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Abstract: Due to extreme weather conditions and anomalous events such as the COVID-19 pandemic,
utilities and grid operators worldwide face unprecedented challenges. These unanticipated changes
in trends introduce new uncertainties in conventional short-term electricity demand forecasting (EDF)
since its result depends on recent usage as an input variable. In order to quantify the uncertainty of
EDF effectively, this paper proposes a comprehensive probabilistic EFD method based on Gaussian
process regression (GPR) and kernel density estimation (KDE). GPR is a non-parametric method
based on Bayesian theory, which can handle the uncertainties in EDF using limited data. Mobility
data is incorporated to manage uncertainty and pattern changes and increase forecasting model
scalability. This study first performs a correlation study for feature selection that comprises weather,
renewable and non-renewable energy, and mobility data. Then, different kernel functions of GPR
are compared, and the optimal function is recommended for real applications. Finally, real data are
used to validate the effectiveness of the proposed model and are elaborated with three scenarios.
Comparison results with other conventional adopted methods show that the proposed method can
achieve high forecasting accuracy with a minimum quantity of data while addressing forecasting
uncertainty, thus improving decision-making.

Keywords: probabilistic forecasting; Gaussian process regression; kernel density estimation; electric-
ity demand forecasting; uncertainties

1. Introduction

Electricity consumption profiles worldwide have shifted in magnitude and daily pat-
terns due to uncertain events, such as the COVID-19 pandemic, changing climate, and
adverse effects of more frequent extreme conditions. These changes have caused significant
difficulties and declined accuracy for traditional short-term electricity demand forecast-
ing (EDF) methods. Accurate forecasting simultaneously becomes more important and
challenging as the penetration of renewable energy increases the bi-directional commu-
nication between the supplier and the end-users. Optimal decisions can be obtained by
improving forecast accuracy and quantifying uncertainty. Any uncertain events, such as
the current COVID-19 pandemic, have brought much more effective practices for utility
demand forecasting [1].

The socioeconomic severances affected total levels of electricity consumption, demand,
price, and usage trends worldwide during the pandemic [1]. In Australia, the nationwide
restrictions, which started in mid-March 2020 to control the spread of COVID-19, also
decreased electricity demand. Figure 1 shows the monthly electricity time of use before
and during the COVID-19 pandemic and the same period in 2021 and 2022, ranging
from February to March, in NSW State, Australia [2]. It suggests that the electricity
demand experienced significant drops during the pandemic compared with the same
period in 2019. Moreover, the accuracy of the conventional models is not robust since
time-varying electricity demand is more likely a non-stationary stochastic process, showing
the challenges in forecasting caused by unprecedented events [3].
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A few major factors contribute to the steep decline in forecasting accuracy [1,5]. (1) 
Limited data—small amounts of historical data generally decrease model accuracy. There 
are no historical events similar to the COVID-19 pandemic that can follow the consump-
tion pattern since only months of data are available for model training and testing pro-
cesses. (2) Any unknown underlying feature that affects usual usage patterns—conven-
tional short-term forecasting models rely on long-term patterns and are not adaptive 
enough to learn about unprecedented events. 

Both the spatial and temporal electricity demand patterns have changed in compari-
son with the non-pandemic period once the majority of people started to work from home, 
and the forced closure of industries slowed down other commercial activities [1,2]. These 
changing working conditions were eventually reflected in electricity grid planning, de-
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Figure 1. Comparison of electricity demand patterns from February to March 2020–2022.

Table 1 lists the annual consumption forecast accuracy (performance) in five regions
of Australia between 2019 and 2022. It shows the percentage differences (errors) between
actual and forecast values of the published energy forecasts (-ve error implies the actual
is lower than forecast by %) adopted by the Australian Energy Market Operator (AEMO
2022) [4]. As can be seen from the table, forecast accuracy declined mostly over the
pandemic period 2020–2022.

Table 1. Energy forecast accuracy (percentage error) in Australia (AEMO report 2022).

One-Year-Ahead Annual Operational
Consumption Accuracy (%) 2018–2019 2019–2020 2020–2021 2021–2022

New South Wales -2.0% -0.26% -1.1% -3.9%
South Australia -1.5% 2.6% -0.3% -0.8%

Tasmania 1.2% 2.2% 2.4% -1.3%
Queensland -3.9% 0.0% -2.4% -5.2%

Victoria 3.0% 1.3% -1.7% -8.4%

A few major factors contribute to the steep decline in forecasting accuracy [1,5]. (1) Lim-
ited data—small amounts of historical data generally decrease model accuracy. There are
no historical events similar to the COVID-19 pandemic that can follow the consumption
pattern since only months of data are available for model training and testing processes.
(2) Any unknown underlying feature that affects usual usage patterns—conventional short-
term forecasting models rely on long-term patterns and are not adaptive enough to learn
about unprecedented events.

Both the spatial and temporal electricity demand patterns have changed in comparison
with the non-pandemic period once the majority of people started to work from home,
and the forced closure of industries slowed down other commercial activities [1,2]. These
changing working conditions were eventually reflected in electricity grid planning, demand
scheduling, renewable source integration, and spot pricing. EDF has an important role
in the economy and is frequently used in business planning, policymaking, and market
setting [6]. Moreover, it is crucial for the smart grid operation and may pose a technical
risk during unusual situations when forecast accuracy significantly declines. Consequently,
the aforementioned uncertainties affect the short-term forecasting algorithm’s performance.
Therefore, it is imperative to improve forecasting accuracy in terms of possible error
reduction and uncertainty depiction.
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The conventional deterministic forecasting (point prediction) methods provide a single
expected value, which cannot incorporate the uncertainty information of the forecasting
results [7]. In this context, an emerging method known as probabilistic forecasting can make
effective inductive reasoning and therefore is more efficient for decision-making under
dynamic scenarios [8]. EDF has been extensively studied, and numerous methods have been
developed. However, earlier studies of EDF are mostly conducted during regular operations
utilizing point forecasts and rarely address the uncertainties caused by any unprecedented
events. EDFs are generally classified into two main categories: the statistical approaches
and the artificial intelligence (AI) (machine learning) approaches [7]. Since electricity
demand is affected by different independent variables such as weather/meteorological
factors, statistical approaches which are based on linear models, such as exponential
smoothing [7,8], multiple linear regression models (MLR), generalized autoregressive
conditional heteroskedasticity (GARCH) [9], and autoregressive moving average (ARMA),
are unable to account for the nonlinearity, non-stationarity, and randomness of time series
data [9,10]. As shown in [9], GARCH models may capture a few aspects of uncertainty but
not the volatile properties of time series.

