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Abstract: The automated analysis of medical diagnostic videos, such as ultrasound and endoscopy,
provides significant benefits in clinical practice by improving the efficiency and accuracy of diagnosis.
Deep learning techniques show remarkable success in analyzing these videos by automating tasks
such as classification, detection, and segmentation. In this paper, we review the application of
deep learning techniques for analyzing medical diagnostic videos, with a focus on ultrasound
and endoscopy. The methodology for selecting the papers consists of two major steps. First, we
selected around 350 papers based on the relevance of their titles to our topic. Second, we chose the
research articles that focus on deep learning and medical diagnostic videos based on our inclusion and
exclusion criteria. We found that convolutional neural networks (CNNs) and long short-term memory
(LSTM) are the two most commonly used models that achieve good results in analyzing different
types of medical videos. We also found various limitations and open challenges. We highlight the
limitations and open challenges in this field, such as labeling and preprocessing of medical videos,
class imbalance, and time complexity, as well as incorporating expert knowledge, k-shot learning, live
feedback from experts, and medical history with video data. Our review can encourage collaborative
research with domain experts and patients to improve the diagnosis of diseases from medical videos.

Keywords: deep learning; echocardiography; ultrasound; endoscopy; medical diagnostic videos;
classification; segmentation; detection

1. Introduction

In today’s rapidly advancing era of technology and automation, the healthcare in-
dustry is actively exploring innovative solutions to enhance patient care and improve
diagnostic practices. One area that holds immense potential is the automated analysis of
medical diagnostic videos. By leveraging deep learning techniques, these videos can be
processed and analyzed in a manner that significantly enhances the efficiency and accuracy
of diagnosis. Deep learning has emerged as a powerful tool for analyzing medical videos,
enabling automated tasks such as classification, detection, and segmentation. The appli-
cation of deep learning models, such as convolutional neural networks (CNNs) and long
short-term memory (LSTM) networks, has demonstrated remarkable success in extracting
meaningful information from medical videos. These models have been employed to ad-
dress various challenges, including the classification of different types of medical videos
and the segmentation of specific anatomical structures.

There are two types of medical diagnostic videos: ultrasound and endoscopy. Cardiac
ultrasound is known as echocardiography, and we refer to echocardiography as a third
type of medical diagnostic video for the rest of this research work. Several researchers [1]
have exploited traditional and machine learning techniques to analyze medical videos,
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such as echocardiographic videos. The analysis tasks include segmentation of left ventri-
cle (LV), myocardium [2], and anterior mitral leaflet [3] from echocardiographic videos.
The researchers also apply machine learning techniques for classifying informative frames
from endoscopy videos [4]. Other traditional techniques such as naive Bayesian [5], sliding
windows Gauss–Seidel [6], and the polar active contour model [7] are explored to perform
different operations on ultrasound videos to make diagnosis easy for medical practitioners.
However, such research articles are out of the scope of this research. We have only reviewed
the application of deep learning techniques for medical video analysis.

This article presents a detailed review of medical diagnostic video types and deep
learning methods applied for their analysis. We have several contributions. First, to the best
of our knowledge, this is the first work that comprehensively provides details about the
study of all diagnostic videos. Second, we have thoroughly reviewed many research articles
on deep-learning-based medical video analysis. Third, current publications are discussed
along with their datasets, purpose, performance, methods, and limitations. Fourthly, we
identified which deep learning models would be suitable for classifying, segmenting, and
detecting clinical videos. Last, we discussed challenges and future research directions for
fellow researchers and practitioners.

The paper is structured as follows: Sections 2 and 3 discuss the methodology and
taxonomy followed for this study. Section 4 defines and explains the different deep learning
techniques used for extracting spatial and temporal data from medical videos. Section 5
discusses publicly available datasets for medical diagnostic videos. Sections 6–8 give
a detailed literature review of deep learning techniques applied to echocardiography,
endoscopy, and ultrasound videos. The literature review for each video type is divided into
three subsections: Classification, Segmentation, and Detection. In Section 9, we discuss and
provide our opinion on methods used for medical video analysis. In Sections 10 and 11,
the challenges, future implications, and conclusions for deep learning and medical video
analysis are provided.

2. The Methodology Followed for This Study
2.1. Research Gap and Scope of the Review

The current reviews [8,9] on medical image analysis using deep learning focus primar-
ily on the application of convolutional neural networks (CNNs) to static medical images,
such as CT scans, MRI, and X-ray images. These reviews discuss various deep learning
architectures, such as U-Net, DenseNet, and ResNet, and their application to medical image
analysis tasks such as segmentation, classification, and detection. However, these reviews
do not discuss the analysis of spatial and temporal features in medical images. Spatial
features refer to the arrangement and distribution of pixels in an image, while temporal
features refer to changes that occur over time in a sequence of images, such as in videos or
dynamic medical imaging modalities such as ultrasound and endoscopy.

While CNNs can be applied to temporal medical images, such as in video segmentation
and classification tasks, their ability to capture spatiotemporal features is limited. To address
this limitation, researchers have developed various deep learning architectures, such as
3D CNNs, that can capture both spatial and temporal features simultaneously. Thus,
the current reviews on medical image analysis using deep learning mainly focus on static
medical images and do not discuss the analysis of spatial and temporal features.

The focus of this article is to provide a comprehensive review of the application of
deep learning techniques for the analysis of medical diagnostic videos, i.e., ultrasound
and endoscopy. The article reviews the deep learning techniques used for extracting
spatial and temporal data from these videos and discusses publicly available datasets for
medical diagnostic videos. This article also includes a detailed literature review of deep
learning techniques applied to each type of medical diagnostic video for classification,
segmentation, and detection tasks. Finally, this article discusses the challenges, future
implications, and conclusions for deep learning and medical video analysis.
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2.2. Search Strategy

A comprehensive literature search was undertaken using the databases of PubMed,
ACM Digital Library, IEEE Xplorer, Elsevier, and Springer. We mainly focused on the
research articles published from 2016 to 2022 but included a few research papers from
earlier years. For article search, we used the following keyword combinations:

Deep learning and medical diagnostic videos. This keyword combination resulted in
180 research papers.

1. Deep learning and echocardiography videos. This keyword combination resulted in
120 research papers.

2. Deep learning and endoscopy videos. This keyword combination resulted in 250 re-
search papers.

3. Deep learning and ultrasound videos. This keyword combination resulted in 200 re-
search papers.

4. Deep learning and polyp detection OR classification OR segmentation. This keyword
combination resulted in 160 research papers.

5. Deep learning and cardiac phases OR LV classification OR detection OR segmentation.
This keyword combination resulted in 150 research papers.

6. Deep learning and informative frames OR classification OR detection OR segmenta-
tion in ultrasound data. This keyword combination resulted in 200 research papers.

2.3. Inclusion and Exclusion Criteria

Inclusion criteria were as follows:
Studies reporting performance of deep learning models for the analysis of medical

diagnostic videos. Review or survey articles which cover the topic of deep learning applied
to medical diagnostic videos. Research papers reporting running time, AUC, sensitivity,
diagnostic accuracy, and specificity or papers with adequate information to calculate these
data. Studies published between 2016 and 2022. Exclusion criteria were as follows:

Papers reporting results only on image data. Papers published before 2016. Papers
which have explored machine learning but not deep learning or only explored traditional
approaches. Conference papers which are not Scopus-indexed.

2.4. Search Result and Study Selection

First, we selected around 350 papers based on the relevance of their titles to our topic.
The title and abstract of the retrieved articles were then screened for relevance by all the
authors independently. The decision of inclusion and exclusion was taken on the above
criteria. Following this approach, full-text reviews of the relevant studies were completed.
Disagreements about the study’s relevance were settled by consensus after screening and
following a full-text review.

2.5. Data Extraction

For each study, we extracted the following data: primary details such as first author
and year of publication, then the purpose of the study such as classification or segmentation.
Afterwards, details about the method applied and the data used were extracted, such as
the format of the video, resolution, and size of the dataset. Lastly, we extracted the results
regarding AUC, sensitivity, specificity, etc.

3. Taxonomy of Deep-Learning-Based Medical Video Analysis

In this section, we discuss the organization of the review of recent contributions in
the field of deep-learning-based medical video analysis. The taxonomy followed in this
literature review is shown in Figure 1. In the following subsections, we explain each block
of our taxonomy in detail.
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Figure 1. Taxonomy of literature review.

