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Abstract: Spacecraft motors are often driven with trapezoidal phase currents to achieve higher output
torque. For hollow cup motors (HCM) driven by trapezoidal wave currents, parallel magnetised
permanent magnet (PM) motors produce an air gap magnetic field (AMF) waveform which is
significantly different from the trapezoidal wave, causing the motor to generate noise or vibration.
The existing control optimisation method or structure improvement design method is difficult to
directly apply to HCM due to its large gas gap. In this paper, according to the fundamental theory of
a constant magnetic field, the AMF of HCM is analysed using the equivalent surface current method
(ESCM) and its mathematical model is established. The analytical expression of the AMF is solved,
and the influencing parameters of the AMF are clarified. The structural design of the HCM with
eccentric PMs sintered with high-performance NdFeB is further improved. On this basis, a prototype
motor is designed. Simulation results show that the structure can effectively increase the width of the
flat section of the AMF and make the AMF close to an ideal trapezoidal wave (ITW). Experiments
verify the correctness of the method.

Keywords: eccentric PMs; hollow-cup motor; high-performance NdFeB

1. Introduction

As a spacecraft attitude control system, the inertial actuator mainly realises the at-
titude stabilisation and attitude manoeuvres of the spacecraft. The main principle is to
change the angular momentum of the rotor of the high-speed motor and output the control
torque. Inertial actuators are mainly divided into magnetically suspended flywheels and
magnetically suspended control momentum gyroscopes [1]. As an important part of the
space inertial actuator, the drive motor mainly plays the role of controlling or adjusting
the rotor speed and then outputting the control torque required to control, adjust, and
stabilise the aircraft attitude. For the magnetically suspended flywheel, the attitude control
by acceleration and deceleration requires the motor to have higher-speed stabilisation accu-
racy, smoothness, and lower power consumption. In order to eliminate the iron loss and
cogging torque pulsation caused by the presence of the rotor iron core of the conventional
DC brushless motor, and to improve the speed accuracy and speed tracking accuracy of the
inertia actuator, most inertia actuators use HCM. The main feature of the HCM structure
is the use of a rotor without iron core, which overcomes all the problems caused by the
iron core, and which greatly improves the main performance of the motor, thus having a
wide application field [2]. Due to its superior performance, the HCM has been a hot topic
of research in recent years and is used in various fields such as the military, aerospace,
automation, industrial robotics, and medical instrument industries [3–6]. In particular, for
a magnetically suspended flywheel, it requires the motor to have less torque ripple, thereby
improving control accuracy and stability. However, the HCM has a difference between
the AMF and the ITW, which causes the back electromotive force (BEMF) waveform to be
inconsistent with the ITW, resulting in increased torque ripple and affecting output torque
accuracy [7]. At the same time, due to the existence of inter-pole leakage, the pole arc width
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of the static permanent magnet field is often smaller than the actual pole arc width, causing
the stator current to interact with the rotor field, which in turn generates torque fluctuations
and causes motor vibration. It is, therefore, necessary to design the structure of the HCM
so that the flat section width of the AMF is increased and brought closer to the ITW, further
suppressing torque fluctuations and increasing the accuracy of motor torque control. At the
same time, due to the extreme temperature difference in the operation of high-speed motors
in spacecrafts, the PMs in the motors are susceptible to high-temperature demagnetisation,
requiring higher-performance permanent magnet materials.