Meanwhile, AI-based approaches, such as support vector regression (SVR) [11,12] and
neural network (NN) methods [13,14], have been used in data analysis, pattern recognition,
and EDF with accurate values. SVR is a complex computation involving a large dataset. In
contrast, NN models are popular since they can simulate complicated nonlinear relation-
ships. In addition, hybrid models [15–17] that combine the benefits of single models are
gaining popularity for increasing forecast accuracy and resilience. The above-mentioned
NN-based parametric methods often require a considerable quantity of data to discover
relative patterns from samples due to their various parameters [13]. Given the limited
amount of data during anomalous events, direct NN application is not recommended.

The above-listed time series approaches are all part of the point forecasting methods
that predict a single expected value in look-ahead times to guide decision-making. However,
earlier studies of EDF [5–17] were mostly conducted during regular operations utilizing
point forecasts and rarely addressed the inherent uncertainties caused by unprecedented
events such as pandemics. In contrast, a probabilistic forecast estimates the respective
probabilities for all the possible future outcomes of a random variable concerning energy
uncertainty, which is essential for making better decisions [8,18].

Three broad types of probabilistic forecasting methods have been developed: (1) input
scenario based with simulated predictors [19], (2) interval construction and probabilistic
forecasting models [20–23], and (3) post-processing through residual simulation [24,25].
Each of these can give a probabilistic result in the form of quantiles, intervals, or density
functions [7].

Nevertheless, probabilistic forecasting approaches generally require a lot of data for
training [8], making them inappropriate for EDF during unusual events when only a
small sample of data is available. Gaussian process regression (GPR), a non-parametric
method based on Bayesian theory, is preferable to parameterized methods for probabilistic
regression analysis with a small number of training samples. [26]. In addition, GPR makes
it possible to quantify the uncertainty of the forecasted values, which is extremely useful
for security planning and operation of the system in safety-critical fields, such as energy
systems [27].

GPR has been used for electricity demand prediction in several studies, and it can
generate better estimates than benchmark methods for time series data, such as NN and
SVR [16,28]. Moreover, when the Gaussian process (GP) is used to solve the regression issue,
the accuracy of the forecast is sensitive to the choice of the covariance function. The kernel
function solves the high-dimensional prediction distribution covariance matrix without
extensive computing [29]. For the prediction of future electricity demand, a covariance
kernel is built that incorporates daily/weekly trends and meteorological variables [27].
The effectiveness of three distinct kernels has been assessed in [16]. Decision-makers can
pick kernel functions by comparing their performance across categories in time series
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data, which improves probability prediction accuracy [30]. The deep Gaussian process
(DGP) was used for EDF in [31]. The authors of [31] used sparse GP (SGP) and double
stochastic variational inference DGP with mobility data to improve computational efficiency.
However, SGP captures only higher-level latent space uncertainty [32]. DGP learns deep
features from variable-sized data. Hence, they scale poorly with data size [33].

In [34], Gaussian process quantile regression (GPQR) was used to quantify the uncer-
tainty in electricity demand forecasting since GPR is inherently capable of handling the
complex interactions seen in time series.

In [35], applied weighted GPR was used to forecast the uncertainty of solar power,
while [36] used GPR to predict the residential electricity demand rather than the system-level
EDF. The researchers in [25] integrated both forecast combination and residual simulation
approaches to model the forecast uncertainty. In [37], a hybrid model was proposed, which
consists of kernel density estimation and Quantile regression (QR). QR has certain drawbacks;
however, parameter estimation is more difficult than in Gaussian or generalized regression,
which is a significant limitation [38]. In addition to that, the derived quantile curves may cross
each other, resulting in an invalid response distribution [38]. This issue is mostly driven by
the fact that these strategies estimate models individually for each quantile.

Interval prediction approaches provide lower and upper limits of the future forecast
based on a confidence level yet cannot represent the full probability distribution of elec-
tricity demand [37]. By creating a probability density function (PDF) of forecasting results,
probability density forecasting helps quantify uncertainty. Density estimation methods
should be applied to enable GPR to obtain the PDF of the predicted electricity demand.
This study takes advantage of the Gaussian kernel density estimation (KDE) approach
to construct a probability density forecasting method due to its excellent generalization
capabilities that greatly affect the distribution of response variables [39].

Moreover, the literature reports that numerous articles incorrectly assumed the GPR
approach was deterministic and failed to fully use its benefits [40–45]. Using deterministic
error metrics with the probabilistic EDF methods is one reason why they have not been
developed enough. When using deterministic error metrics, the probabilistic EDF methods
may have been underestimated because they did not work as well as their deterministic
counterparts [7].

This paper aims to develop a comprehensive short-term probabilistic electricity de-
mand forecasting method based on GPR-KDE that can deal with anomalous events. The
contributions of this paper are summarized as follows:

• Considering the EDF uncertainty during unprecedented events, GPR is effectively
applied to deal with the regression problem with limited historical data to perform
successful inductive reasoning. Incorporating mobility data as an important feature
that better represents the underlying shifts in practice theory [1,46] further improves
its performance.

• Identifying highly correlated features with electricity demand output through a pre-
processing stage makes the model simpler, demanding less data while prediction
accuracy is still high.

• The performance and robustness of various GPR kernel and KDE models in point,
interval, and density predictions of short-term electricity demand are compared com-
prehensively. Three different kernel functions are compared, and the optimal one for
real applications is recommended.

• Comprehensive comparisons with other benchmark machine learning methods have
been carried out using three scenario datasets. To validate the proposed model, a
5-fold cross-validation technique is used. Moreover, in order to test the accuracy of the
model, statistical and probabilistic forecasting evaluation metrics are used. It shows
that the proposed approach can better deal with anomalous events.

