
Citation: Zhang, J.; Wang, X.; Liu, J.

Incrementally Mining Column

Constant Biclusters with FVSFP Tree.

Appl. Sci. 2023, 13, 6458. https://

doi.org/10.3390/app13116458

Academic Editor: Antonio

Fernández-Caballero

Received: 13 March 2023

Revised: 19 May 2023

Accepted: 22 May 2023

Published: 25 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Incrementally Mining Column Constant Biclusters with
FVSFP Tree
Jiaxuan Zhang, Xueyong Wang * and Jie Liu

School of Management Science, Qufu Normal University, Rizhao 276800, China; ZhangJX0207@163.com (J.Z.);
liujieqfnu@163.com (J.L.)
* Correspondence: wangxy2015@qfnu.edu.cn

Abstract: Bicluster mining has been frequently studied in the data mining field. Because column
constant biclusters (CCB) can be transformed to be discriminative rules, they have been widely
applied in various fields. However, no research on incrementally mining CCB has been reported in
the literature. In real situations, due to the limitation of computation resources (such as memory),
it is impossible to mine biclusters from very large datasets. Therefore, in this study, we propose an
incremental mining CCB method. CCB can be deemed as a special case of frequent pattern (FP).
Currently the most frequently used method for incrementally mining frequent patterns is FP tree
based method. In this study, we innovatively propose an incremental mining CCB method with
modified FP tree data structure. The technical contributions lie in two aspects. The first aspect is that
we propose a modified FP tree data structure, namely Feature Value Sorting Frequent Pattern (FVSFP)
tree that can be easily maintained. The second aspect is that we innovatively design a method for
mining CCB from FVSFP tree. To verify the performance of the proposed method, it is tested on
several datasets. Experimental results demonstrated that the proposed method has good performance
for incrementally handling a newly added dataset.

Keywords: feature value sorting frequent pattern tree; incremental mining; column constant bicluster

1. Introduction

Clustering is an important part of data mining [1]. Clustering can group samples into
different clusters. Traditional one-way clustering methods such as K-means [2] take all
features into consideration when calculating the similarity between samples. In many cases
samples are similar only under partial features. Biclustering can cluster from both the row
(sample) dimension and column (feature) dimension, extracting local coherent patterns.

As shown in Figure 1, a bicluster can be categorized into constant bicluster, row
constant bicluster, column constant bicluster, additive bicluster, multiplicative bicluster
and coherent evolution bicluster [3]. Biclustering originates from gene expression data
analysis [4], it has also been applied to other fields. In bicluster application, column
constant biclusters (CCB) are most frequently used. In CCB, the values of each column
are identical. As CCB can be transformed to be a horizontal discriminative vector through
column averaging, to some extent, the horizontal discriminative vector has discriminating
ability. CCB is expressed as follows: CCB = {(f1, f2, . . . , fi, . . . , fn) : m} where fi denotes
the i-th column value of the CCB containing m rows and n columns.

In the literature, many studies based on CCB [5–11] have been proposed. In [5],
detailed theoretical analysis of CCB based classification is given. In [6], CCB is used to mine
breast cancer diagnosis rules, finally, with adaboost, the diagnosis rules can be combined to
construct a strong diagnosis rule. In [7,9], CCB is applied to mine stock price fluctuating
rules, finally, with KNN or fuzzy influence, an optimal solution can be obtained. In [8],
CCB is used to extract motor imagery classification rules that can construct a fuzzy rule
base, subsequently, with fuzzy inference, an excellent classifier can be built. In [10], a new

Appl. Sci. 2023, 13, 6458. https://doi.org/10.3390/app13116458 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13116458
https://doi.org/10.3390/app13116458
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app13116458
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13116458?type=check_update&version=2

Appl. Sci. 2023, 13, 6458 2 of 16

method for customer segmentation based on CCB is proposed. In [11], CCB is used to
select features.

Figure 1. An example illustrating the six types of bicluster.