The torque ripple suppression problem of HCMs is mainly solved by control meth-
ods [8–10] or structural design methods [11–14]. Fang et al. [8] proposed an automatic
control method based on the measurement of BEMF parameters to adjust the control cur-
rent with real-time feedback, thus improving the control accuracy and reducing torque
pulsation. Zhou et al. [9] proposed a torque prediction analysis based on a neural network
fitting analysis incorporating the effects of temperature, with a hybrid braking torque
control structure for precise torque control of a small inductance brushless DC motor. In
2017, they [10] adopted the singular perturbation technique to improve the torque tracking
performance. For HCMs with a large air gap, it is difficult to reduce the torque pulsation
directly through precise control of the winding coil. Regarding the torque ripple caused by
nonideal BEMF, from the structural design perspective, the optimisation is mainly carried
out by designing the structural design of the PMs or the rotor [11–14]. Zhou et al. [11,12]
used the ESCM of PMs to solve the analytical mathematical model of the radial magnetic
density generated by the surface-mounted PMs on the stator surface for the brushless DC
motor. Through further simulation and experimental analysis of the effect of unequal thick-
ness PMs on the AMF, Ni et al. [13] revised this theory. Kang et al. [14] presented a novel
design method for built-in motors. The slot design is performed for the rotor face. The slot
positions and the shape parameters of the slots under the optimal solution are obtained
using the simulation method, which can effectively reduce the harmonic component of
the AMF and increase the flat section width of the AMF. Due to the presence of cogging
slots in conventional BLDC motors, it is not possible to eliminate the fluctuations in the
AMF caused by the cogging slots, which in turn leads to the generation of cogging torque.
For surface-mounted motors, optimising the AMF waveform often starts with designing
the PM structure. For built-in PM motors, optimising the AMF waveform often starts
with designing the outer diameter of the rotor core to achieve a nonuniform radial air gap
thickness; thus, rational optimisation of the PMs structure or the rotor core structure can
effectively bring the AMF waveform close to a trapezoidal waveform, which in turn brings
the counter-electromotive force waveform close to the ITW, contributing to a suppression
of torque pulsation and reduction in motor vibration and noise.

Different structures of motors have different magnetic paths, but the essence of their
magnetic paths is the same. In the magnetic circuit, the magnetic lines of force start from
the N pole of the PMs, pass through the permeable material and the working air gap,
and converge at the S pole of the PMs. In the magnetic circuit, the PMs provide the
magnetic momentum, and the magnetic flux passing through the magnetically conductive
material generates a magnetic pressure drop. Due to the development of materials science,
the relative permeability of various types of magnetically conductive materials is very
low, and the magnetic pressure drop generated by the magnetic flux passing through
the magnetically conductive material is often very small. The AMF generated by the
PMs interacts with the current-carrying coils energised on the cup stator to make the
motor work properly. The properties of the permanent magnet material determine the
performance of the PMs. Due to the wild temperature variations in the spacecraft operating
environment, samarium cobalt alloy materials are often used for PMs in spacecraft in order
to avoid high-temperature demagnetisation. Samarium cobalt alloy material has good
magnetic properties with a coercivity of up tp 25 MGOe, and a temperature coefficient of
less than −0.037%/K. However, it is not easy to sinter into an eccentric structure, which
is difficult to process and costly. Therefore, this paper selects NdFeB materials with high
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performance and excellent temperature stability. NdFeB materials are widely used in the
field of motors due to their excellent electromagnetic properties [15]. The NdFeB permanent
magnet easily loses excitation when the working environment of the motor is poor and
the iron core loss is large [16,17]. In order to solve this problem, there are two research
directions: doping of NdFeB with other rare Earth elements or metal oxides during the
sintering and forming process [18–21]. Studies have shown that doping with Ho [18],
co-doping with Al/Cu [19], or co-doping with Ga/Cu [20,21] during the sintering and
formation of NdFeB PMs can effectively improve the microstructure of the PMs and further
enhance their magnetic properties. The magnetic properties of NdFeB materials can also
be improved by optimising the NdFeB sintering manufacturing technology [22,23], then
changing the bottleneck particle size of the permanent magnet material powder [24]. The
improved neodymium iron boron material has a higher service temperature (about 470 K),
an extremely high coercivity (35 MGOe), and a relatively excellent temperature coefficient
(−0.049%/K).

This paper deals with the HCM using a large air gap. Through the ESCM and Maxwell
equations, the analytical solution of the AMF is derived. By improving the structural design
of the motor, an eccentric PM sintered with high-performance NdFeB material is designed
and manufactured, and the top of the waveform of the AMF becomes flat and close to the
ITW, as verified by simulation and experiment.

2. Mathematical Model of AMF

Most high-speed motors in inertial actuators use hollow-cup brushless PM motors.
The main feature of the HCM structure is the adoption of the stator coreless structure, which
reduces the power consumption of the motor and is widely used in the aerospace field. The
main features of HCM are as follows: low rotational inertia, fast starting speed, elimination
of the reluctance torque generated by the stator iron core and the eddy current effect caused
by losses, thereby improving efficiency, high sensitivity, fast response speed, high power-
to-volume ratio, low torque pulsation, low noise, good heat dissipation performance, good
phase change performance, long service life, and high reliability.