3.1. Types of Medical Videos

Echocardiography, endoscopy, and ultrasound procedures generate three types of
videos for diagnosing diseases, such as the presence of polyps in body organs and car-
diomyopathy. There are also a few other types of videos, such as surgery and training
videos, that are used for analysis and teaching purposes. As this study only deals with
diagnostic videos, such videos are out of the scope of our research. Further details about
these videos are given in the following subsections.

(1) Echocardiography: Echocardiography is a noninvasive and affordable imaging tech-
nology that helps doctors diagnose a heart’s pumping strength, blood flow, the presence of
a tumor, the functionality of valves, and the physiology of the heart [10]. Echocardiography
uses sound waves by passing a probe called a transducer over the chest. Anatomical
structures of the heart are displayed on the screen of the echocardiography machine as
sequential frames over time. For echocardiography videos, temporal resolution plays a
vital role. Temporal resolution is the time from starting one frame to the next; it shows the
ultrasound system’s ability to capture structures with rapid movements, such as the cardiac
cycle. Low temporal resolution can cause data loss, resulting in an incorrect diagnosis.
Another challenge medical practitioners face is poor video quality caused by improper
probe handling and loss of signals. Figure 2a depicts the echocardiography frame showing
a two-chamber view of the heart.

(2) Endoscopy: Endoscopy is a procedure in which an endoscope is passed inside the
human body to examine an organ, such as the intestine, colon, or stomach. Endoscopy is the
preferred test for various types of cancer, polyps, and lesion detection [11]. The technique
for capturing endoscopy and echocardiography videos is different; hence, the results are
dissimilar. The endoscopy videos are colorful and usually of good quality compared with
the echocardiography videos. The presence of interference, such as food and gastric juices,
in the digestive system makes it challenging for medical staff to analyze the regions of
interest. The presence of uninformative frames in endoscopy videos makes the diagnosis
process time-consuming and inefficient in terms of computational resources. Figure 2b
depicts the endoscopy frame showing a polyp in the colon area of the body.
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Figure 2. Frames from different medical videos.

(3) Ultrasound: Ultrasound is extensively used for diagnosing the causes of pain,
swelling, and infection in any part of the body (e.g., kidney, liver, and gallbladder) in a
cost-effective manner [12]. Ultrasound imaging uses high-frequency sound waves and can
be performed on various organs to examine them internally. Ultrasound can also guide
surgeons during surgery regarding the area of interest. The relatively low-energy acoustic
waves used during ultrasound imaging cannot penetrate thick layers of human tissue; for
example, in obese people, the liver and other vital abdominal organs can lie four to five
centimeters below the surface. Such cases present more physical strain on sonographers
and radiologists. Figure 2c depicts the ultrasound frame showing a benign breast tumor.

3.2. Deep-Learning-Based Analysis Tasks

(1) Classification: Classification is a process that involves assigning a class label to
the input data [13,14]. Mostly, a classification task allocates a single label to the input.
However, sometimes it involves predicting the probability across two or more class labels.
The classification model assumes that the classes are mutually exclusive in these cases.
The research articles that have explored deep-learning-based classification techniques for
echocardiography, endoscopy, and ultrasound are reviewed in Sections 6.1, 7.1 and 8.1.

(2) Segmentation: Image segmentation is a process in which the input is broken down
into segments, which helps reduce the image’s complexity to make further processing or
analyzing the image easier and simpler [15]. Segmentation, in other words, is a method
of assigning labels to pixels. All pixels belonging to the same class have a common
label assigned to them. The research articles that have explored deep-learning-based
segmentation techniques for echocardiography, endoscopy, and ultrasound are reviewed in
Sections 6.2, 7.2 and 8.2.

(3) Detection: Object detection is a technique that identifies a particular object’s location
in an image or video [16]. Object detection can be used to count objects in a scene and
determine and track their precise locations while accurately labeling them. The research
articles that have explored deep-learning-based detection techniques for echocardiography,
endoscopy, and ultrasound are reviewed in Sections 6.3, 7.3 and 8.3.

4. An Overview of Deep Learning Techniques

The following are a few commonly used deep learning techniques in the medical field.

4.1. Convolutional Neural Networks

CNNs are of prime importance in the context of deep-learning-based video analysis.
CNNs consist of three types of layers, namely convolution, pooling, and fully connected,
as shown in Figure 3 [17]. The CNN architecture shown in Figure 3 is just an example of
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how CNNs are applied to extract features from data and then classify them. The CNN archi-
tecture can be modified based on many parameters, such as data and computational speed.

Input

(28x28x1)

Output

Fully connected layer

Conv_1

(24x24x1)

Max-Pooling  

(12x12x1)

Flattened

Filter

(5x5)
Filter

(5x5)

Conv_2  

(8x8x1)
Max-Pooling  

(4x4x1)

Figure 3. The architecture of a sample convolutional neural network.

4.2. Fully Convolutional Network

A fully convolutional network (FCN) is used for semantic segmentation and consists
of convolution, pooling, and upsampling layers [18], as shown in Figure 4. FCN performs
in-network upsampling and pixel-to-pixel inference by using a fully convolutional ap-
proach, such that it can store the pixelwise spatial correspondence by transforming all
fully connected layers to convolutions and enable per-pixel segmentation. Arbitrary-sized
video clips can be given input to FCN for the segmentation of ROI. The output provided by
the FCN would be in the form of corresponding probability maps. The probability map’s
values represent the network output of one subwindow in the input video clips. The FCN
probability map approach is much more efficient than the sliding window method, which
repeatedly crops overlapping samples [19].

Figure 4. The architecture of a fully convolutional network.

4.3. Generative Adversarial Networks

Generative adversarial networks (GANs) [20] are used for training generative models
for image synthesis. The architecture of GANs is given in Figure 5, where the generator
is trying to copy the input data distribution. When the original and generated images are
passed through the discriminator, it will decide whether the generated image is accepted or
not. GANs can be trained to separate the scene’s foreground from the background. GANs
comprise such robust architecture that they can create tiny videos for up to a second at
full frame rate. This ability of GANs can predict the next plausible futures of static images.
GANs’s ability to internally learn useful features is useful for recognizing actions with
minimal supervision in medical videos.
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Figure 5. The architecture of generative adversarial networks.

4.4. Regions with CNN Features

Regions with CNN features (RCNN) is an architecture used for segmentation and
object detection. RCNN is called region-based because the input is divided into several
regions to detect the object of interest, as shown in the Figure 6 [21]. RCNN takes around
45 s for processing per video frame, making it unsuitable for real-time application.

Figure 6. The architecture of regions with CNN features.

4.5. Single-Shot Multibox Detector

The single-shot multibox detector (SSD) is an object detection technique. The archi-
tecture of an SSD is based on the VGG-16 architecture but discards the fully connected
layers [22], as shown in Figure 7. Generally, an SSD is faster than RCNN for video analysis
because it eliminates the need for the region proposal network.

Figure 7. The architecture of a single-shot multibox detector.
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4.6. UNet

The name UNet is derived from the symmetric shape of the architecture [23], as shown
Figure 8, and it is one of the evolved forms of CNNs. UNet has been widely used for
medical video segmentation to detect polyps, blood clots, etc. Two characteristics of UNet
make it a suitable choice for video data. Firstly, it performs well even when limited training
data are available. Secondly, since it does not have any fully connected layers, there is no
limitation on the size of the input. As medical videos are rich in content, having no input
size restrictions assures effective ROI segmentation.

Figure 8. The architecture of UNet.

4.7. Recurrent Neural Networks

Recurrent neural networks (RNNs) are designed to model sequences of data types,
such as text, videos, and images. An RNN uses its internal state to maintain a ‘memory’ of
the sequence. Figure 9 represents a typical RNN.

The most popular type of RNN is a long short-term memory (LSTM) network [24].
LSTM is effectively used for dealing with long sequences. The fundamental architecture of
LSTM networks is similar to an RNN; however, their hidden states are computed differently.
Informally, a hidden state takes in the previous state and the input at a given time stamp
and decides what to remember and delete from its memory. The current, previous, and
memory states are combined for the next time stamp.

