1, . . . , n, where yij is the mutual
admittance between nodes i and j (negative value of the sum of all admittances connected
between nodes i and j), and ykk is the self admittance of node k (sum of all admittances
connected at node k).

By the successive application of (52), any desired number of passive nodes can be
eliminated. Equation (52) is called Kron’s reduction formula, with further details of the
method to be found in [34].

It is seen that after a Kron reduction process, fewer bus nodes and algebraic states/
equations remain in a DAE model, such that the simulation time is reduced, which is
particularly useful for power systems, where the number of passive bus nodes is much
larger than the number of generation nodes.

4. Application and Results
4.1. General Structure of Modified IEEE 39-Bus System

The IEEE 10-generator, a 39-bus system [35] with 10 synchronous generators replaced
by grid-forming converters, is considered, as shown in Figure 4a. Each GFM is modelled
based on its defined base values, Sb and Vb. For the grid, Sb = 100 MVA, while Vb is
the same across the system. All equations for the electrical components are described in
Section 2. The physical and control parameters of the GFMs are the same as in [4,29], as
shown in Table 1, while the remaining parameters are the same as in [35]. Note that the
maximum current for the GFMs is tuned to be 1.2 pu, by incorporating virtual impedance
current-limiting control.

Figure 4. (a) IEEE 39-bus system with the 10 synchronous generators replaced by grid-forming
converters. (b) schematic diagram of reduced model after implementing state residualisation and
Kron reduction technique for Cases 1 and 2, with the fault applied at bus 19.
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Table 1. Grid-forming converter RLC filter and control parameters.

Parameters Values (pu) Parameters Values (pu)

R f , L f , C f 0.005, 0.15, 0.066 kpv, kiv, kpi, kii 0.52, 1.16, 0.74, 1.19

mp, mq 0.02, 0.0001, Inom 1

ωc, ωcq 31.4 rad/s KVI , KX/R 0.67, 5

Two short-circuits and one line-tripping event are simulated, and the state residual-
isation method is applied to the system in each case. The short-circuit is modelled as a
shunt resistance, which switches from a very large to a very small value when the event is
triggered. The resistance that creates the short-circuit is considered as the input for calculat-
ing the residualisation matrix E in (42). Similarly, the line-tripping event is modelled by
a series connected resistance that becomes very large when the event happens, with the
resistance again considered as the residualisation matrix.

In order to demonstrate that the proposed technique achieves more accurate transient
simulations than the traditional phasor approximate model, along with reducing the
simulation time, the following cases are created:

Case 1: A bolted three-phase short-circuit is applied at bus 19 at 1 s, and cleared at 1.15 s.
Case 2: The same as Case 1, but the short-circuit is 10 times less severe, and the length

(and series and shunt impedance) of line B16–19 is increased by a factor of 18 (a sufficiently
large scaling that ensures that the system remains stable for different events and disturbances),
so as to focus the impact on generators G4 and G5.

Case 3: Line B26–29 is disconnected at 1 s. In order to create a noticeable impact on the
nearby generators, B26–29 is shortened by a factor of 10, while line B28–29 is lengthened by a
factor of 10.

Different from [25], where only one converter is observed, the currents of all converters
in the system are observed as outputs, as part of determining the residualisation matrix E in
(42), noting that the location of an event is not known a priori. Since the system topologies
are different under the three events, the state residualisation needs to be determined
separately in each case.

Here, the converter currents are chosen as the observed output variables, since
(1) converters have a much lower overcurrent capability relative to synchronous machines,
and (2) converter fast transient currents need to be captured with good accuracy to ensure
converter integrity.

4.2. Application of State Residualisation Technique

The state categorisation described in Section 3.1.2 is applied to the three test cases,
with εpart selected as 0.75 for the short-circuit events in Cases 1 and 2, and 0.55 for the
line-tripping event in Case 3, which results in three different grouping formulas, as shown
in Table 2. The principle for choosing εpart is not overly critical, but it should be based on the
severity of an event, such that the less severe the event in question, the smaller εpart should
be, since for a less-severe event the states will be more likely to have equal participation
in a mode. Hence, choosing a smaller εpart for a less-severe event can disjoint the system
states and separate them into different groups. In this way, the state variables that are most
relevant to an event are grouped into individual groups, while the remainder are grouped
into a few larger groups. In general, simply choosing εpart as 0.75 for short-circuits, and as
0.55 for line-tripping, leads to satisfactory grouping.