2.1. HCM Structure

The axial cross-section of the HCM and its plan view are shown in Figure 1. It
essentially consists of an inner rotor core (IRC), an outer rotor core (ORC), a variable
number of PMs, and a HCM stator. The PMs are made of tile-type magnets which are
bonded to the inner diameter of the ORC to prevent the PMs from being thrown off by
centrifugal force and to provide a static magnetic field for the motor. The IRC and ORC
are made of magnetically conductive material, both of which are fixed to the frame. The
winding is wound on the cup stator and placed in the centre of the HCM air gap.
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2.2. AMF Analysis Based on ESCM

The AMF of the HCM is generated by PMs. In this paper, the ESCM is used instead of
PMs; thus, the magnetic field generated in the air gap of the motor by a current-carrying
coil equivalent to PMs is analysed [25,26]. This paper focuses on the analysis of the AMF
generated by the parallel magnetised PMs; the end-effects are ignored, and the inner and
outer rotor cores are treated as ideal permeable bodies. On the basis of the boundary
conditions of the AMF distribution of the HCM, the partial differential equations of the
magnetic field distribution of the coil are solved using Maxwell’s equation set. The AMF
generated by the whole coil can be obtained by applying a superposition of the radial
magnetic potential generated on each side of the coil:

B(r, θ) =
µ0i
πr

∞

∑
m=1

Rm
o

bm

(
R2m

i + b2m

R2m
o − R2m

i
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rm

)
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where µ0 is the air magnetic permeability, α is the angle of the equivalent current coil with
respect to the centre line of the PM, η is half the angle of the pair of coils, Ro is the ORC
inner diameter, Ri is the IRC outer diameter, (r, θ) denotes the coordinates of any position
within the air gap, b is the inner diameter of the PMs, and hm is the PM thickness.

The correspondence between the PMs and their equivalent currents is shown in
Figure 2. When the PMs are magnetised in parallel and there are 2p PMs arranged alter-
nately along opposite magnetisation directions, the superposition of magnetic fields in the
air gap by different PMs is

Z =
2p

∑
l=1

(−1)l−1cos m
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θ − (l − 1)
π
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]
. (2)Appl. Sci. 2023, 13, 6537 5 of 13 
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The remaining coils can be calculated in this way and then superimposed to obtain 2p
pairs of the coil sets, producing the following magnetic flux density expression:

B(r, θ) =
µ0i
πr

∞

∑
m=1
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i + b2m

R2m
o − R2m
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)
sin (mα)Z. (3)

In the ESCM, the equivalent current along the radial side of the PM AB, CD is equal
in magnitude and opposite in direction, and the equivalent currents along the AD and BC
circumferences sides of the PMs are equal in magnitude and opposite in direction.

Since the AMF is generated by the superposition of several sets of coil currents, the
magnetic field distribution must be obtained by integrating the current values on each
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side. The equivalent current micro-elements di of the AB and CD sides and the AD side are
then obtained: 

diAB−CD = Hcb cos η db
diBC = Hcb Ro sin α dα

diAD = Hcb(R o − hm) sin α dα
, (4)

where Hcb is the coercivity, db is the radial length micro-element along the AB and CD sides,
and dα is the angular micro-element along the circumferential direction.

According to the above analysis, the motor structure parameters that affect the mag-
netic field distribution of the motor air gap are the PM thickness hm, the PM inner diameter
b, the ORC inner diameter Ro, the IRC outer diameter Ri, and the motor pole pair number
P. Once the structural dimensions and the number of pole pairs of the HCM have been
determined, its AMF can be practically changed by the eccentric structure of the PMs.

Figure 3 shows a schematic diagram of the structure after the eccentric transformation
of the inner diameter of the PMs. The centre O of the PM inner diameter is moved
backwards along the PM centreline to the position of O’. In order to avoid affecting the
stator position, the new PM inner diameter has the same position of both end-points, and
the new centre of the circle is O’.
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After geometric operations, the coordinates of a point A (b(α), α′) on the new inner
diameter can be obtained asb(α) =

√
(Ro − hm − λ)2 + λ2 − 2λ(Ro − hm − λ)cos(α′)

α′ = α− arcsin λsin(α)
Ro−hm−λ

, (5)

where λ is the eccentricity of the inner diameter of the PMs, which is the length of the line
OO’ in Figure 3.