Figure 9. An illustration of an unfolded RNN.
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4.8. Models Used for Extracting Temporal Data

CNNs can be applied to video data in the same way as image data, where every
frame is treated as a separate image. On the other hand, if the temporal information
needs to be extracted from the video, other approaches can be used. For example, CNNs
can be combined with an RNN model [25], where the CNN model is used for extracting
the image features, and the RNN model is utilized for capturing temporal dependencies.
This method is known as the fusion approach, where the model architecture consists of
convolutional layers, LSTM layers, and finally fully connected and softmax layers [26].
The CNN and LSTM models can be fused in three ways. A feature-level fusion can be
implemented by combining the outputs after the features are extracted by the sequence
of convolution and LSTM layers from the input data. After the fusion, a classifier can be
used to develop a feature-level fusion model. Score-level fusion is another type of fusion
that can take place between or after the softmax and fully connected layers. In this type of
fusion, the input data are passed through the CNN, LSTM layers, and a classifier, resulting
in a probability score. The fusion of multiple scores from different models is a score-level
fusion. The decision-level fusion is similar to a score-level fusion, except that the fusion is
performed after the network’s prediction. This type of fusion is entirely associated with the
network’s predicted output and is not related to the score/probability used for the decision.

Another deep learning architecture suitable for extracting temporal features is a 3D
CNN [27]. The 3D CNN comprises several consecutive layers of 3D convolutions and
operates by convolving a four-dimensional kernel over a four-dimensional data input in
both space and time. These four dimensions for the input data and kernel come from the
temporal dimension (i.e., the number of video frames), two spatial dimensions, and the
channel dimension (e.g., an RGB image has three channels).

5. Publicly Available Datasets for Medical Video Analysis

This section discusses publicly available datasets, because they play a crucial role
in the development and evaluation of deep learning models in medical video analysis.
By providing an overview of these datasets, researchers and practitioners can choose the
most appropriate dataset for their specific application and compare their results with those
of other studies in the field. Additionally, the availability of standardized datasets helps to
promote reproducibility and transparency in research.

5.1. Kent Integrated Dataset

The Kent Integrated Dataset (KID) [28] is an open-source and nonprofit dataset that
contains 2500 endoscopy images and three videos. The dataset includes various types
of diseased and normal organs, e.g., colon, stomach, and esophagus, and the disease
conditions include bleeding, polyps, ulcer, and stenosis. Most of these data were captured
using a microcam wireless capsule endoscope.

5.2. Cardiac Acquisitions for Multistructure Ultrasound Segmentation Dataset

The Cardiac Acquisitions for Multistructure Ultrasound Segmentation (CAMUS)
dataset was introduced by Leclerc et al. in 2019 [29]. This is the largest available echocar-
diogram dataset and contains images and video sequences of 500 patients. The reports
were acquired from Saint-Etienne hospital (France), and the dataset reflects daily clinical
practice data. The CAMUS dataset contains images and video sequences of good, poor,
and medium quality, and labeling was performed by three cardiologists. This dataset
provides end-systolic (ES) and end-diastolic (ED) frames in four-chamber and two-chamber
views of the heart for each patient. Each video has a different resolution, and all of them
are larger than 1024 × 512. All video sequences are stored in .mhd format.

5.3. EchoNet Dynamic Dataset

Ouyang et al. [30] created the EchoNet-Dynamic dataset, containing 10,030 echocar-
diography videos and covering a variety of typical lab imaging acquisition conditions. All
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images have labeled measurements, including LV volume at end-systole and end-diastole,
ejection fraction, and expert tracings of the left ventricle. The dataset contains apical-4-
chamber echocardiography videos from patients who underwent echocardiography tests
between 2016 and 2018 at Stanford University Hospital. Each video was cropped to delete
the text and information outside of the scanning sector, and the resulting images were
downsampled into standardized 112 × 112 pixel videos. The videos are in .avi format,
containing an average of 50 frames per second and 176 in total.

5.4. ASU-Mayo Clinic Colonoscopy Video Dataset

The ASU-Mayo clinic is the largest colonoscopy video dataset [11]. The training set
comprises 20 colonoscopy videos, of which ten videos show polyps, and the other 10 show
normal physiology. Furthermore, the test set comprises 18 unlabeled colonoscopy videos to
assess the performance of the applied algorithm. The resolution of the videos is 688 × 550
and contains varying amounts of frames ranging from 324 to 1925. The videos are stored in
.wmv format.

5.5. GastroLab Dataset

The GastroLab dataset [31] includes various endoscopy videos for research and educa-
tional purposes. The captured videos are of different organs, e.g., the colon, duodenum,
oesophagus, and stomach, and they show several medical conditions such as cancer, ulcer,
Crohn’s disease, and adenoma. All the videos are of different sizes and resolutions.

5.6. HyperKvasir Dataset

The HyperKvasir dataset is the largest and most diverse endoscopy video dataset [32].
This dataset contains 374 videos, corresponding to 9.78 h of videos and 889,372 video
frames. The videos are divided into two categories: upper GI tract and lower GI tract.
These categories are divided into 30 classes, such as ulcers, polyps, and cancer. All the
videos are of different sizes and resolutions and stored in .avi format.

5.7. Nerthus Dataset

The Nerthus dataset [33] consists of 21 videos, showing a gastrointestinal tract with
different degrees of bowel cleansing. The dataset has four classes showing bowel cleansing
quality. The number of videos per class varies from 1 to 10 with different durations.
The dataset consists of videos with a resolution 720 × 576.

5.8. CVC-ClinicVideoDB

This publicly available dataset contains 18 colonoscopy videos with 768 × 576 resolu-
tion [34]. All videos are of different duration and contain polyp and nonpolyp frames.

6. Echocardiography

In this section, the research articles which explore deep learning models applied to
echocardiography videos are discussed. All the analysis tasks are performed on echocar-
diography videos in two ways: (1) by extracting spatial features from individual frames of
the videos and (2) by extracting spatial and temporal features from the videos. We mention
this information in the respective tables. The section is divided into four subsections: Clas-
sification, Segmentation, Detection, and Miscellaneous, in accordance with our taxonomy
discussed in Section 3.

6.1. Classification

Madani et al. [35] applied a deep learning approach to the classification of echocardio-
graphic views and segmentation of LV hypertrophy. Their data-efficient, semisupervised
model was a combination of a CNN, GANs, and UNet. This research work can provide
support to doctors and cannot be used as a replacement for the clinician. Moreover, a lim-
ited dataset was used due to patients’ privacy and consent issues. Ejection fraction (EF)
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is a measurement which determines the amount of blood the LV pumps out with each
heartbeat, and it can be calculated through echo. Silva et al. [36] proposed a pipeline in
which the echocardiography video sequences and metadata of a patient were given as input
to a 3D CNN. They built a custom 3D CNN with 3D convolutions, asymmetric kernels, and
residual learning blocks integrated into the 3D convolutional layers. The deep learning
model consists of three main blocks, and its input consists of thirty sequential frames of
echocardiography sequence. The initial layers are used for obtaining a smaller represen-
tation of the data, which is used as input in the middle layers. The middle layers, which
use small asymmetric filters, are responsible for most of the computation. Finally, the top
layers converge the activations into a vector that is fed to a softmax classifier. Their research
aimed to classify a person’s health based on EF. Their accuracy is 78%, which may not be
sufficiently high for practical use. Deep learning techniques are also used for viewpoint
classification from echocardiography videos [37,38]. A fused approach was introduced,
wherein two CNNs were trained; spatial and temporal information was combined at the
end for the final classification score. The spatial CNN network processes the original echo
video images to automatically extract the spatial features, while for the temporal CNN
network, the optical flow approach is applied to obtain acceleration and velocity images.
The method gave 96.3% accuracy, which was superior to other state-of-the-art approaches.
The A5C had the worst classification score due to a limited dataset for that view. Another re-
search work was carried out by Feng et al. [39] for the classification of normal and abnormal
echocardiography videos. They proposed a two-stream deep network which extracted the
optical flow and spatial context for the classification of echocardiography videos. A CNN
extracts the spatial features, and each LSTM with attention learns the temporal features.
For the output, the features from these two streams are fused. They achieved an accuracy
of 91% for the dataset of 170 videos.

For classification tasks in echocardiography videos, CNN and LSTM seem popular
among researchers. The evident limitation is difficulty in classifying look-alike cardiac
views. The reason behind this is the lack of training data for some classes and the noisy
nature of the echocardiography modality.