Table 2. Different groups are formed for different cases, given the topology changes.

Case Number of Groups

Case 1 23
Case 2 21
Case 3 29
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Subsequently, modal state residualisation of (42) in Section 3.1.3 is applied, by choosing
the desired size n as equal to the phasor approximate model. Three reduced models are
obtained, which are summarised in Table 3. For example, for Case 1, the variables to be
retained are almost the same as for Case 2, except for the remaining GFMs, which are less
impacted by the short-circuit. The result is not surprising given that the short-circuit is
applied at the same bus, and the topology of each system is very similar. However, for
Case 3, as the system topology is more noticeably different from the previous two cases,
the variables to be retained are different.

Table 3. Optimal reduced-order model obtained by using state residualisation for the different events.

Case Retained State Variables (The Remainder Are Residualised) MOR Order

Case 1
All state variables for G4 and G5, except qm for G5

53δvsm and qm for the remaining GFMs
Branch B16–19, transformers T20–34, T20–34 and T19–20, load L20

Case 2
All state variables for G4 and G5, except qm for G5

101δvsm, pm, MADd, MADq, ξd, ξq, σd, σq for the remaining GFMs
Branch B16–19, transformers T20–34, T20–34 and T19–20, load L20

Case 3
All state variables for G9

112δvsm, pm, qm MADd, MADq, ξd, ξq, σd, σq for the remaining GFMs
Branches B26–29, B26–28, B28–29, transformer T29–38, loads L29, L28

It is seen that state residualisation helps to identify zones to reduce, while high-level
details are retained elsewhere, depending on the simulated event. It is confirmed that those
parts of the system that are located far from the simulated event are generally modelled
with fewer details than those parts that are located nearby.

4.3. Dynamic Simulation Results and Analysis

For each case, three mode types are compared using time domain simulations: full
order EMT model (order 308), phasor model (order 130, with the network modelled as
algebraic equations), and reduced-order models based on the state residualisation results
summarised in Table 3.

The simulations are performed using the Modelica [36] language as implemented
using Dymola 2022 software. Modelica is very convenient when simulating DAE systems
and for state residualisation, as the model equations are directly written. A variable
integration time step is applied, such that a larger step size can be used when state variables
representing fast dynamics are residualised (i.e., turned into algebraic variables). The
integration tolerance is set as 0.0001.

For Cases 1–3, comparison simulation results of the 10 GFM currents are shown in
Figures 5–7, respectively, noting that a different reduced model should be used for each
simulated event. Figures 5–7 show that by choosing the model order to be the same as the
phasor approximate model, that the reduced models better capture the GFM transients (as
they retain the most relevant dynamics) over the RMS models. More precisely, the reduced
models accurately simulate the GFMs that are the most impacted by the short-circuit and
line-tripping events, i.e., G4 and G5 for Cases 1 and 2, and G9 for Case 3, while the phasor
models miss the initial current peaks, and so would suggest that the converter current was
within acceptable limits, when, in fact, it was not. For the other GFMs in Cases 1 and 2,
the reduced models also capture the transients of the first peak current of the converters
with better accuracy than the phasor approximated models, except G6 in Case 1 where the
first peak current of G6 is slightly lower than with the phasor model. It is seen that the
former correctly predict the trends of the first oscillation of the converter’s current with
much smaller first peak errors, while the latter sometimes gives opposite directions for the
first oscillations (for example for G1, G8 and G9 in Case 1) and tends to have a larger error
for the first peak (e.g., the error is 0.1~0.3 pu for G2, G3, G7, and G10 in Case 1). Similarly,
in Case 3, for the other GFMs, i.e., not G9, the low-frequency current oscillations in the full
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EMT model are better matched by the reduced model over the phasor model, although
they both miss the first peaks, as seen in Figure 7, where in the phasor model the phases of
the low-frequency oscillations are almost opposite to those in the full EMT model.
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Figure 7. Converter current for GFM located at buses 30–39 for the full EMT, phasor, and proposed
reduced model when tripping line B26–29 at 1 s under Case 3. (a–j) the current of the GFMs at bus 39
and 30–38, respectively, as shown in Figure 4.