The remainder of the paper is organized as follows. In Section 2, the proposed method
is described. Section 3 explains the whole procedure for implementing the EDF in detail.
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Evaluation and different scenarios with real data are also demonstrated in this section.
Section 4 provides an analysis, a discussion of the results, and conclusions.

2. Materials and Methods

This section presents a detailed description of how probabilistic ED forecasting han-
dles uncertainty. It is challenging to produce a suitable adequate dataset for the parametric
algorithm’s training under anomalous events such as the COVID-19 pandemic because of
the unprecedented changes in consumption patterns and the quantity of data. As para-
metric approaches optimize multiple parameters, they need a lot of data to detect relative
trends. Therefore, it is not suitable in this scenario because only limited ED and mobility
observations have been available from the beginning of the pandemic. Parametric distribu-
tions for the random variables are generally expected [47]. However, conditional predictive
densities are not guaranteed to follow the same distribution, even when observations form
a known and well-behaved marginal distribution [47]. Incorrect distributional assumptions
potentially affect analyses and interpretation of the findings [47]. This work trains a model
using a non-parametric GPR-KDE method, which does not require prior knowledge or
assumptions about data distribution [39].

The forecasting set-up for electricity demand time series data is represented as follows:
at time t, electricity demand at time t + k, k is referred to as the lead time, and yt+k is
the random variable which is electricity demand at time t + k. The historical electricity
demand data [yt−1, . . . yt] and the training set (xt) include different selected features, such
as mobility data and temperatures. The objective of EDF is to develop a model f (.) for yt+k
based on the gradient gained from optimizing the loss functions.

Probabilistic EDF typically involves three phases. Initially, the influential factors which
are relevant to electricity demand variability should be identified from the historical dataset
through a feature selection process. Next, the GPR algorithm is utilized to predict the electricity
demand on different kernels. Finally, the probability density function can be obtained by KDE.
The flowchart of the proposed GPR-KDE-based probability density forecasting method is
shown in Figure 2. The evaluation metrics are also discussed in this section.
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2.1. Gaussian Process Regression for Probabilistic Forecast

Gibbs and Mark initially presented the GPR model [48], which was later extended
by Kersting et al. [49] and Tolvanen et al. [50]. GPR is a kernel-based nonlinear non-
parametric regression technique based on Bayes’ theorem. The covariance function is
crucial in defining the relation between input data and output. GPR implies each sample
follows the Gaussian distribution, and every linear combination of samples follows the
joint Gaussian distribution [34].

Let the training data set Dtr = {(xn, yn)}
N
n=1, where xn is the input of n number and yn

is the output, p stands for the number of selected features, i.e., p = 5; X = [x1, x2, . . . .., xn]T

is the input set containing all selected features and historical demand data, and Y =
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[y1, y2, . . . ., yn]
T is the output set at time T. Assuming the input variables f (X) = f (xi)

follow the n vector joint Gaussian distribution, then f is thus a GP.
It defines a probability distribution over functions and can be described as:

f (X) ∼ GP
(
m(X), K

(
X, X′

))
(1)

where m(X) and K(X, X′) are the mean and covariance functions, respectively. The GPR
model takes the mapping from X to Y as a GP and may relate the input with the output
terms as follows:

Y = f (X) + h(X)Tβ+ ε (2)

where Y is an observation, f (X) is the mapping function, h(X) is a set of basis functions
that transform the original feature vector X into a new feature vector h(X) which is in p × 1
vector, β is a p-by-1 vector of basis function coefficients, and ε ∼ N

(
0, σ2

n I
)

is noise; σ2
n is

the standard deviation; I is an identity matrix with appropriate dimensions. Since the noise
is independent, Y is also a GP:

Y ∼ GP
(

m(X), K
(
X, X′

)
+ σ2

n I
)

(3)

The prior distribution of Y can be learned from the training data using Bayes’ theory:

Yp ∼ N
(

0, K
(
X, X′

)
+ σ2

n I
)

(4)

The prior joint distribution of training set output Y and the test output f∗ are:[
Y
f∗

]
∼ N

(
0,
[

K(X, X) + σ2
n In K(X, x∗)

K(x∗, X) K(x∗, x∗)

])
(5)

where K(X, X) =
(
K
(

xi, xj
))

represents the N × N covariance matrix on inputs of the
training set Dtr;

(
K
(
xi, xj

))
is the kernel function; K(X, x∗) = (k(xt, x∗)) represents the

N× 1 vector of covariance between the test point x∗ and the training inputs in Dtr K(x∗, x∗)
is the covariance of the test points. The posterior distribution of test set prediction f∗ can
be obtained as follows:

p(y|x∗, D) ∼ N(y
∣∣∣hβ + f ∗, cov( f∗

)
) (6)

f ∗ = k(x∗, x)T(k + σ2 I)
−1

y (7)

cov( f∗ ) = k(x∗, x∗)− k(x∗, x)T(k + σ2 I)
−1

k(x∗, x∗) (8)

where µ = f ∗ and σ f∗
2 = cov( f∗). There are many different covariance kernel functions

for the GPR model to select:

1. Squared exponential kernel function:

K(xi, xj) = σ2
f exp[−1

2
r2

σ2
l
] (9)

where σl is the characteristic length scale and σ2
f is the variance of time series. Both σ2

f

and σl are parameters to be optimized during the training. r =
√(

xi − xj
)T(xi − xj

)
is the Euclidean distance between xi and xj.