6.2. Segmentation

Deep learning provides new possibilities for echocardiography procedures to produce
an accurate and automated interpretation of echos, thus potentially decreasing the risk of
human error. Leclerc et al. [29] presented a large publicly available dataset, namely CAMUS,
consisting of echocardiography images and video sequences from 500 patients. They
applied several deep learning and non-deep-learning techniques for the segmentation of
the LV endocardium and myocardium. The techniques include UNet, UNet++, anatomically
constrained NN, encoder–decoder, stacked hourglasses, B-Spline explicit, the active surface
model (BEASM) framework, and structured RF. They implemented two UNet architectures
and referred to them as UNet-1 and UNet-2. Both had different feature maps, resolutions,
upsampling schemes, etc. According to their research, the best accuracy was achieved
by the Unit-2 architecture. Moradi et al. [40] also applied UNet and feature pyramid
network (FPN) [41] on the CAMUS [29] dataset for LV segmentation. FPN was applied
for feature extraction and used a pyramid concept with improved accuracy and speed.
The FPN generated multiple feature maps with certain quality information than other
feature pyramids for object detection. In the UNet architecture, two more downsampling
layers were added for extracting the global information of the image. Due to the low
resolution of images, a few encoding–decoding layers were used, which had an impact on
overall accuracy. Zeng et al. [42] proposed an encoder–decoder approach along with FPN
for the left ventricle segmentation. They achieved a Dice similarity coefficient of 93.10.

One of the important aspects of training a segmentation model is having a relatively
rich initial training set. This implies that the model outperforms when it uses 100 labeled
videos from different patients rather than one hundred videos from the same patient. Due
to the nature of the echocardiographic modality, augmentation methods can generate a
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limited number of training data. Therefore, increasing the training data is achievable
by using more videos from more instances, which is sometimes difficult due to privacy
laws. Moreover, the number of decoding and encoding levels in the segmentation network
depends on the resolution of the input frame. More powerful hardware is required to
perform segmentation on input frames with higher resolutions, which will increase the
number of semantic strengths.

6.3. Detection

Dezaki et al. [43] proposed an architecture for the detection of ES and ED phases
from echocardiography videos. The architecture included a CNN model, an RNN, and a
regression module. For the CNN module, residual network (ResNet) performance was
better than DenseNet. For the RNN module, long short-term memory (LSTM) and gated
recurrent units yielded comparable performance. Only high-quality data were considered
in this study. The measurement of the aortic valve area helps in the diagnosis of certain
conditions, such as aortic stenosis. Nizar et al. [44] proposed a detection system for
automatic segmentation of aorta valves using an SSD and faster RCNN. The dataset
consisted of 30 videos, out of which 23 were used for training, 2 were used for testing, and
5 for validation. MobileNet and Inception were used as feature extractors for this model.
A faster RCNN gave the best accuracy of 94%, while an SSD with mobileNet achieved the
highest mean frame rate of just 34.21%. The former’s accuracy was promising, but minimal
data were used for testing and validation purposes. Jafari et al. [45] proposed a Bayesian
framework for detecting the keyframe in echocardiography videos. They achieved an R2

score of 66%.
For the detection task, the limitations are the same as segmentation, such as the quality

and size of the dataset.

6.4. Miscellaneous

The state-of-the art deep learning techniques used for echocardiography are discussed
in [46]. The main challenges identified were the lack of uniform performance evaluation
across different algorithms and annotated data. The paper also mentioned that physicians
and medical staff should actively indicate areas where automation is required and provide
guidance. All of the research works discussed in this section are summarized in Tables 1–3.

Table 1. Summary of contributions where the classification task is applied to echocardiogra-
phy videos.

Research Paper Purpose Method Database Result Limitations Advantages

Gao et al.,
2016 [37]

Classification of
echocardiogra-

phy
views

CNN (only
spatial features

extracted)

432 videos,
DICOM format,

2 s duration,
227 × 227
resolution

(available on
request via

email)

Accuracy =
92.1%

Poor accuracy
of A5C

viewpoint

No need of
ECG data,

Madani et al.,
2018 [35]

Classification of
echocardiogra-

phy
views

CNN, UNet,
and GAN (only
spatial features

extracted)

103,102 video
frames, DICOM

format,
120 × 160

resolution (not
publicly

available)

Accuracy =
94.4%

High false
negative rate

High accuracy
achieved with

limited training
data



Appl. Sci. 2023, 13, 6582 13 of 29

Table 1. Cont.

Research Paper Purpose Method Database Result Limitations Advantages

Silva et al.,
2018 [36]

Classification of
ejection fraction

3DCNN (both
spatial and
temporal
features

extracted)

8715 videos,
30 sequential

frames in each
video,

128 × 128
resolution (not

publicly
available)

Accuracy = 78% Low accuracy
Automatic

annotation of
echo

Shahin et al.,
2020 [38]

Classification of
echocardiogra-

phy
views

ResNet and
LSTM (both
spatial and
temporal
features

extracted)

432 videos,
DICOM format,

2 s duration,
227 × 227
resolution

(available on
request via

email)

Accuracy =
96.3%,

Sensitivity =
95.7%,

Specificity =
99.4%

Some cardiac
views have low

accuracy
compared with

others

Higher
accuracy than
previous work

Feng et al.,
2021 [39]

Classification of
echocardiogra-

phy
videos

CNN and
LSTM (both
spatial and
temporal
features

extracted)

170 videos, 1 s
duration,
320 × 240

resolution (not
publicly

available)

Accuracy =
91.18%,

Sensitivity =
94.11%,

Specificity =
88.24%

Limited data
used

use of spatial
and temporal
level attention

Table 2. Summary of contributions where the segmentation task is applied to echocardiogra-
phy videos.

Research Paper Purpose Method Database Result Limitations Advantages

Leclerc et al.,
2019 [29]

Segmentation
of LV

UNet (only
spatial features

extracted)

CAMUS
dataset,
publicly
available

(described in
Section 5)

Dice score =
0.939

Poor-quality
frames were not

used to
compute the
evaluation

metrics

Introduced the
largest publicly

available
dataset

Moradi et al.,
2019 [40]

Segmentation
of LV

UNet with FPN
(only spatial

features
extracted)

137 video
sequences,
800 × 600

resolution and
CAMUS
dataset,
publicly
available

(described in
Section 5)

Dice score =
0.953

Low decoding
and encoding
levels due to

the low
resolution of

the input image

Considered
semantic

strength during
segmentation

Zeng et al.,
2021 [42]

Segmentation
of LV

Encoder–
decoder with

FPN (only
spatial features

extracted)

EchoNet
Dynamic
dataset,
publicly
available

(described in
Section 5)

Dice score =
0.931 None High accuracy
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Table 3. Summary of the contributions where the detection task is applied to echocardiogra-
phy videos.

Research Paper Purpose Method Dataset Performance Limitations Advantages

Nizar et al.,
2018 [44]

Detection of
aortic wall

SSD with faster
RCNN only

spatial features
are extracted

30 videos, 55
frame per

second with
varying

duration,
800 × 600

resolution, not
publicly
available

Accuracy = 94% Small dataset

Automatic
detection

system for
aortic wall

Dezaki et al.,
2019 [43]

Detection of ES
and ED frames

CNN and RNN
both spatial and

temporal
features are

extracted

3087 echo
videos, DICOM
format, average
of 42 sequential
frames in each

video,
120 × 120

resolution, not
publicly
available

Error
measurement
for ED = 0.49,

ES = 1.33

Only
high-quality
echo reports
were used

Improved loss
function

Jafari et al.,
2022 [45]

Detection of
key frames

Bayesian
framework

both spatial and
temporal

features are
extracted

4493 echo
videos, not

publicly
available

R2 = 66%

Only
high-quality
echo reports
were used

Trained on only
key video

frames

7. Endoscopy

This section discusses the research articles that explore deep learning models applied
to endoscopy videos. All the analysis tasks were performed on endoscopy videos in two
ways: (1) by extracting spatial features from individual frames of the videos and (2) by
extracting spatial and temporal features from the videos, as mentioned in the respective
tables. The section is divided into four subsections: Classification, Segmentation, Detection,
and Miscellaneous, following our taxonomy discussed in Section 3.