It is also seen that for other GFMs in Cases 1–3, the reduced models tend to give a
faster initial current rise (which is also seen in the phasor models) and tend to slightly
underestimate or overestimate the maximum current, which is, however, not critical for
respecting converter integrity. The reason for this is because the dynamics of a large part of
the network and the L f C f filter of the less-impacted converters are not modelled.

Note that in Cases 1 and 2, the current of G4, and also G5, is greater than the 1.2 pu
limit, which is due to the “soft” virtual impedance-based current-limiting control, which
cannot strictly limit the converter current.

Table 4 shows the average absolute error of the peak/valley for the first oscillation
cycle of the current for the 10 GFMs relative to the equivalent oscillation for the full EMT
model from 1.00~1.01 s for the phasor and state residualisation approaches for Cases 1–3. It
is seen for the severe fault in Case 1 that the average error in the phasor model is 3.8 times
greater than that for the reduced model; for the less-severe fault in Case 2, the average
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error for the phasor model is 14.9 times worse than the reduced model; while for line
disconnection event in Case 3, the phasor model actually performs better than the reduced
model, although both models can be used for Case 3, since Figure 7 shows that the current
of the most relevant converter, G9, is accurately represented in both models (although the
reduced model performs a little better with more accurate capture of the timing of the
current drop and waveforms of the current oscillations), and other generators with small
impact are also reasonably represented.

Table 4. Average absolute error for the first current oscillation cycle for the 10 GFMs relative to the
equivalent for the full EMT model over 1~1.01 s for the phasor and state residualisation approaches
for Cases 1–3.

Case Phasor Model State Residualisation Reduced Model

Case 1 0.0199 pu 0.0052 pu
Case 2 0.0052 pu 0.00035 pu
Case 3 0.0014 pu 0.0028 pu

Figures 8–10 compare the poles of the linearised EMT, phasor, and reduced model
of the faulted systems for Cases 1–3, respectively. The linearised A matrix is obtained by
using the Linearize tool in Dymola software, which performs a linearisation based on the
real-time operating point at a specific time point. The time point is set immediately after an
event is applied, and hence the impact of the simulation event as an input can be captured
in the linearised model. Note that the aim of presenting Figures 8–10 is not to conduct
detailed small-signal analysis but to show the match degree of the reduced and phasor
models to the full EMT model.

Figure 8. (a) Poles of linearised full EMT, phasor, and proposed reduced model, for a 150 ms
short-circuit applied at bus 19 at 1 s under Case 1, and (b) zoomed figure.

Figure 9. (a) Poles of linearised full EMT, phasor, and proposed reduced model, for a 150 ms
short-circuit applied at bus 16 at 1 s under Case 2, and (b) zoomed figure.
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Figure 10. (a) Poles of linearised full EMT, phasor, and proposed reduced model, for tripping line
B26–29 at 1 s under Case 3, (b) and (c) zoomed figure.

Figures 8 and 9 show that the critical poles (i.e., rightmost poles that dominate the
system transients) of the reduced models are well overlapped with those of the full EMT
model, while the phasor models fail to represent the unstable poles 0.3 (participation factor
calculations show that the two unstable poles are mainly contributed by δvsm and pm of G3
and G4 (≥95%)) and critical oscillation modes.

Figures 8 and 9 also show that the state residualisation reduced model in Case 2 ap-
pears to better preserve the critical poles over Case 1, as in Case 1 the pole pair −2.4± j0.42
is not matched and extra poles −0.3 and −1.15 are added, which is also reflected in the
time simulation results in Figures 5 and 6.

Figure 10 shows that both (state residualisation and phasor) reduced models miss
some critical poles, e.g., −1.64 ± j0.0075 and −1.645, as seen in Figure 10c. However,
these dominant poles are seen to be very close with each other (within a 0.01 distance
difference) and hence both models can be used, which is also confirmed by the time domain
results in Figure 7 as the current of G9 with the severest impact is accurately represented in
both models.

Figures 8a, 9a, and 10a all show that the reduced model keeps the most-left poles,
which, however, failed in the phasor model. It, with the above results of preserving critical
poles and adding some extra pole, thus illustrates that the reduced model is able to keep
the more energetic poles, through achieving the target, (51), of minimising the energy error
for each the simulated event input to the observed variables output.