2. Exponential Kernel:

K(xi, xj) = σ2
f exp(− r

σl
) (10)
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3. Matern 3/2 Kernel:

K(xi, xj) = σ2
f exp

(
1 +

√
3 r

σl

)
exp (−

√
3 r

σl
) (11)

In addition to the covariance matrix K, the parameters of σ2 I can be learned together.
The optimization parameters can be specified as θ =

{
σ2

f , σ2
l , σ2

}
. To estimate the parame-

ters, we maximize the following marginal likelihood function:

θ̂= argmaxp(D|β, θ) (12)

The mean µ and variance σ f∗
2 of the test point x∗ can be calculated according to

Equations (7) and (8) by identifying the optimal parameters. The variance enables quan-
tification of the EDF uncertainties. To quantify the uncertainty, the interval predictions
corresponding to certain confidence levels (such as 95%) for n samples are: (l = f ∗ −
t( α

2 ,n−1)∗σ f∗
2

√n , u = f ∗ +
t( α

2 ,n−1)∗σ f∗
2

√n ), where l and u represent the lower and upper bounds
of the confidence interval, respectively; α is the degree of confidence. The value of the t
distribution (denoted as t(.)) may be found by referencing the t table.

In addition, to improve prediction accuracy, this research explores the effects of
different scenarios of electricity demand datasets on different kernel functions and selects
the best kernel function.

2.2. Probability Density Prediction Based on Kernel Density Estimation

The kernel density estimator estimates a smooth density from data samples by as-
signing each sample point a density function [51]. All of these contributions are added
together to determine the distribution. The normal distribution has been widely employed
to estimate the density function in research. However, it only works effectively for data
that follows a bell-shaped distribution. This method utilizes the kernel density estimate
(KDE) method, a non-parametric representation of the probability density function, to
avoid making assumptions about the distribution of the data. Unlike interval estimation,
KDE is based on the observed data to construct the underlying PDF without distributional
assumptions for the shape of the density, allowing the estimated density to be, for example,
multi-modal, fat-tailed, or skewed. The selection of the kernel function and the determina-
tion of bandwidth are crucial to KDE [37]. Applying KDE to the predicted distribution from
GPR gives a smooth curve estimation of the underlying PDF. It is helpful for creating a more
accessible and understandable representation of the distribution, including by plotting a
histogram with a fitted density curve [8]. The KDE smooths the distribution and estimates
the PDF continuously, eliminating the separate-out impact of the histogram bins [51].

If sequence Y consists of n × 1 dimensional observations, the drawing sample is Y =
[y1, y2, . . . .., yn], and then they can be organized into a histogram’s bins. Depending on the
distance between the sample drawings, the histogram contains a variety of bins with higher
heights than others. For instance, if the values of two drawings are similar and the size is
small, these drawings will be placed in the same bin. Therefore, the kernel density estimator
attempts to average away the effect of each data point yi, (where i = [1 . . . .n]) in a non-smooth
histogram by providing each point a kernel function with a specific width. The KDE method
estimates the actual probability density function f through the following function:

f̂n(y) =
1

nh

n

∑
i=1

k
(

y− yi
h

)
(13)

where h is bandwidth, k(.) is the kernel function, which is a symmetric function that is
integrated into one and has a mean of zero. These kernel functions usually represent some
kind of similarity between two points in a space [34]. Several kernel density functions
can estimate PDF, such as uniform, triangular, triweight, Epanechnikov, Gaussian, etc.,
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empirically; however, it makes little difference which one is used [52]. To implement the
KDE in this study, a Gaussian kernel is utilized. It substitutes each sample point with a
Gaussian-shaped kernel and adds these Gaussians to estimate the density.

k
(

y− yi
h

)
=

(
1
√2π

)
exp

(
(y− yi)

2

2h2

)
(14)

The smoothing parameter h > 0 is the bandwidth, which modifies the distribution’s
overall appearance. The use of Gaussian KDE has certain benefits over other bandwidth
selection methods since it can automatically determine the bandwidth using a rule of
thumb [53,54].

2.3. Evaluation Metric

The most important issue with a probabilistic forecast is that the actual distribution
of the underlying method is unknown [55]. The predicted and real distributions of EDF
cannot be compared using only previous demand. There are several approaches to assess
the effectiveness of probabilistic forecasts, with the approach selected based on the intended
objective. We may use tests and parameters to validate the model and choose the best
model. The model’s accuracy may be verified, and selection criteria can be established
with the use of tests and parameters. To test the accuracy of the proposed method for EDF,
different tests and validation methods are utilized. Both deterministic and probabilistic
error metrics are evaluated in this study.

2.3.1. Metrics for Point Forecasting

Several methods have been used to assess the efficacy of prediction models in the
literature. Commonly used metrics to evaluate deterministic/point forecast accuracy
are the Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and correlation
coefficient value (R2) [56]. A lower RMSE and MAE imply a more accurate forecast, which
evaluates the difference between actual and predicted values. The R2 value determines the
correlation between actual and predicted values, which is between 0 and 1 (where 0 means
no correlation and 1 means the model has no error). The three error measures are defined
as follows:

RMSE (X, h) =

√
1
m

m

∑
i=1

(h(x(i))− y(i))
2 (15)

MAE(X, h) =
1
m

m

∑
i=1
|h (x(i))− y(i)| (16)

R =
∑m

i=1(xi − x)(yi − y)√
∑m

i=1(xi − x)2
√

∑m
i=1

(
yi − y)

)2
(17)

where x is considered to be the actual values, y defines the predicted values, x defines the
mean of x, y defines the mean of y, X is a matrix containing all the features value, h is the
prediction function, and m is the total number of instances in the test set.

2.3.2. k-Fold Cross-Validation

The most popular validation strategies in recent research are k-fold cross-validation
and hold-out validation [8,57,58]. Hold-out validation does not perform well with small
datasets due to increased volatility in performance estimation and a larger risk of overfitting
with limited training data [57]. The k-fold cross-validation provides insight into GPR model
performance by partitioning the dataset into k-folds and training the model on k-1 folds
while testing on the remaining fold. The process is then repeated k times, with each fold
being used exactly once as the test data. This study has used 5-fold cross-validation, and
the model’s performance is estimated by averaging each evaluation, such as MAE, RMSE,
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and R2. Furthermore, it provides a more accurate estimation of the model’s generalization
error performance than a single train–test split, which is used to identify overfitting or
underfitting [57,58].

k-Fold cross-validation compares training and test error to assess GPR overfitting. The
model’s training error is made on the complete dataset, while the model makes a test error
on the test set during cross-validation. The model is overfitting the data if the test error is
considerably larger than the training error. However, large training and test errors indicate
that the model is underfitting the data and not reflecting the underlying pattern [57].