7.1. Classification

Different researchers combined deep learning techniques such as CNN and LSTM
to extract spatial and temporal features from endoscopy videos. The proposed model
consists of ResNet to extract temporal features, LSTM to extract spatial features, and a
stack of fully connected and softmax layers to classify the image into one of the 37 classes.
The proposed classification model is also used to design a retrieval system for similar frames.
To classify ulcer images from endoscopy videos, a pretrained CNN-based architecture is
proposed, which uses principal component analysis for dimension reduction and Xception
for classification. Another architecture is developed to classify frames from colonoscopy
videos into informative and noninformative categories using handcrafted features and a
pretrained Inception V3. Additionally, a novel method utilizing a CNN, channel attention
mechanism, and a classifier achieves the best accuracy by using ResNet with a proposed
blockwise channel squeeze and excitation attention module.
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The availability of large and fully annotated databases, such as ImageNet, is crucial
for facilitating the development of deep classification models for endoscopy imaging.
This poses a primary challenge in terms of training and testing the network. The active
participation of endoscopists is also critical for establishing a large medical image dataset
for training and thorough clinical validation.

7.2. Segmentation

Remarkable research is performed using GANs and the LIRE framework as the basis
for polyp segmentation. Another study explores an encoder–decoder approach for the
real-time segmentation of polyps from colonoscopy, achieving high recall, precision, F2,
and accuracy scores on the KvasirCapsule-SEG dataset.

7.3. Detection

Researchers explore 3D CNNs to extract spatial–temporal features and employ a 3D
FCN for detecting polyps in colonoscopy videos. Deep CNN architectures are used to
classify gastrointestinal endoscopy video frames as abnormal or normal, and deep saliency
detection algorithms are applied to detect salient points in abnormal images. Various
models based on GoogleNet, AlexNet, VGG 16, and reinforcement learning are proposed
for detecting lesions from wireless capsule endoscopy frames. A framework for ureteral
orifice detection from ureteroscopy videos achieved high accuracy, although the number of
false positive and false negative classifications is notable. Polyp detection from colonoscopy
videos is addressed using a bootstrapping method, combining a base detector and temporal
consistency verification.

Endoscopy segmentation and detection tasks present several challenges. Separate
training data are required for every kind of ulcer or pathology, and further confirma-
tion is often necessary for accurate diagnoses, especially when lesions are histologically
indistinguishable from other conditions.

7.4. Miscellaneous

In the research work of Mohammed et al. [47], they propose an automated capsule
endoscopy video summarizing framework by combining deep and handcrafted features.
For feature extraction, a pretrained GoogleNet is used. Hence, the deep features do
not overfit the endoscopy images. Five hundred sample images are chosen from the
KID [28] by a gastroenterologist and GivenImaging capsule videos from different parts of
the colon. Guerre et al. [48] investigated using the state-of-the-art FlowNet algorithm for
motion estimation in ocular endoscopy videos. Because FlowNet is strongly supervised,
an artificial dataset of consecutive images paired with ground-truth optical flow was
generated using eye fundus photographs from Kaggle’s Diabetic Retinopathy Detection
dataset [49]. A review paper discussed deep learning and non-deep-learning techniques
applied to endoscopy videos to detect and classify polyps [50]. According to the authors,
the main challenges were the presence of noninformative frames in wireless endoscopy
videos and difficulty in real-time detection due to time complexity. Another study surveyed
research articles for cancer detection using deep learning techniques in WCE videos [51].
The authors discussed several challenges in this field: a lack of annotated data and standard
evaluation methods for the model’s performance. The authors also suggested that for future
research, domain knowledge and real-time diagnosis should be taken into consideration.
The research articles reviewed for endoscopy video analysis are summarized in Tables 4–6.
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Table 4. Summary of the contributions where the classification task is applied to endoscopy videos.

Research Paper Purpose Method Database Result Limitations Advantages

Owais et al.,
2018 [52]

Classification of
37 gastric diseases

and retrieval of
similar frames

ResNet with
LSTM (both
spatial and

temporal features
are extracted)

GastroLab [31]
(publicly available)

and KVASIR
datasets [53] (publicly

available dataset,
contains 8000 images

from 8 classes)

Average accuracy
= 92.57%

Low retrieval
performance for

some classes

Large
number of

gastric
disease

classification

Klang et al.,
2019 [54]

Classification for
mouth ulcer

Xception (only
spatial features
are extracted)

49 videos (516 × 516
× 3 resolution, not
publicly available)

Accuracy = 95.4
to 96.7%

May need
histologic

confirmation

Patient-level
implementa-

tion

Yao et al.,
2019 [55]

Classification of
informative

frames

Inception and RF
(both spatial and
temporal features

are extracted)

10 videos
(1920 × 1080

resolution, 30 frames
per second, not

publicly available)

AUC = 0.939 Small dataset

Use of
handcrafted
features and
bottleneck

features

Wang et al.,
2020 [56]

Classification of
celiac disease

ResNet50, BCSE
and SVM (only
spatial features
are extracted)

107 videos (2 frames
per second, 576 × 576

resolution, not
publicly available)

Accuracy 95.94% Small dataset

Good
performance
in classifying
celiac disease

Table 5. Summary of contributions where the segmentation task is applied to endoscopy videos.

Research Paper Purpose Method Database Result Limitations Advantages

Pogorelov et al.,
2018 [57]

Segmentation of
polyps

GANs with Xcept
only spatial
features are

extracted

CVC-356,
CVC612 [58],

CVC-968,
CVC-12,

Kvasir [53],
and Nerthus
datasets [33],

publicly available
(discussed in

Section 5)

Accuracy = 90.9%

No information
about poor

quality images or
processing time is

given

Robust method
that achieves high

accuracy

Owais et al.,
2020 [59]

Segmentation of
polyps

MobileNetV2
with residual

block only spatial
features are

extracted

KvasirCapsule-
SEG [60],

Kvasir-SEG [61],
1000 images,

publicly available

Accuracy = 94.5,
F2 = 0.83%

High processing
time

Achieves high
accuracy and

robustness with
publicly available

dataset

Table 6. Summary of contributions where the detection task is applied to endoscopy videos.

Research Paper Purpose Method Database Result Limitations Advantages

Yu et al., 2017 [19] Detection of
polyps

3D CNN and 3D
FCN (both spatial

and temporal
features

extracted)

ASU-Mayo Clinic
Polyp datasets

(publicly
available)

Precision = 1.0,
F1 = 99.2%,
F2 = 98.7%

Long processing
time

Higher F1 and F2
scores compared

with previous
works

Lakovidis et al.,
2018 [62]

Detection of GI
anomalies

CNN with
iterative cluster

unification
algorithm (only
spatial features

extracted)

KID and MICCAI
datasets (both

publicly
available)

Precision = 0.57,
F1 = 50.7%,
F2 = 47.2%

High training
time

Deep saliency
detection

algorithm to
detect salient
points in the
input frames.
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Table 6. Cont.

Research Paper Purpose Method Database Result Limitations Advantages

Peng et al.,
2019 [63]

Detection of
polyps

SSD with VGG16
(only spatial

features
extracted)

92 videos and
1500 images (not

publicly
available)

Precision = 0.851,
F1 = 84.8%,
F2 = 84.6%

High false
negative and false

positive rate

Real-time
detection

Velle et al.,
2019 [64]

Detection of small
bowel lesions

VGG16 with
reinforcement
learning (only

spatial features
extracted)

CROHN-IPI and
GIANA datasets

(both publicly
available)

Accuracy =
99.67%

Results are
data-dependent

Efficient for
detecting lesions
in WCE frames.

Alaskar et al.,
2019 [65] Detection of ulcer

GoogleNet and
AlexNet (only
spatial features

extracted)

1875 video frames
(publicly
available)

Accuracy = 100% High training
time High accuracy

Ma et al.,
2020 [66]

Detection of
polyps

Bootstrapping
method and

RetinaNet (both
spatial and

temporal features
extracted)

CVC-
ClinicVideoDB

dataset (publicly
available)

Precision = 0.87,
F1 = 89%,
F2 = 91%

All data belongs
to the same

source

Use of pretrained
CNN models

Ghatwary et al.,
2021 [67]

Detection of
esophageal
abnormality

3D CNN and
LSTM (both
spatial and

temporal features
extracted)

44 videos
(average 50 s

duration,
30 frames per

second, 240 × 352
pixels resolution,

publicly
available)

Recall = 81.18%,
Precision =

96.45%,
F1 = 88.16%

Results are
data-dependent

Efficient for
detecting

esophageal
abnormality.