In a review of the studies in the literature, existing CCB-based studies process data
in a batch way. How to mine CCB in an incremental way has not been investigated yet.
In real situations, since the computation sources are limited and fixed, if the dataset is
very big, running will fail because the required computation resource is bigger than the
maximal available computation resource. If the dataset is divided into several small parts,
the required computation resource for incrementally processing each part is smaller than
processing the whole dataset, therefore, processing the whole dataset can be successful.
Therefore, designing a novel method for incrementally mining CCB [12–16] is critically
necessary. Incrementally mining CCB from an original dataset and an incremental dataset
can be divided into the following two steps: (1) Mine original constant column biclusters
CCBo from original dataset Do and save the intermediates Io that are used to generate CCBo.
(2) Mine the whole column constant biclusters CCBa from the new added dataset Da and
previously generated intermediates Io, CCBa is the same as the CCB directly mined from the
whole datasets (the combination of Do

⋃
Da). Incrementally mining CCB should have the

following properties: (1) With the coming of a newly added dataset, the intermediates that
are used to generate the previous mined biclusters can be updated to improve the quality of
previously mined CCB and new CCB can be mined. (2) The original datasets that have been
processed before cannot be scanned/processed again in the incremental mining stage.

Nowadays, many biclustering methods have been proposed. Typical biclustering
methods include the greedy search-based method [4], the evolutionary computation-based
method [17], the exhaustive enumeration-based method [18], the statistical model-based
method [19], etc. However, these methods are designed for mining all kinds of biclusters
instead of only mining CCB and no incremental mining methods have been reported in
the literature.

Frequent pattern [20] mining is a frequently used pattern [21–24]. In our opinion, CCB
mining can be deemed as a special frequent pattern. Frequent patterns can be defined as
the substructures that appear in a dataset with counts no less than predefined minimal
number specified by the user [20]. Existing incremental frequent pattern mining methods
can be categorized into two kinds. First is APRIORI-based incremental mining [25,26].
Such methods require appropriate parameter settings, consuming much time and space.
Second is FP (frequent pattern) tree-based incremental mining [27]. The FP tree is a highly
compressed data structure. Compared with APRIORI, FP tree is more widely used. The
FP tree mining algorithm contains two phases, namely, constructing FP tree from dataset
and deriving frequent patterns from FP tree. Constructing FP tree involves three steps.

Appl. Sci. 2023, 13, 6458 3 of 16

The first step is scanning the whole dataset to find all items and their counts. The items
whose counts are no less than the predefined minimal support are deemed to be frequent
and will not be deleted. Then, the frequent items are sorted in descending order. Finally,
the dataset is scanned again to construct the FP tree according to the descending order
of large items. At the same time, a header table is built to record the frequent items. A
header table is made of each large item’s name, counts and a pointer to its first appearance
node in the FP tree. When the FP tree has been constructed, the FP growth procedure is
employed to mine all frequent patterns. Analyzing the whole frequent patterns mined by
FP growth, it can be easily found that many frequent patterns are the subsets of others.
If all the elements of frequent pattern A are included in frequent pattern B, then A is the
subset of B. Each frequent pattern can be seen as a CCB. In the context of CCB based
applications, the information contained in subset CCB is redundant, they should be deleted,
only the CCB with the biggest volume is preserved. For example, from the left matrix in
Table 1, 11 frequent patterns can be mined. Frequent patterns 2–11 are the subsets of the
first frequent pattern. From the perspective of CCB, we just want to find the CCB having
biggest volume, namely, the first frequent pattern: {(3, 0, 2, 0.5):4}.

Table 1. Illustration of subset frequent pattern mining.