2.3.3. Metrics for Probabilistic Forecasting

Probabilistic forecasting is typically evaluated in terms of its reliability, sharpness,
and competence (skill). The prediction interval coverage probability (PICP) measures the
reliability of the predictions via coverage rate [59]. It shows the percentage of the actual
values that will be covered within certain prediction interval limits [59]. The considerably
larger the PICP, the more likely it is that the real values will be within the prediction interval
(PI). PICP is defined as follows:

PICP =
1
N

N

∑
i=1

Ci, (18)

where N is the number of samples, and Ci is a Boolean variable defined as follows:

Ci =

{
1, yi ∈ [Li,Ui];
0, yi /∈ [Li,Ui],

(19)

where Li, and Ui are the lower and upper PI boundaries of the target yi, respectively. PICP
ranges between 0–100%. The PI is accepted as valid if the PICP value is greater than
the prediction interval nominal confidence PINC = 100(1− α)%; here, α indicated the
probability of error. In this study, the PI limits are supposed to cover 95%, 90%, 80%, and
50% of the PDF of the forecast. The evaluation of the PICP alone is misleading since high
PICP values can be easily reached when the width of the PIs is large. In contrast, a forecast
with a narrow PI and a large PICP is more reliable. The effectiveness of PIs is determined
by their widths. Thus, larger PIs are less informative for making decisions since it presents
increased uncertainty [59]. Therefore, to evaluate the widths of the PI, a supplementary
metric is required, and lower MPIW and high PICP values help make better decisions [59].
The metric is the Mean Prediction Interval Width (MPIW), which is defined as follows:

MPIW =
1
N

N

∑
i=1

(Ui − Li) (20)

To evaluate the calibration and sharpness of the forecasted PDF simultaneously, the contin-
uous ranked probability score (CRPS) metric is used and can be expressed as follows [60]:

CRPS =
∫ ∞

−∞
(F(x)− 1{x ≥ y})2dx. (21)

where F(x) represents the predicted cumulative distribution function (CDF) of the variable
of interest x, and y is the verifying observation. If the forecast variable x equals the
observation y, then the value jumps from zero to one. The squared difference between the
two CDFs is averaged over the number of observation pairs. The smaller the CRPS metric,
the better the accuracy of the PDF.

2.4. Dataset and Data Pre-Processing

Several real-world data sources are used to evaluate and demonstrate the effectiveness
of the proposed method. This study focuses on data from three years: 2020, 2021, and 2022,
onset and during the COVID-19 pandemic as three different scenarios to capture and illustrate
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the forecasting uncertainty. The data are from New South Wales (NSW), Australia’s most
populous state; a similar range of data is used, dating from 12 February–13 March.

To achieve optimal data quality, the entire dataset is examined, and missing data
points are populated by neighborhood values. The data sources of this study are as follows:

• Electricity demand data: AEMOs’ open dataset is used, which contains accumulated
daily electricity demand sampling rate (30 min) [3].

• Energy and weather data: OpenNEM, an open platform for National Electricity Mar-
ket (NEM) data, is used, which contains time series hourly weather (temperature),
renewable and non-renewable energy generation, and consumption data [61].

• Mobility data: The mobility data is obtained through the Google COVID-19 Com-
munity Mobility Reports and have six location-specific metrics (parks, workplaces,
residential, retail and recreation, and grocery and pharmacy) [62].

Feature Selection

To improve the forecasting accuracy, a correlation analysis is performed to determine
which features are most strongly related to electricity demand. Due to the influence of
numerous factors, such as temperature, day of the week, and volatility of renewable sources,
it is difficult and complex to establish the true impact of the pandemic on electricity demand.
Studies have found that temperature significantly affects energy use compared to other
parameters [17].

Feature selection reduces change sensitivity and overfitting in the proposed model.
Therefore, this study uses the correlation coefficient between temperature indicators and
electricity demand to determine whether incorporating mobility data have the same or
greater importance in highlighting their qualities. There are different methods for choosing
features, such as Pearson and Spearman correlations. This study adopts Spearman’s
rank correlation coefficient to test the electricity demand–mobility correlation since it is a
non-parametric test and defines the strength and direction of the monotonic relationship
between two variables [63]. The Spearman’s rank correlation coefficient statistic can be
defined as follows:

s = ∑n
i=1(Ri − R)(Si − S)√

∑n
i=1
(

Ri − R
)2

∑n
i=1
(
Si − S

)2
= 1− 6

n

∑
i=1

d2
i

n(n2 − 1)
(22)

where Ri and Si are the ith rank of the first and second data inputs, respectively, and d2
i =

(Ri − Si)
2 represents the distance between two data inputs.

The S value of Spearman correlation coefficients of different features during the
pandemic period (February–March 2020–2022) is shown in Table 2 and Figure 3, which
reveal that temperature and non-renewable sources of energy have a strong correlation
with the electricity demand. Selected features for this study are temperature, renewable
and non-renewable energy, and workplace and residential mobility data.

Table 2. The Spearman Correlation Coefficient (S) results from electricity demand and mobility
indicators, temperature, and energy sources.

Weather Energy Source Mobility Feature

Spearman
Coefficient

S
Temperature Renewable Non-

Renewable Workplace Residential Retail &
Recreation

Grocery &
Pharmacy Parks Transit

Stations

2020 0.956 0.077 0.681 0.427 -0.436 -0.419 -0.483 -0.303 0.3116

2021 0.810 0.023 0.577 -0.063 0.225 -0.394 -0.236 -0.252 -0.119

2022 0.828 0.261 0.606 -0.399 0.447 -0.488 0.116 -0.363 -0.047
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Figure 3. The correlation coefficient (S) of different features with the electricity demand.

In addition, all of the 6 mobility indicators have a stronger correlation with electricity
demand. This indicates that mobility indicators can reflect electricity demand during an
anomalous situation such as a pandemic. The S value of the workplace was high just before
the start of the pandemic, and it became negative during the lockdown period of 2021–2022
and vice versa in the case of other mobility indicators, especially the residential feature,
which showed a negative value just before the pandemic and became positive during the
year 2021–2022. It shows that staying longer at home for a longer length of time reduces
electricity demand, which corresponds to the actual scenario throughout the pandemic.
Hence, incorporating mobility features in electricity demand forecasting could increase
model performance.