8. Ultrasound

This section discusses the research articles that have explored deep learning models
applied to ultrasound videos. All the analysis tasks are performed on ultrasound in two
ways: (1) by extracting spatial features from individual frames of the videos and (2) by
extracting spatial and temporal features from the videos. We mention this information in the
respective tables. The section is divided into four subsections: Classification, Segmentation,
Detection, and Miscellaneous, according to our taxonomy discussed in Section 3.

8.1. Classification

To classify the quality and prevent calculation errors in fetal ultrasound videos, a scheme
was proposed by Wu et al. [68]. The proposed approach was realized with two CNN models,
which were denoted as C-CNN and L-CNN. The purpose of the L-CNN was to find the
fetal abdominal region in the ultrasound frame. The C-CNN evaluated the frame quality
based on the output of L-CNN. Perception ultrasound by learning sonographic experience
(PULSE) [69] was a research project at the University of Oxford that combined state-of-the-art
machine learning techniques with probe and eye movement data during an ultrasound. While
working on this project, Patra et al. [70] proposed a model for efficient ultrasound analysis
consisting of a teacher and student module. The teacher module was trained on ultrasound
images and sonographer eye movement data during ultrasound video, while the student
model was trained just over the ultrasound images. The purpose of the model was to classify
fetal abdomen, head, and femur frames. VGG-16 was used as a feature extractor in the
model, and MobileNet V2 was explored for the student module. Chen et al. [71] combined
a radiologist’s domain expertise to propose a contrast-enhanced ultrasound (CEUS) video
classification model for breast cancer. The researchers explored 3D CNN with a domain-
knowledge-guided temporal attention module and a channel attention module. Due to these
modules, the proposed model is able to focus on critical time slots of CEUS videos and learn
features more efficiently, which helps to improve the classification performance of the model.
The model achieved an accuracy of 86.3.% and a sensitivity of 97.2% on a dataset containing
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221 cases. Zhou et al. [72] proposed a fused model with hand-crafted and deep features to
classify atypical hepatocellular carcinoma. The deep features are extracted by the 3-D-CNN,
and the hand-crafted features are extracted by state-of-the-art methods. Then they are
combined and given to a classifier such as Support Vector Machine (SVM) for classification.

The limitations for the classification task in ultrasound videos include data from the
same source, such as videos captured by the same machine or by the same technician.
Ideally, the training dataset should be larger, heterogeneous, and more balanced in terms of
classes for learning accurate deep models.

8.2. Segmentation

Chi et al. [73] used a combination of random forest with GoogleNet for the segmentation
of thyroid nodules in ultrasound videos. Their model comprised two main steps. The first
was image preprocessing, where they normalized and removed the artifacts from images.
The second was data augmentation to prevent the model from overfitting. The model could
only classify thyroid nodules into malignant and benign classes. It depended on a doctor’s
expertise to mark the region of interest (ROI), as the system did not automatically detect it.
Roy et al. [74] collected and annotated a dataset for COVID-19 containing lung ultrasound
videos from 35 patients. They proposed a model based on a CNN, spatial transformers
network, and soft ordinal regression to help medical professionals estimate the severity of
COVID-19 by assigning pathological scores to the ultrasound video frames. They also explored
UNet for pixel-level segmentation of COVID-19 pathological artifacts.

8.3. Detection

Gao et al. [75] compared a directly learned CNN with a transfer-learned CNN (TCNN)
for object detection in ultrasound videos, such as the skull, abdomen, and heart. The ac-
curacy of the TCNN was proven to be better than the directly learned CNN. The detec-
tion of fetal standard planes provides fetal development information during pregnancy.
Chen et al. [76] proposed using a multitask CNN to extract features from videos. In this case,
the CNN classifier was explored to extract a region of interest (ROI), which is fetal planes.
LSTM was applied for scoring frames based on between-planes knowledge. A classified
frame would be labeled as a fetal plane if the inferred score was more significant than the
predefined threshold score. The proposed system was unsuitable for real-time feedback due
to the long processing time, which is around one minute for a video containing 40 frames.
Another limitation of the model was that all ultrasound images were taken from healthy
mothers and babies, so the researchers could not anticipate how the system would respond
when applied to a fetus with abnormalities. Another work for fetal plane detection is
proposed by [77]. The proposed model is used to identify four fetal planes and is based on
a CNN and an RNN. The model extracts the spatial and temporal features from US videos.

The challenges faced by detection and segmentation tasks are low accuracy, depen-
dency on radiologist decisions, and high processing time. One of the reasons behind these
shortcomings is, firstly, that when an ultrasound test is performed, the technician tries to
capture as many details as possible. This causes the ultrasound video to have many unin-
formative frames. Secondly, the ultrasound videos are noisy in nature, contain speckles,
and are usually grayscale. Lastly, ultrasounds may generate blurry results if the patient is
obese, resulting in difficulty in analysis.

8.4. Miscellaneous

Jarosik et al. [78] suggested a real-time processing architecture for reconstructing ultra-
sound images augmented with deep learning methods. To achieve this, they implemented
WaveFlow, a collection of ultrasound data acquisition and processing tools integrated with
TensorFlow. WaveFlow includes ultrasound environments and signal processing operator
libraries. However, the system was only tested on five ultrasound videos. To assess the
state of skeletal muscle from ultrasound videos in general conditions, Cunningham and
Loram [79] proposed a CNN-based architecture. The two muscles selected for the study were
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gastrocnemius medialis and soleus, and the performance varied across all 32 participants,
with accuracy ranging from 45% to 56.9%. The survey of current imaging and deep learning
techniques applied to ultrasound technology was conducted by different researchers [80,81].
Transfer learning, 3D ultrasound data, speckle noise removal, and publicly available standard
datasets were identified as the areas that need attention to improve accuracy. The research
papers discussed in this section are summarized in Tables 7–9.

Table 7. Summary of the contributions where the classification task is applied to ultrasound videos.

Research
Paper Purpose Method Database Result Limitations Advantages

Wu et al.,
2017 [68]

Classification of
quality of fetal

ultrasound

CNN (only spatial
features are extracted)

492 videos
(not publicly

available)

Accuracy =
93%

High
processing

time

Improved
performance

compared
with manual
classification

Patra et al.,
2019 [70]

Classification of
fetal abdomen,

head, and femur

VGG16 and MobileNet
V2 (only spatial

features are extracted)

60,363 video
frames (not

publicly
available)

Average
accuracy =

85%
Low accuracy

Point-of-gaze
tracked for

expert
sonographers

Chen et al.,
2021 [71]

Classification of
breast cancer

3D CNN, domain-
knowledge-guided
temporal attention

module and channel
attention module (both
spatial and temporal

features are extracted)

221 videos,
1024 × 768

(not publicly
available)

Accuracy =
86.3%,

Sensitivity =
97.2%

All data
belong to the
same source

Fast training
time

Zhou et al.,
2022 [72]

Classification of
atypical

hepatocellular
carcinoma

3D CNN, SVM (both
spatial and temporal

features are extracted)

447
videos [82]

(not publicly
available)

Accuracy =
98.3%,

Sensitivity =
98%

Limited data,
Semiauto-

mated
High accuracy

Table 8. Summary of ultrasound video segmentation studies.

Research Paper Purpose Method Dataset Performance/Result Limitations Advantages

Chi et al.,
2017 [73]

Segmentation of
thyroid nodule

RF and
GoogleNet

(spatial features
only)

Dataset 1 (428
video frames,

560 × 360,
publicly available)

and Dataset 2
(164 video frames,
122 images with
sizes 1024 × 695
and 42 images

with sizes
640 × 440, not

publicly
available)

Accuracy =
98.29%

Cannot predict
finer granularity

scores, highly
dependent on

radiologist

Cost-sensitive
random forest

classifier

Roy et al.,
2020 [74]

Segmentation of
COVID-19

markers

CNN, spatial
transformers

network, and soft
ordinal regression

(spatial and
temporal
features)

227 videos
(publicly
available)

Accuracy = 96%

Data prone to
certain bias

(includes only
severe cases)

Focus on
ultrasound

instead of CT
scan
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Table 9. Summary of ultrasound video detection studies.