No. FP No. FP

3 0 2 0.5 1 (3, 0, 2, 0.5):4 6 (3, 0):4

3 0 2 0.5 2 (0, 2, 0.5):4 7 (3, 2):4

3 0 2 0.5 3 (3, 2, 0.5):4 8 (3, 0.5):4

3 0 2 0.5 4 (3, 0, 0.5):4 9 (0, 2):4

Matrix 5 (3, 0, 2):4 10 (0, 0.5):4

11 (2, 0.5):4

FP mining is a computationally expensive task. With the coming of a new dataset,
if beginning from the scratch, finding FP from the whole dataset may waste a lot of time.
In existing FP tree-based incremental mining methods, the key issue in updating the FP
tree is the node adjustment of the FP tree [28–30]. Due to the addition of new samples,
some frequent nodes in original FP tree may become unfrequent nodes, these nodes should
be deleted in the new updated FP tree. Some unfrequent nodes in original FP tree may
become frequent nodes, these nodes are supposed to be added to the new updated FP tree.
Additionally, because the nodes in original FP tree are positioned in descending order, the
positions of the nodes that are frequent in both original and new updated FP tree need to
be adjusted. The nodes that are infrequent in both the original and the new updated FP
tree are ignored [29].

Updating the FP tree consists of recalculating the counts of each item, recalculating
the minimal supports threshold, renewing the head table and adjusting the node positions
in the FP tree. The disadvantage of such updation is that it will take much time to finish
the updation. Heavy computation is mainly caused by many updations. To avoid these
updations, we proposed a novel tree structure, namely, the Feature Value Sorting Frequent
Pattern (FVSFP) tree. The difference between FP tree and FVSFP tree lies in that infrequent
nodes are preserved in FVSFP tree, the minimal supports are not taken into consideration
when constructing the FVSFP tree. The infrequent nodes are deleted in the CCB mining
stage instead of the tree construction stage. The elements in the head table and FVSFP
tree are sorted according to feature values instead of feature values’ counts/frequency.
In this way, the tree structure can be more easily maintained when inserting a newly
added dataset to the tree. The updation of the FVSFP tree is nearly the same as its initial
construction process, reducing the consumed time and space. Since the proposed method
aims to incrementally mine a bicluster, it is named as IMB. The technical contribution of
the proposed method lie in the following:

Appl. Sci. 2023, 13, 6458 4 of 16

1. We propose a modified FP tree data structure, namely, a Feature Value Sorting Fre-
quent Pattern (FVSFP) tree, which can be easily maintained;

2. We innovatively design a method for mining CCB from FVSFP tree. The mining
method is greatly different from the standard frequent pattern mining method [31].

The following parts are organized as follows. Section 2 presents a detailed description
of the proposed method. Section 3 presents the experiment. The conclusion and discussion
are presented in Section 4.

2. Method

In this section, each step of the proposed method is described in detail. Firstly, feature
transformation used to ensure that the feature value in each sample is unique is presented.
Secondly, mining CCB from the initial dataset is presented. Finally, incremental mining of
CCB is introduced in detail. To illustrate vividly, an example for illustrating each step is given.

2.1. Preprocessing

To construct FP tree, the feature values in the same sample must be unique. In many
cases, sample feature usually contain identical values, therefore, feature transformation
should be performed to ensure feature uniqueness. As each sample feature value constitutes
one node, each sample constructs one branch. Identical feature value in sample will lead
to two nodes in one branch having identical names, causing confusion and mistakes. The
feature transformation schema is as follows:

1. Calculate the number of each feature’s possible values, denote ni(1 ≤ i ≤ k) as the
ith feature value’s size. Finally, a vector [n1, n2, . . . , nk] containing the number of each
feature’s possible values can be obtained;

2. Transform feature values column-by-column in two steps. The first is to uniquify
and sort the ni feature values of the ith column in ascending order to obtain original
feature value vector [f1, f2, . . . , fni]. The second step is to transform the ordered unique
feature to new feature fp=∑i−1

j=1 nj + p− 1 where 1 ≤ p ≤ ni. After transformation,

the ith feature values fall in the range of [∑i−1
j=1 nj − 1, ∑i

j=1 nj − 1]

An example for illustrating feature transformation is shown in Table 2. In Table 2, the
top subtable is the original data matrix, in the second and fourth sample, there are identical
feature values. The middle subtable provides each feature value’s size and feature value
range after transformation. The below subtable is the data matrix after transformation, each
sample (row) has no duplicated values. After transformation, the sample feature value’s
uniqueness is ensured.