Three main conclusions can be drawn from the above dynamic simulation results.
Firstly, the most appropriate reduced model depends on the location and nature of the
simulated event. Secondly, by making the model order the same, state residualisation
can capture event transients with better accuracy than phasor approximation models,
particularly for short-circuit events where converter overcurrents are of most concern.
Finally, for short-circuits, the phasor approximation model does not achieve good accuracy,
and it is particularly concerning that the fast initial transients (very important for power
converters) may be missed.

4.4. Application of Kron Reduction Technique

After applying state residualisaton, the classic Kron reduction technique [34] can be
implemented to further reduce network complexity, and, subsequently, the simulation
time. For illustration, a schematic diagram of the reduced model for Cases 1 and 2
for a fault applied at bus 19 is shown in Figure 4b. It is seen that the number of bus
nodes is reduced from 39 to 13. Moreover, the voltage and current relationships of
the Kron reduced network are represented by an algebraic matrix, which simplifies
subsequent implementation.
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Table 5 compares the simulation time of the reduced models by using the pro-
posed and phasor approximation technique under Cases 1–3. It is seen that both
the reduced models, based on phasor approximation and the proposed combination
of state residualisation and Kron reduction, require less execution time than the full
EMT models (i.e., 20~80%, depending on the test scenario), with the latter being faster
than the former (15~20% reduction achieved). It is also seen that the reduction in
simulation time, relative to the full EMT model, is different under the three cases,
which is, as expected, given the nature of the disturbance event and its proximity to
nearby generators.

Table 5. Simulation time of reduced models, using state residualisation and Kron reduction compared
to phasor models (order 130), relative to full EMT models (order 308).

Case Full EMT Model Phasor Model MOR by State Residualisation and Kron Reduction

Case 1 100% 25.3% 21.6% (order 53)
Case 2 100% 63.9% 54.1% (order 101)
Case 3 100% 81.8% 65.4% (order 112)

5. Conclusions

A combination of event- and non-projection state residualisation approximation
and Kron reduction techniques has been presented, which maintains the advantages
of both approaches. The former preserves the variables and physical structure of a
system by using state residualisation instead of projections, retains some poles around
the operating point (ensuring stability preservation), and adapts to the simulated event
and observed variables. The latter simplifies the network representation of the obtained
models, and thus further speeds up the time domain simulation. This method has been
applied to a modified IEEE 39-bus system with 100% PE converters under different test
cases. The results show that selecting the reduced model size to be the same as the
phasor approximation reduces model complexity while achieving improved accuracy
and faster simulation times. The main reason for the improvements seen is that the state
residualisation method adapts to the test case under consideration and thus achieves the
most appropriate reduced model, while the Kron reduction reduces the number of bus
nodes required.
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Nomenclature

The following variables are associated with the grid-forming converter (GFM) imple-
mented in this paper.

P, pm The injected, and measured active power

ωvsm, δvsm
The virtual angular speed and angle generated by the P/ f droop
control

Q, qm The injected and measured reactive power

v∗od, v∗oq
The d- and q-axis voltage references for the inner voltage proportional-
integral (PI) controller

vod, voq The d- and q-axis voltage across the C f filter
i∗cd, i∗cq The d- and q-axis current references for the inner current PI controller
icd, icq The d- and q-axis current through the R f L f filter
ic The current amplitude through the R f L f filter

ξd, ξq, σd, σq
The d- and q-axis states for the integrator of the voltage and current
PI controllers

v∗cd, v∗cq, vcd, vcq
The d- and q-axis voltage reference and real values of the DC/AC
converter

MADd, MADq The d- and q-axis states for the damping enhancement control

∆ed, ∆eq
The generated d- and q-axis voltage of the damping enhancement
control which are added to the outer loop voltage reference

∆vVId, ∆vVIq
The generated d- and q-axis voltage of the virtual impedance current-
limiting control which are added to the outer loop voltage reference

RVI , XVI The generated virtual impedance resistor and reactance
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3. Yu, M.; Roscoe, A.J.; Dyśko, A.; Booth, C.D.; Ierna, R.; Zhu, J.; Urdal, H. Instantaneous penetration level limits of non-synchronous
devices in the British power system. IET Renew. Power Gener. 2017, 11, 1211–1217. [CrossRef]

4. Zhao, X.; Thakurta, P.G.; Flynn, D. Grid-forming requirements based on stability assessment for 100% converter-based Irish
power system. IET Renew. Power Gener. 2022, 16, 447–458. [CrossRef]