Research Paper Purpose Method Dataset Performance/Result Limitations Advantages

Gao et al.,
2016 [75]

Detection of skull
and abdomen

TCNN (spatial
and temporal

features)

323 videos (6–8 s
duration,

240 × 320 pixels,
not publicly
available)

Accuracy range
of 70% to 98%

Accuracy is
data-dependent

Multilabel
classification

Chen et al.,
2017 [76]

Detection of fetal
standard planes

CNN and LSTM
(spatial and

temporal
features)

1231 videos (2–5 s
duration, 17–48

frames per video,
227 × 227

resolution, not
publicly

available)

Accuracy = 94.1% High processing
time

able to represent
the complicated
appearance of

fetal plane

Pu et al., 2021 [77] Detection of fetal
standard planes

CNN and RNN
(spatial and

temporal
features)

1443 videos
(256 × 256

resolution, not
publicly

available)

Accuracy =
87.38%, F1 =

88.96%

Some standard
planes are
difficult to

classify

Low training time

9. Discussion

There are many deep learning methods which are applied to the analysis of medical
videos. For echocardiography videos, deep learning is mainly used for LV segmentation,
because it provides prognostic information and diagnostic clues. LV size helps cardiologists
in diagnosing heart failure and LV hypertrophy. UNet is considered the top choice for
segmentation in the medical field because CNNs impose some limitations. These limitations
include the unavailability of a large number of samples and other problems, such as
gradient exploding or gradient vanishing. UNet was introduced to cater to these drawbacks.
UNet can be trained on a limited number of samples. Furthermore, UNet realizes image
features with multiscale recognition and fusion. However, UNet does not consider the
contribution of all semantic strengths during the segmentation process. To tackle this,
combining UNet with FPN can improve segmentation accuracy. Deep learning is also
applied to echocardiography videos to classify different views, as every standard view
of the heart during echocardiography is crucial for other measurements; for example,
the parasternal long-axis view is considered the most appropriate view to measure LV size.
Most researchers have explored CNNs for view classification and reported greater than
90% accuracy overall. However, the performance of CNN models was not uniform for
all personal views. To avoid this issue, segmentation can be used as a preprocessing step,
although this additional step can prove to be resource- and time-consuming.

For endoscopy videos, deep learning is usually applied to detect or classify polyps
and lesions in different body organs. Some researchers have interpreted this as classify-
ing informative (with polyps) and noninformative (without polyps) frames from videos.
Researchers have widely explored transfer and machine learning models for endoscopy
videos [83]. GoogleNet has achieved up to 100% accuracy in detecting ulcers from en-
doscopy videos. However, the runtime cost for GoogleNet can be as high as 37 min, which
is very high compared with a CNN trained from scratch. Another approach that can im-
prove the accuracy of the pretrained model is the fusion of handcrafted and CNN-extracted
features. This approach is beneficial when data are limited and domain knowledge is
available. However, this approach is not suitable for real-time analysis of the videos.

For ultrasound videos, deep learning is usually applied for classifying or detecting
vital fetal organs. To capture the temporal features, LSTM is widely used for all kinds of
medical diagnostic videos, including ultrasound [59]. LSTM can be fused with a pretrained
CNN model or a CNN model which is trained from scratch. The combination of ResNet and
LSTM has produced promising results for detection and classification tasks. Researchers
also explore 3D CNNs to capture the temporal features of all three kinds of videos. However,
3D CNNs require more extensive training time than 2D CNN models.
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For newcomers venturing into the field of medical diagnostic videos using deep learn-
ing, it is imperative to follow a systematic approach to effectively utilize the existing models
for their research. Firstly, it is highly recommended for newcomers to go through various
literature reviews of medical videos and images to gain a comprehensive understanding
of the current state-of-the-art methods and their practical applications in the medical do-
main. As discussed earlier, LSTM, 3D CNNs, and transfer learning models are some of the
promising approaches for beginners to start with.

In addition, it is highly advisable to stay updated with newly emerging concepts and
technologies in the field of deep learning. For instance, explainable AI [84] is an increasingly
important topic that enables clinicians to better interpret and explain the predictions made
by deep learning models. Similarly, Federated Learning [85] is another recent advancement
in the field of deep learning that allows multiple institutions to collaboratively train models
on their respective datasets without sharing sensitive patient data. By being aware of these
emerging concepts and technologies, newcomers can broaden their horizons and enhance
their understanding of the latest trends and developments in the field of medical diagnostic
using deep learning.

10. Advancing Medical Diagnostic Videos: Limitations and Future Work

This section discusses the limitations and future directions for deep-learning-based
methods for medical video analysis. The lack of available data and class imbalance in
medical videos are some of the significant challenges. Another issue is the sparse labeling of
videos, which results in biased and incomplete datasets. Furthermore, the inability to know
the reason behind decisions made by the model and time complexity are major concerns.
Medical data impose unique challenges that need to be handled during preprocessing,
including video format, resolution, and computation time. To address these challenges,
downsampling can be performed while attempting to avoid the loss of features useful in
differentiating dissimilar classes. However, the ideal resolution size can vary depending
on the complexity of visual structures and data type. This section also discusses different
techniques and approaches to improve medical video analysis using deep learning. Transfer
learning is explored as a solution to the limited availability of labeled data in medical
cases. Multitask learning helps learn different parameters from limited available video
data. Data augmentation techniques are widely used for imbalanced or small datasets.
Incorporating expert knowledge and telemedicine can help improve the quality of medical
videos. Semisupervised learning is helpful for medical videos because labeling a massive
amount of videos for supervised learning is time-consuming and expensive. N-shot
learning, including few-shot, zero-shot, and one-shot learning, is a data-efficient approach
that can be used efficiently in the medical field. Further details about these limitations and
future work are given below.

10.1. Data Limitation

The most important aspect of deep learning is its capability to model highly complex
mathematical calculations, which makes it different from the rest of artificial intelligence
algorithms. Generally, more layers are introduced to learn more complex functions; how-
ever, a deeper network must also be trained over a large number of parameters. Such a
model can only learn well if we correspondingly use a large amount of data to infer the
parameter values. A complex model trained using a small dataset normally overfits and
becomes data-dependent. Such modeling gives a false impression of performance and is
not reliable. The lack of availability of the required data has been a limitation for various
research works (Feng, Year; Yao, Year; Gao, Year). This is the reason that makes the medical
field challenging for deep learning. Crowd-sourcing can be used to label the data of daily
life objects, but for medical videos, experts in the field are required. Privacy and consent of
patients are the other two aspects contributing to the lack of publicly available medical data.
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10.2. Class Imbalance

Another challenge is the class or data imbalance in medical videos, where only a
limited number of the frames show ROI, and most frames are normal. Class imbalance can
also be a matter of concern when one of the classes is rare or underrepresented, as observed
in the research work by Gao et al. [75] and Shahin et al. [38]. This data imbalance can cause
a model to be biased towards one class, resulting in unexpected errors. Balancing data
for rare conditions, such as cystic fibrosis, is as difficult as developing large-scale datasets.
To cater to the problem of data unavailability, Leclerc et al. (Year) introduced the largest
echo dataset of 500 patients. However, the dataset is still not balanced regarding the image
quality and size of LV.

10.3. Labeling of Medical Videos

During the labeling of medical videos, physicians or technicians usually only label
the landmark markers at the selected informative frames. As a result, the video datasets
suffer from two constraints: (1) the labeled frames are hugely biased towards specific
points in time, i.e., only informative frames in each video are labeled, and (2) videos are
sparsely labeled, i.e., a limited portion of frames in each video have ground-truth marker
labels. Moreover, there is a lack of quantitative criteria for image annotation. Some frames
show the ROI and uninformative features simultaneously, making the annotation process
difficult. Adding uncertainty grading during the annotation process and integrating the
uncertainty in the training process may improve model performance.

10.4. Lack of Confidence Interval

Deep learning is said to be a black-box approach, where we cannot observe how the
model is taking the decision. The inability to know the reason behind decisions made by
the model makes it unreliable to be used in the medical field. Doctors and patients find it
difficult to trust something working with a phenomenon they are unaware of. There is a
need to explain the working of deep learning methods to experts and nonexperts in the
form of graphs or interactive media.

10.5. Time Complexity

Processing videos is a time-consuming process, and when the medical field is involved,
it is even more complex, because medical videos have lots of uninformative frames, noise,
and background details. Some of the work above [76,86] has proved to give acceptable
accuracy, but the time taken by the model to process the video is very high. Due to time
complexity, these models can be used offline rather than in real time.