2.2. Initial CCB Mining
2.2.1. Construction of a Header Table

A head table should be constructed before constructing the FVSFP tree. The construc-
tion process is as follows: (1) Construct a empty head table. (2) Scan the transformed
original dataset sample by sample. If a feature value exists in the head table, ignore it, oth-
erwise, insert the feature value into the head table. Subsequently, sort the feature values in
header table in feature value’s ascending order instead of feature value counts’ descending
order that is commonly used in the literature. In the header table, all the feature values are
stored, no feature value is deleted.

To vividly illustrate the construction of head table, an example is given in Figure 2.
In the original dataset there are 5 samples. Scan the 5 samples sample by sample. After
scanning the first sample and sorting the feature values in the first sample, a head table
containing 4 feature values “0, 1, 3, 5” is obtained. After scanning the second sample,
because feature values “2, 4, 6” are not contained in the head table, ”2, 4, 6” should be
inserted into the head table, subsequently, a head table containing 7 feature values “0, 1,
3, 5, 2, 4, 6” can be obtained. After the third sample, no new feature value is inserted to

Appl. Sci. 2023, 13, 6458 5 of 16

the head table. Finally, a head table containing 7 feature values “0, 1, 3, 5, 2, 4, 6” can
be obtained.

Table 2. An example illustrating the feature transformation process.

Sample No. Original Feature

1 0 0 0 0

2 0 1 1 1

3 0 0 0 0

4 0 0 0 1

Original feature value vector [0] [0 1] [0 1] [0 1]

Feature value size 1 2 2 2

New feature value range [0] [1 2] [3 4] [5 6]

Transfromation (mapping) 0->0
0->1
1->2

0->3
1->4

0->5
1->6

Sample No. Transformed Feature

1 0 1 3 5

2 0 2 4 6

3 0 1 3 5

4 0 1 3 6

2.2.2. Initial FVSFP Tree Construction

Constructing FVSFP tree is similar to constructing FP tree. The key is iteratively
inserting sample to the tree. The tree is made of nodes. The node is defined as follows:

Struct FVSFPNode{
Name;
Count;
Struct FVSFPNode* Parent;
Struct FVSFPNode* Children[];
}
Name: the name of the node.
Count: the appearance number of the node.
Parent: a pointer to the parent node.
Children: one or several pointers to the whole children nodes.
In the FVSFP tree, there are three kinds of nodes, namely, Root node, leaf node and

middle node. The Root node is in the topmost level, all domains except for Children are
NULL. The leaf node is in the lowest level, has no children. Middle node is the node
between the leaf node and the Root node. One branch of the tree is defined as the whole
nodes from Root node to leaf node. One sample can form one branch. The construction of
an original FVSFP tree can be summarized in the following two steps:

* Construct the Root node;
* Insert the samples of the original dataset sample-by-sample with Algorithm 1.

Appl. Sci. 2023, 13, 6458 6 of 16

0:5

Sample

 no.

Feature

 values

1 0 1 3 5

2 0 2 4 6

3 0 1 3 5

4 0 1 3 6

5 0 1 3 5

Sample

 no.

Feature

 values

6 0 1 3 5

7 0 2 4 5

Original datasets

Root

New added datasets

Original header table

Updated header table

Original tree

Updated tree

Branch no. Node and counts

1 (0:5, 1:4, 3:4, 5:3)

2 (0:5, 1:4, 3:4, 6:1)

3 (0:5, 2:1, 4:1, 6:1)

1 (0,1,3):4

2 (0,1,3):4

3 Null

Original biclusters: (0,1,3):4

Mine biclusters from original tree

Mine biclusters from updated tree

1:4 2:1

3:4 4:1

5:3 6:1 6:1

Null

0:7

Root

1:5 2:2

3:5 4:2

5:4 6:1 6:1

Null

5:1

Branch no. Node and counts

1 (0:7, 1:5, 3:5, 5:4)

2 (0:7, 1:5, 3:5, 6:1)

3 (0:7, 2:2, 4:2, 6:1)

4 (0:7, 2:2, 4:2, 5:1)

1 (0, 1, 3, 5):4

2 (0, 1, 3):5

3 Null

4 Null

Updated biclusters: (0 1 3 5):4

 (0 1 3):5

No. Feature
value

1 0

2 1

3 2

4 3

5 4

6 5

7 6

No. Feature
value

1 0

2 1

3 2

4 3

5 4

6 5

7 6

Figure 2. Illustration of incrementally mining CCB.