3. Results

This section first executed several tests on different real-world data sets to demonstrate
the effectiveness of the proposed forecasting model. Next, test evaluations between a few
existing point forecasting models are demonstrated. These simulation results explain the
performance of the proposed model in addition to the error metrics. Then, comparative
results for probabilistic forecasting are presented and discussed. Finally, it discusses the
ablation study.

Three common covariance functions are tested to choose an appropriate one for the
proposed GPR model, namely the following: squared-exponential, exponential, and Matern
3/2. The three scenarios select 95%, 90%, 80%, and 50% confidence levels of the PI for the
probabilistic GPR model training. Finally, the best-performing PI result is used as input to
derive PDFs of electricity demand forecasting over time, which are then checked against
observed values using the KDE method.

In this study, the offline method is used to make training as straightforward as possible.
All the forecasting processes are implemented with Matlab R2022b and tested using a personal
computer with Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz 2.11 GHz, 16 GB RAM.

To determine the optimal kernel function, this paper first does comparative studies of
three common kernels. Table 3 presents the forecasting errors of the proposed model. Four
forecasting error measurements, MAE, RMSE, and R2 are utilized to evaluate the model.
To summarize the results of Table 3:
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Table 3. Forecast test set error on three scenarios.

Scenario 1 (2020) Scenario 2 (2021) Scenario 3 (2022)
MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

GPR (Exponential) 35.76 48.21 0.99 49.85 61.86 0.98 38.97 48.36 0.99

GPR (Squared exp.) 55.92 71.21 0.98 49.95 60.18 0.98 87.35 107.37 0.95

GPR (Matern 3/2) 39.65 53.97 0.98 40.74 50.43 0.98 76.99 94.77 0.96

Scenario 1: the year 2020 gives the best prediction result for EDF using the Exponential
covariance function, the MAE 35.76, RMSE 48.21, and RMSE 0.99.

Scenario 2: the year 2021 gives the best prediction result for EDF using the Matern 3/2
covariance function, the MAE 49.95, RMSE 60.18, and RMSE 0.98.

Scenario 3: the year 2022 gives the best prediction result for EDF using the Exponential
covariance function, the MAE 38.97, RMSE 48.36, and RMSE 0.99.

Therefore, the test results observe that the Exponential covariance function adequately
captures the electricity demand pattern in two scenarios (1 and 3) and performs well.

Table 4 presents the training set error statistics. The testing data error measurements
between actual and predicted values are based on the average error of all 5-folds for the
training set. To interpret these values, notice that the difference between test and training
set error are very small.

Table 4. Training set errors based on three scenarios.

Scenario 1 (2020) Scenario 2 (2021) Scenario 3 (2022)
MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

GPR (Exponential) 35.01 48.11 0.99 48.02 60.47 0.98 38.40 48.01 0.99

GPR (Squared exp.) 54.80 70.34 0.98 48.27 61.32 0.98 86.57 106.98 0.95

GPR (Matern 3/2) 38.43 53.01 0.98 41.44 50.10 0.98 77.09 93.98 0.96

3.1. Point Forecasting

Given that the proposed comprehensive GPR model also provides point forecasts, its
performance is compared to four baselines models: (1) Regression tree (RT), (2) Support
vector regression (SVR), (3) Back-propagation NN (BPNN), and (4) QR.

The purpose of this evaluation is to demonstrate that the proposed method can
improve forecasting models with limited data better than the baseline models. The test data
set is used to fine-tune the hyper-parameters of each approach, and the best-performing
model is then selected. The comparison of the forecasting results of various methods on
test data is summarized, and Table 5 outlines the best possible results for each method. It is
apparent from Table 5 that the GPR-based approach outperforms the four baselines based
on the results in three different scenarios (the year 2020–2022).

Table 5. Forecasting errors comparison of SVR, RT, BPNN, and GPR in three scenarios.

Scenario 1 (2020) Scenario 2 (2021) Scenario 3 (2022)

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

GPR 35.76 48.21 0.99 40.74 50.43 0.98 38.97 48.36 0.99

BPNN 90.11 114.29 0.94 90.85 105.77 0.93 110.66 136.74 0.92

RT 120.3 181.9 0.86 250.02 300.67 0.29 232.58 237.69 0.69

SVR 70.21 73.248 0.96 81.771 91.00 0.94 100.48 125.59 0.92

QR 54.18 69.42 0.98 47.31 57.50 0.98 86.53 106.30 0.95
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The time series forecasting results (of three scenarios) of electricity demand on various
methods are shown in Figure 4. It can be observed that the RT suffers from larger deviations
from the actual demand compared with GPR-based methods. The proposed approach gets
closer to the actual data than the QR, SVR, and BPNN methods. The results are consistent
with those in Table 5.
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QR and the proposed model have the highest R2 values of 0.98 and 0.99, respectively.
This displays a significant correlation between actual and predicted values. As compared
to other approaches, RT’s performance was subpar. Hence, regression tree methods overfit
and have large variances due to poor performance on unseen test data [64]. Regarding
BPNN, this parametric algorithm has several parameters to optimize. Hence, samples from
small training data cannot reveal all hidden patterns. For QR, parameter estimation is
difficult with limited data [38]. After QR, Kernel function-based SVR has performed well
compared to RT and BPNN with an average R2 of 0.94. As a result, GPR, QR, and SVR are
preferred models for estimating the impact of uncertainty.

Compared to QR, BPNN, RT, and SVR, the RMSE index of the proposed model has
been averagely improved in the case of electricity demand by 36%, 58%, 79%, and 49%,
respectively. Similarly, the performance error MAE shows an improvement of 38%, 60%,
80%, and 54%, respectively. The findings indicate that for point forecasting, the proposed
GPR model has better performance with an acceptably smaller error than the other four
baseline models despite trend change phenomena triggered by unprecedented events such
as pandemics and extreme weather conditions.