Substituting Equations (4) and (5) into Equation (3), the micro-element of the AMF
strength generated by the equivalent current on each side of the PMs at a point (r, θ) in the
air gap after the eccentric optimised design can be obtained as
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The magnetic field strength at a point (r, θ) in the air gap can be obtained by summing
the PM thickness integral along the AB–CD edge and the PM tensor angle integral along
the BC and AD edges:

B(r, θ) =
∫ Ro

Ro−hm
dBAB−CD +

∫ η

−η
dBBC +

∫ η

−η
dBAD. (7)

The AMF is obtained by solving the above equation along the circumferential direction
of the centre line of the air gap in the HCM, and the AMF can be changed by optimising
the eccentricity value of the PMs.

3. Finite Element Simulation Verification

In this paper, in order to evaluate the width of flat section of the AMF, the parameter
τ is introduced, which is defined as the proportion of the top part to the half waveform
width [25], as shown in Figure 4:

τ =
θp

αp
, (8)

where θp is the part of the AMF that lies above 99% of the maximum value Bmax of the
AMF in one cycle, and αp is the width of the half-cycle of the waveform.
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In order to clarify the optimum data of eccentric PMs, the parameters of a four-pole-
pair HCM in the laboratory were analysed using the simulation method. The parameters
of the HCM are shown in Table 1.

Table 1. Main parameters of the motor.

Item/Unit Symbol Parameter

Outer radius of ORC (mm) Ro1 69.2
Inner radius of ORC (mm) Ro 66

PM thickness (mm) hm 3.45
Outer radius of IRC (mm) Ri1 57.3
Inner radius of IRC (mm) Ri 53
Air gap thickness (mm) hair 4.55

Pole pairs p 4
PM remanence (T) Br 1.2

PM coercivity (A/m) Hcb 798,000
Magnetising method - Parallel magnetisation

ORC and IRC material - DT4
PMs material - NdFeB N35
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A 2D simulation HCM model was constructed using finite element software; the
mesh was dissected to appropriate grid elements according to its dimensions using the
software mesh dissection tool. The magnetisation characteristic of the motor yoke is shown
in Figure 5. The simulation result of the HCM with tile PMs is shown in Figure 6.

The simulation results of the AMF are shown in Figure 7 when the samarium cobalt
and NdFeB materials were used for the PMs. It can be seen that the samarium cobalt alloy
material was slightly higher than the NdFeB material (by 1.8%), which indicates that the
magnetic properties of the two materials were very close to each other.

The AMF was analysed and compared with the waveform calculated using Equation (7),
as shown in Figure 8. The analytical result was slightly larger than the simulation result
(by 3.4%), but basically consistent, proving the correctness of the above analysis.

The influence of the eccentricity value λ of the inner diameter of the PMs on the AMF
waveform was analysed. The results of the AMF waveform under different eccentricity
values (tile PMs, 2 mm, 3.5 mm, and 5 mm) are shown in Figure 9. It can be seen that, by
adjusting the eccentricity of the inner diameter of the PM sheet, the middle part of the AMF
waveform gradually became straight and the wave width gradually increased. Through
calculation and simulation verification, when λ was 3.5 mm, the maximum wave width
could be obtained. When λ was greater than 3.5 mm, the waveform of the PMs tended to
sag, which led to a reduction in the value of τ.

The comparison of AMF under different values λ = 0 and λ = 3.5 mm is shown
in Figure 10. In summary, the AMF wave width τ was 32.5% when λ = 0, and τ was
57.8% when λ = 3.5 mm, representing an increase of 77.6%. In other words, adjusting the
eccentricity of the inner diameter of the PMs could effectively increase the wave width.
The flat section part of the AMF was made straighter, and the wave width ratio was higher,
being closer to the trapezoidal shape. In addition, the problems caused by the mismatch
between the AMF and the phase current waveform could be effectively reduced.
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Figure 10. AMF optimisation results.

Analysing the simulation results, we can see that the maximum value of AMF Bmax
was 0.3649 T when the PM was a tile type. When the improvement result was optimal (eccen-
tricity value λ = 3.5 mm), the maximum value of AMF Bmax was 0.3377 T. Bmax was reduced
by 7.46%; compared with the improvement of τ, the reduction in Bmax was acceptable.

4. Experimental Verification

In order to clarify the effect of improvement the AMF waveform based on the eccentric
design of the PMs and to improve the magnetic properties of the PMs of the motor, two
sets of PMs were sintered with high-performance NdFeB permanent magnet materials, tile
PMs, and PMs with an eccentricity value of 3.5 mm.