5. Markovic, U.; Stanojev, O.; Aristidou, P.; Vrettos, E.; Callaway, D.; Hug, G. Understanding small-signal stability of low-inertia
systems. IEEE Trans. Power Syst. 2021, 36, 3997–4017. [CrossRef]

6. De Siqueira, J.C.G.; Bonatto, B.D.; Marti, J.R.; Hollman, J.A.; Dommel, H.W. A discussion about optimum time step size and
maximum simulation time in EMTP-based programs. Int. J. Electr. Power Energy Syst. 2015, 72, 24–32. [CrossRef]

7. Vorobev, P.; Huang, P.H.; Al Hosani, M.; Kirtley, J.L.; Turitsyn, K. High-fidelity model order reduction for microgrids stability
assessment. IEEE Trans. Power Syst. 2017, 33, 874–887. [CrossRef]

8. Gu, Y.; Bottrell, N.; Green, T.C. Reduced-order models for representing converters in power system studies. IEEE Trans. Power
Electron. 2017, 33, 3644–3654. [CrossRef]

9. Antoulas, A.C. Approximation of Large-Scale Dynamical Systems; SIAM: Philadelphia, PA, USA, 2005.
10. Varga, A. Enhanced modal approach for model reduction. Math. Model. Syst. 1995, 1, 91–105. [CrossRef]
11. Zhou, J.; Shi, P.; Gan, D.; Xu, Y.; Xin, H.; Jiang, C.; Xie, H.; Wu, T. Large-scale power system robust stability analysis based on

value set approach. IEEE Trans. Power Syst. 2017, 32, 4012–4023. [CrossRef]
12. Marinescu, B.; Mallem, B.; Rouco, L. Large-scale power system dynamic equivalents based on standard and border synchrony.

IEEE Trans. Power Syst. 2010, 25, 1873–1882. [CrossRef]
13. Campos, N.d.M.D.; Sarnet, T.; Kilter, J. Novel Gramian-based Structure-preserving Model Order Reduction for Power Systems

with High Penetration of Power Converters. IEEE Trans. Power Syst. 2022. [CrossRef]
14. Ghosh, S.; Isbeih, Y.J.; El Moursi, M.S.; El-Saadany, E.F. Cross-gramian model reduction approach for tuning power system

stabilizers in large power networks. IEEE Trans. Power Syst. 2019, 35, 1911–1922. [CrossRef]
15. Willcox, K.; Peraire, J. Balanced model reduction via the proper orthogonal decomposition. AIAA J. 2002, 40, 2323–2330. [CrossRef]
16. Chinesta, F.; Ladeveze, P.; Cueto, E. A short review on model order reduction based on proper generalized decomposition. Arch.

Comput. Methods Eng. 2011, 18, 395. [CrossRef]

https://doi.org/10.1109/TPEL.2012.2199334
https://doi.org/10.1049/iet-rpg.2016.0352
https://doi.org/10.1049/rpg2.12340
https://doi.org/10.1109/TPWRS.2021.3061434
https://doi.org/10.1016/j.ijepes.2015.02.007
https://doi.org/10.1109/TPWRS.2017.2707400
https://doi.org/10.1109/TPEL.2017.2711267
https://doi.org/10.1080/13873959508837010
https://doi.org/10.1109/TPWRS.2017.2657642
https://doi.org/10.1109/TPWRS.2010.2043548
https://doi.org/10.1109/TPWRS.2022.3228458
https://doi.org/10.1109/TPWRS.2019.2924495
https://doi.org/10.2514/2.1570
https://doi.org/10.1007/s11831-011-9064-7


Appl. Sci. 2023, 13, 6593 21 of 21

17. Chaniotis, D.; Pai, M. Model reduction in power systems using Krylov subspace methods. IEEE Trans. Power Syst. 2005,
20, 888–894. [CrossRef]

18. Ali, H.R.; Pal, B.C. Model order reduction of multi-terminal direct-current grid systems. IEEE Trans. Power Syst. 2020, 36, 699–711.
[CrossRef]

19. Levron, Y.; Belikov, J. Reduction of power system dynamic models using sparse representations. IEEE Trans. Power Syst. 2017,
32, 3893–3900. [CrossRef]
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