3.2. Probabilistic Forecasting—Prediction Interval

Predictions Interval (PI) under four confidence levels (CI) (95%, 90%, 80%, and 50%) are
carried out by various kernel functions of the GPR and QR model in support of verifying
the effectiveness of the proposed model. Both the PICP and MPIW of the PI for three
scenarios are then calculated, and the performance comparisons are displayed in Table 6.
The actual electricity demand is represented in Figure 5a–c by the black line and GPR
prediction with a black dotted line. The 95%, 90%, 80%, and 50% values of PI are depicted
in Figure 5. The results for RT, SVR, and BPNN are not shown since these are only point
forecasting methods.

Table 6. Prediction Interval evaluation achieved by various kernel methods in three scenarios.

Scenario Covariance Function PICP (%) MPIW (%)
95% 90% 80% 50% 95% 90% 80% 50%

Scenario 1
2020

GPR (Exponential) 98% 96% 96% 77% 30% 26% 20% 11%
GPR (Squared exp.) 96% 96% 93% 64% 38% 32% 25% 13%
GPR (Matern 3/20)

QR
97%
95%

94%
95%

93%
92%

74%
63%

35%
39%

30%
33%

23%
26%

12%
14%

Scenario 2
2021

GPR (Exponential) 97% 96% 87% 61% 33% 27% 21% 11%
GPR (Squared exp.) 96% 96% 90% 64% 35% 29% 23% 12%
GPR (Matern 3/20)

QR
96%
95%

96%
95%

93%
89%

74%
63%

34%
36%

28%
30%

22%
24%

11%
13%

Scenario 3
2022

GPR (Exponential) 96% 96% 96% 36$% 37% 31% 24% 12%
GPR (Squared exp.) 96% 93% 90% 58% 57% 37% 48% 19%
GPR (Matern 3/20)

QR
96%
95%

96%
92%

90%
89%

64%
57%

56%
58%

47%
48%

37%
38%

19%
20%
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It can be seen that the PI generated with the proposed method covers the actual value
most of the time. For example, Figure 5c shows that the proposed method has a 95%
confidence interval that can cover most of the actual electricity demands. Table 6 results
show a good performance and indicates that the PICP and MPIW are exceeding the CI
levels in most of the cases. For example, the PICP of scenario 1 (before the pandemic),
scenario 2 and 3 (during the pandemic) are 98%, 97%, and 96%, respectively, exceeding the
CI level of 95% with an MPIW of 30%, 33%, and 37%, respectively, using the exponential
kernel function. In comparison, the 95% confidence level by the other two covariance
functions (Squared exponential and Matern 3/2) does not cover many actual electricity
demand points. However, the MPIW values by the Matern 3/2 covariance function of the
GPR model is wider than that of the other two kernels in scenario 1 and 3. In addition, the
PICP values of the QR model is marginally covering the preassigned PICP, and the MPIW
values are also wider than that of the other GPR kernel models.

The results show that the created PIs of the proposed model have a high probability of
covering the target values and better captures uncertainty with sudden peak and descend
values during the pandemic (scenario 2 and 3) that is hardly following any pattern. As
shown in Figure 5, the actual values are mostly located in narrow PIs with 98%, 97%, and
96% PICP for scenarios 1, 2, and 3, respectively.

As shown in Figure 5b, the difference between the two peaks of some daily electricity
demand curves is relatively small. For example, there is not much variance between days 15
and 16. Meanwhile, the peaks of some daily EDF curves have a large disparity; for example,
day 17, 18, and 19 has a sudden peak and drop in electricity demand. The fluctuation range
of the electricity demand varies daily, reflecting the uncertainty. Concurrently, scenario 1,
Figure 5a, has comparatively less disparity between different days of EDF. Given that
the short-term EDF is very unpredictable, the probabilistic performance of the proposed
method is adequate.
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3.3. Probabilistic Density Prediction

From the analysis of the previous sections, Predictive intervals provide a lower and
upper bound between which the actual future value will fall within a certain probability
(confidence interval). Finally, probabilistic forecasts can be provided as predictive prob-
ability density functions, which provide a full estimation of the probability distribution
around a point forecast. The lower and upper bounds of the PI in Section 2.1 are used
to estimate the KDE as a range of possible values and create a histogram with the values
falling within this range. Using KDE, the underlying density function can be estimated after
the histogram is obtained [8]. To estimate the underlying density, KDE includes integrating
the histogram with the Gaussian kernel function. This study uses the CRPS to quantify
the calibration and sharpness for density forecast evaluation. Table 7 compares the CRPS
values with different kernel functions of GPR, and QR probabilistic forecasting techniques
are also tested for comparison.

Table 7. This Probabilistic density prediction results from three scenarios.

Scenario Covariance Function CRPS

Scenario 1
2020

GPR (Exponential) 21.35
GPR (Squared expo.) 43.23

GPR (Matern 3/2)
QR

27.48
44.74

Scenario 2
2021

GPR (Exponential) 36.80
GPR (Squared expo.) 38.76

GPR (Matern 3/2)
QR

30.26
39.85

Scenario 3
2022

GPR (Exponential) 22.60
GPR (Squared expo.) 69.55

GPR (Matern 3/2)
QR

53.21
70.78

Figure 6 provides the complete electricity demand probability density curves. To make
the comparisons, the actual electricity demand values are also presented with the point
forecasting value of different baseline methods of three scenarios. To provide the proposed
method’s potential to incorporate uncertainty, the prediction results from Figure 5a–c are
illustrated in Figure 6 (density curve). From the prediction interval (Figure 5), the highest
actual electricity demand values from three scenarios are day 7 in 2020, day 18 in 2021, and
day 13 in 2022.

Based on Figure 6, most of the actual values distribute in the middle of probability den-
sity curves. This indicates these values are anticipated in the forecasting distributions with
high probability. Moreover, Figure 6 shows that the baseline point forecasting approaches
do not yield reliable results and cannot capture the uncertainty caused by unprecedented
events, such as the COVID-19 pandemic. It is also evident that the observation lines in
scenario 1 are closer to the center of the PDF while others (scenarios 2 and 3) are slightly
distant from the center, which indicates that the probabilistic forecasting is reliable. Con-
currently, the other possible explanation is that many variables influence consumption
patterns and become critical to EDF with precision. Hence, the suggested technique adopts
a conservative method to reach conservative decisions under varying impacts.