The test prototype was manufactured according to the parameters given in Table 1.
The material of the inner and outer rotors was electrically pure iron with a rustproof
surface treatment, and the top surface of the inner rotor was scored to ensure that the
scores corresponded to the magnetic joints when the prototype was installed to ensure
test accuracy. The PMs were made of NdFeB and were designed with different eccentric
dimensions according to the simulation results. The inner and outer rotor models and the
PM model are shown in Figure 11.
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Figure 11. HCM and PM model.

The experimental platform, shown in Figure 12, was mainly composed of the following
parts: clamping mechanism, rotary motor, Hall magnetometer, mechanical arm, clamping
mechanism consisting of a three-jaw chuck on the centring mechanism, three jaws along
the radial movement, connected by thread on the chuck, and adjustable radial position
clamping motor model. The rotary motor was firmly connected to the three-jaw chuck and
drove the rotation of the three-jaw chuck. The Hall magnetometer measured the strength
and direction of the magnetic field at the position of the probe with an accuracy of 0.001 T.
The mechanical arm clamped the magnetometer and could adjust its position along the
radial direction. After the prototype was assembled and installed on the three-jaw chuck of
the experimental platform, the Hall magnetometer was adjusted after clamping and placed
at the midpoint of the HCM air gap and the Z- phase of the PMs. The rotary motor drove
the prototype to rotate 360◦ to measure the AMF of two sets of PMs.
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The FEA result and the experimental result of the PMs under the eccentricity values of
0 mm and 3.5 mm are shown in Figure 13 and Table 2. For the HCM prototype composed of
tile-shaped PMs (with an eccentricity value of 0 mm), the values of Bmax and τ were 0.3649 T
and 32.5%, respectively, in the simulation results and 0.3631 T and 29.4%, respectively, in the
experimental results, with errors between the experimental and simulation results of 0.48%
and 9.54%, respectively. For the HCM prototype composed of the PMs with an eccentricity
value of 3.5 mm, the values of Bmax and τ were 0.3377 T and 57.8%, respectively, in the
simulation result and 0.3362 T and 56.3%, respectively, in the experimental result, with
errors between the experimental and simulation results of 0.44% and 2.60%, respectively.
The experimental result was in general agreement with the simulation result, further
confirming the correctness of the theory. This further illustrates that, in the case of parallel
magnetisation of the PMs, the AMF of the motor could be changed to the required waveform
by changing the shape of the PMs.
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Table 2. Comparison of FEA results and experimental results.

Result λ (mm) Bmax (T) Variation τ Variation

FEA Results
Tile PMs 0.3649 - 32.5%

3.5 0.3377 - 57.8%
Experimental

Results
Tile PMs 0.3631 −0.48% 29.4% −9.54%

3.5 0.3362 −0.44% 56.3% −2.60%

Analysis of the experimental results showed that the value of τ was 29.4% when the
HCM used tile PMs and increased from 29.4% to 56.3% when the HCM used PMs with
an eccentricity value of 3.5 mm. The experimental results were in good agreement with
the simulation results, proving that the eccentric PM design could effectively improve the
proportion of the flat section of the motor AMF and further improve motor performance.

5. Conclusions

For the HCM driven by trapezoidal wave current, the AMF generated by the parallel
magnetised PM motor was significantly different from the trapezoidal wave, causing the
motor to generate noise or vibration. In this paper, a method for calculating the AMF at
any position in the motor was extracted. The partial differential equation between the AMF
and the excitation current was constructed using Maxwell’s equations, and the PM was
equivalent to current in the ESCM, thereby obtaining the AMF distribution. Furthermore,
by adjusting the eccentricity value of the PMs, the AMF was improved such that the
AMF approached a trapezoidal wave. A prototype HCM was fabricated with different
eccentricity values of PMs sintered from high-performance NdFeB material; when the inner
diameter of the PMs was eccentric to 3.5 mm, the AMF was closest to the trapezoidal wave,
and the proportion of the flat section portion increased from 29.4% to 56.3%. Comparing
the analytical result with the FEA result and the experimental result, the width of the flat
section of the AMF could be effectively increased, and the trapezoidal characteristic of the
AMF of the HCM could be improved, thus reducing the torque ripple of the motor.
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