One more problem observed during the survey is a lack of standard performance
metrics [87]. Time complexity is a very important factor but is completely ignored by
some of the research works. The lack of standard metrics makes it difficult to compare the
performance of different approaches.

10.6. Preprocessing of Medical Videos

For the medical domain, important considerations must be taken into account in
developing deep learning models. Medical data impose a few challenges that should
be handled at the preprocessing step. The first challenge is regarding the format of the
medical videos and their resolution. Medical videos often come in a DICOM format with
varying resolutions per acquisition. Secondly, processing all pixels in a medical video can
lead to excessive computation time and weights to learn. Lastly, medical videos show a
slight difference in dissimilar classes; hence, there is a risk of losing vital information if the
resolution is reduced.

To tackle these challenges, the primary prerequisite step is to preprocess the data to
standardize the resolution before developing the deep learning models with nontrivial
implications. Downsampling can be performed on videos while attempting to avoid the
loss of features that are useful in differentiating dissimilar classes. The ideal resolution is
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one which has a minimal amount of visual information necessary for accurate classification
or segmentation. Ideal resolution size can highly depend on the complexity of visual
structures and data type. However, in general, there is a rapid increase in computation
time with increasing input resolution as the network architecture expands in depth.

10.7. Transfer Learning

Some models, such as VGG-16 and GoogleNet, are already trained on one million
images and can be used for video data processing. Our discussion shows that such heavily
labeled data is not readily available for medical cases, so researchers are exploring transfer
learning to resolve this problem. Several studies, such as [70,73,75], have exploited transfer
learning to solve the problem of limited data and have achieved good results. The pre-
trained models are further fine-tuned to be applied to medical problems. Another form
of transfer learning is yet to be explored in the medical field. As we know, deeper models
need a large number of parameters to be trained. However, there is a possibility to divide
the data into low-level and high-level features and then freeze the features that are similar
in all videos. This way, the number of learnable parameters can be reduced; thus, fewer
data will be required. The low-level features can also be transferred by another pretrained
model which is already trained on similar data.

10.8. Multitask Learning

Multitask learning, also known as joint learning, refers to the process where multiple
deep models are trained and then combined to compute the result. Each model has
its complexity, architecture, and loss function. This approach helps to learn different
parameters from limited available video data. Multitask learning is being successfully
used in several fields, such as natural language processing, computer vision, and pattern
recognition [88].

10.9. Data Augmentation

Data augmentation is a widely used technique for imbalanced or small datasets.
It involves flipping, rotating, and cropping already available video frames to increase
the size of the training dataset. Several researchers have used this technique [52,70] to
generate endoscopy and ultrasound frames. Patra et al. [70] augmented video frames by
a rotation of 20 degrees and flipping both ultrasound and gaze map frames horizontally,
while Owais et al. [52] applied plain rotation and random translation to augment the data.
GANs are another approach successfully used for generating artificial data, as previously
explained in the paper. Scientists are now using GANs to predict the next few frames in a
video, and this technique can also be helpful for medical videos. This approach can help
predict the subsequent frames if the medical video is captured by an undertrained medical
staff and ROI is not fully captured. It is recommended that precaution should be taken
while applying GANs to medical videos, because GANs do not learn the distribution of
original videos; instead, they only copy them. Hence, the original videos are different from
GAN-generated synthetic ones.

10.10. Incorporating Expert Knowledge

Knowledge from stakeholders, such as doctors, sonographers, patients, and techni-
cians, can be incorporated into the process of automation in many ways. Firstly, medical
personnel can help researchers understand the most important features of data critical
for the diagnosis. This way, more efficient and effective models can be trained. Secondly,
medical terminologies are usually very complex to be understood by laymen, which makes
it difficult for people to take an interest in or explore it. Researchers and programmers can
only excel in a subject if they understand it completely. Doctors and experts can make an
effort to explain medical terminologies in simple language on platforms, such as Kaggle,
where competitions are held.
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10.11. Semisupervised Learning

In semisupervised learning, the model is trained upon a collection of labeled and
unlabeled data. Typically, the dataset will have a minimal amount of labeled data and
a huge amount of unlabeled data. This type of learning is helpful for medical videos,
because labeling a massive amount of videos for supervised learning is time-consuming
and expensive.

10.12. N-Shot Learning

N-shot learning is a broad concept, as it includes few-shot, zero-shot, and one-shot
learning. Few-shot learning is a classification task where a very small number of training
examples are given for each class that is used to prepare a model. In zero-shot learning,
the model observes images from categories that were not monitored while training and
predicting the class they belong to. Similarly, one-shot learning is a classification task
where one example is given for each class. One of the networks used for N-shot learning
is the Siamese neural network. A Siamese neural network consists of twin networks that
accept two images but are joined by an energy function at the output. In Siamese networks,
feature vectors are learned by using convolutional neural networks, which are obtained
from labeled nonmatching and matching image pairs. The parameters between the twin
networks are identical. Similar initial weights assure that two similar images could not
possibly be mapped by their respective networks to very different locations in feature space,
because each network computes the same function. Then, the similarity between these
feature vectors is measured by Euclidean distance. The image is classified based on the
nearest-neighbor approach’s similarity score. N-shot learning is a data-efficient approach
which can be used efficiently in the medical field. One-shot learning specifically is helpful
for the classification of rare diseases.

10.13. Live Feedback from Experts

The collection process of ultrasound videos is different from other imaging tech-
nologies. The technicians need to not only be experts in ultrasound imaging and related
diagnosis but also be masters in capturing videos from standardized views and planes.
Therefore, a diagnosis from ultrasound videos is very challenging for physicians at sec-
ondary care hospitals. Telemedicine is an approach that combines electronic technology,
computer network, modern communication, and medical diagnostic data [89]. If experts
can integrate telemedicine with deep learning models for remote consultation of patients,
then real-time feedback from experts in the field can help not only the diagnosis [90] but
also improve the efficiency of the deep learning models. Training data can be refined based
on the medical experts’ analysis of the model’s performance.

10.14. Incorporating Medical History

Deep learning models should not only rely on one type of data, such as text or images.
The models can be fed a combination of text, videos, and images, for example, the current
state of the particular organ in the form of a video or image, the previous medical history
of the patient, and other vital data such as age, gender, and weight. This will improve
performance and help the models make informed decisions about the patient.

10.15. Rapid Reading Software

Recently, EndoCapsule [91] introduced a rapid reading software [92] to reduce the
number of uninformative frames from endoscopy videos. The rapid reading software
decreases the time taken to process the video and increases the efficiency of the diagnosis
process. A study [93] has shown a reduction of 64% in reading times associated with a 0.93
sensitivity in the diagnosis of lesions in preselected cases. The application of such software
for other diagnostic videos is still an open challenge for researchers.
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11. Conclusions

Medical diagnostic video processing using deep learning is a thriving and challenging
area of research that combines the fields of medicine and information technology. In this
manuscript, we provided a comprehensive review of this field, covering several key areas of
focus. First, we outlined the methodology used to conduct our review. Next, we provided
an overview of medical videos and deep learning techniques, giving readers a foundation
for the subsequent sections. We then summarized different medical video datasets that
have been used for classification, detection, and segmentation. Moving on, we reviewed
many research articles focusing on deep learning applications in medical diagnostic videos.
This section provided readers with a broad understanding of the current state of the art
in this field. Lastly, we discussed the limitations and future work perspectives for deep
learning in medical videos. We believe that this perspective is distinct from other related
reviews and provides a deeper level of detail on the topic. In conclusion, we suggest that
medical diagnostic video analysis could significantly benefit from deep learning techniques
through collaboration with domain experts and patients. By continuing to explore this area,
we can improve the accuracy and efficiency of medical diagnoses, ultimately leading to
better patient outcomes.
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Abbreviations
The following abbreviations are used in this manuscript:

Abbreviation Full Form
CAMUS Cardiac Acquisitions for Multi-structure
CNN Convolutional neural network
ED End-diastolic
EF Ejection fraction
ES End-systolic
FCN Fully convolutional network
FPN Feature pyramid network
LSTM Long short term memory
LV Left ventricle
ROI Region of interest
RCNN Regions with CNN feature
ResNet Residual networks
RNN Recurrent neural network
SVM Support vector machine
SSD Single shot multibox detector
TCNN Transfer learned CNN
WCE Wireless capsule endoscopy
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