Figure 7 shows the histograms and the PDFs based on the Gaussian kernel density
estimation (KDE) (red line) functions of residuals between the actual and the predicted
electricity demand under three scenarios. It can be seen that the estimated KDE functions
well matched the histograms of the EDF residuals in three scenarios, approximately obeying
normal distribution. As shown in Figure 7, the forecast error values (residuals) for all testing
sets are normally distributed around the zero value. The forecast error histogram plots
showed a high number of cases centered on zero error, indicating that the suggested model
achieved excellent performance with less bias.
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From the results in Table 7, the CRPS values show the superiority of the exponential
kernel function in predicting the full distribution. In scenarios 1 and 3, the CRPSs of
the exponential kernel function are 21.35 and 22.60, respectively, which are the smallest
metrics, indicating that it is the best on these two datasets. The kernel functions with
the best probabilistic prediction performance on dataset 2 is Matern 3/2 with CRPS 30.26.
Compared to QR, the CRPS index of the proposed model GPR (Exponential, Squared Expo.
and Matern 3/2) has been averagely improved in the case of electricity demand by 48%,
2%, and 28%, respectively.

CRPS and MAE (for deterministic forecasts) can be directly compared, which makes
probabilistic and point-forecast comparisons easy [65]. Therefore, CRPS values in this
section for the probabilistic forecast are better than the MAE value and averagely improved
by 30%, as shown in Table 5 in Section 3.1.

3.4. Ablation Study

To investigate the behavior of the proposed model, this paper has conducted an
ablation study. The same GPR-KDE model was trained without mobility data, which have
drastically different test errors as seen by the two separate Figure 8a,b. This shows that
mobility data has a strong regularizing effect and gives a huge improvement across all
scenarios of forecasting since Figure 8b shows test errors are more dispersed than Figure 8a.
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4. Discussion and Conclusions

EDF is critical in the energy sector, and uncertainties that affect energy demand predic-
tions must be considered. Conventional point EDF cannot precisely capture this uncertainty.
This paper utilizes GPR, which can deal with anomalous events with minimal data. GPR
has recently acquired attention in the literature as a non-parametric probabilistic forecasting
method. Most articles incorrectly assumed the GPR approach was deterministic and failed
to fully use its benefits. To bridge this gap, this research aimed to model EDF as a regression
issue and developed a comprehensive short-term probabilistic EDF based on GPR-KDE
methods to depict unprecedented events. This study also proposed using mobility data to
include social and economic behaviors in forecasting algorithms to demonstrate the human
behavior pattern (practice theory [46]) as further characteristics to deal with the uncertainty
caused by anomalous events such as floods, bushfires, and pandemics. Therefore, firstly, a
correlation study is carried out to identify the features highly related to electricity demand.
Four factors were identified as significantly impacting the EDF: temperature, renewable
and non-renewable energy sources, and human mobility (specifically workplace and res-
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idential) data. After identifying the highly correlated features, three widely-used kernel
functions were examined to find the optimal one for modelling complex interactions. It
identified the Exponential covariance function as a great kernel function. Finally, GPR is
applied for EDF and compared with different models and kernel functions to provide point
forecasting along with comprehensive probability estimation for prediction intervals. Then,
the model forecasting results under different CI are input into the KDE function to estimate
the probability distribution.

Several testing and validation techniques were used to examine the performance of
the proposed method for predicting EDF using real data; 5-fold cross-validation was used
for model validation in addition to the other statistical technique. Results showed that the
Exponential covariance function performed well among other kernels used in this study to
evaluate the EDF.

In addition, it is crucial to compare with other recent studies to further demonstrate
the efficacy of the proposed method. It is imperative to utilize the same data set to make
the comparison significant. However, to the best of our knowledge, no study in the
literature has investigated the EDF using a similar data set and timeframe. Therefore, this
study demonstrated the proposed method’s implementation in three different scenarios in
Australia to establish the model’s accuracy. The results show:

• GPR has been averagely improved compared to BPNN, RT, and SVR in the case of
point forecasting by 59%, 79%, and 51%, respectively.

• The system was validated for one-day-ahead weather forecasts and the most typical
time horizon using the PICP and MPIW indicators. The PI results of three scenarios
with different confidence levels (95%, 90%, 80%, and 50%) indicate that most of the real
electricity demand falls into the PIs with 50–80% CI, which demonstrates the accuracy
of the proposed method. Under the same PICP condition, the MPIW of the proposed
method GPR (exponential kernel) is much smaller than that of other compared kernels.

• Meanwhile, a large number of real electricity demand values are located near the peak
of probability density curves. The CRPS for the probabilistic forecast is better than the
MAE value of the point forecasting.

This study’s results show that GPR-KDE is a reliable method and can still produce a
very accurate forecast of complex electricity demand patterns with limited historical data.
Different restriction measures in both scenarios 2 and 3 during the pandemic and their
impact on people’s activities have considerably changed the electricity demand profile
distinctively. In contrast, heavy rainfall and associated flooding in NSW, which started in
February 2021 and 2022, declared a disaster and forced people to evacuate overnight as
floodwaters engulfed houses [66]. These two opposite scenarios made EDF challenging
during anomalous events. Hence, according to the practice theory [1,46], people’s activities
at residence would show up as routine repeating trends in terms of electricity usage, despite
the irregularity. Therefore, incorporating mobility data greatly enhances the EDF model’s
capacity to detect significant shifts in electricity demand behavior.

The ablation study shows that the proposed method may significantly cut down the
error between predicted and real EDF by incorporating mobility patterns. In the future, the
proposed method will be tested in other energy forecasting areas, such as electricity prices,
with sparse data. More relevant features, such as mobile traffic, mobile phone, and Electric
vehicle (EV) data, will be tested to examine correlation with EDF.
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