Appl. Sci. 2023, 13, 6458 7 of 16

Algorithm 1 Insert sample to FVSFP tree.

Require: Initial FVSFP tree, To; Sample, S; Feature number in S, L.
Ensure: Updated FVSFP tree, To

1: CurrentNode←Root of To.
2: CNodes←CurrentNode’s children nodes.
3: n←CNodes’ size.
4: for i=1:L do
5: if CNodes[j]’s name (1 ≤ j ≤ n) is the same as S(i) then
6: CurrentNode← CNodes[j]
7: CNodes←CurrentNode’s children
8: n←CNodes’ size.
9: CurrentNode’s Count←CurrentNode’s Count+ 1.

10: else
11: Add a new node NodeN to To.
12: Set NodeN’s Name as S(i), Count as 1.
13: Set NodeN’s Parent as CurrentNode.
14: Set NodeN’s Children as NULL.
15: CurrentNode← NodeN
16: CNodes←CurrentNode’s children
17: n←CNodes’ size.
18: end if
19: end for
20: return To

One example illustrating adding a sample to the FVSFP tree is shown in Figure 3.
Figure 3 shows the process of inserting the second sample of the original datasets in
Figure 2 to the FVSFP tree with Algorithm 1. The adding process is finding common nodes,
increasing common nodes’ count with 1 if the sample’s feature value is identical and adding
new nodes otherwise.

Root

Null

0:1

1:1

3:1

5:1

Root

Null

0:2

1:1

3:1

5:1

Root

Null

0:2

1:1

3:1

5:1

Root

Null

0:2

1:1

3:1

5:1

Root

Null

0:2

1:1

3:1

5:1

2:1

Root

Null

0:2

1:1

3:1

Root

Null

0:2

1:1

3:1

5:1

2:1

4:1

Root

Null

0:2

1:1

3:1

5:1

Root

Null

0:2

1:1

3:1

5:1

2:1

4:1

6:1

Root

Null

0:2

1:1

3:1

Root

Null

0:2

1:1

3:1

2:1

4:1

Figure 3. Illustration of adding a sample to the FVSFP tree. From left to right, the first tree is the
tree after the first sample (0 1 3 5) is inserted to the tree. The second tree is the updated tree after the
first feature value ‘0’ of the second sample (0 2 4 6) is inserted to the tree, because feature value ’0’
is the same as the name of node “0”, the number of node “0” increases from 1 to 2. The third tree
corresponds to the updated tree after feature value ‘2’ is inserted to the tree, because in the second
level no node’s name is the same as second feature value ‘2’, thus, a new node “2” is created in the
second level. The fourth and fifth trees are created in the same way as the third tree.

Appl. Sci. 2023, 13, 6458 8 of 16

2.2.3. Initial CCB Mining

Having built the initial FVSFP tree, the following step is mining CCB from the FVSFP
tree. As mentioned above, one of the differences between the FVSFP tree and the FP tree
is that the unfrequent nodes are deleted in the mining process instead of the FVSFP tree
construction process. In the context of CCB-based applications, the main goal is to find the
CCBs whose volume is as big as possible. Therefore, a novel bicluster mining method is
proposed by mining one bicluster with the largest volume from each branch of the FVSFP
tree. Sometimes, two CCBs may have identical volume; compared with feature number,
row number is more important [5], therefore, the CCB with larger supports (row number)
is outputted. Any CCBs containing less than NT rows or 3 columns are deemed to be
meaningless [7] and should be deleted.

NT = |D| ∗msr (1)

where |D|denotes the number of samples in the datasets D, msr is the minimal support rate.
The CCB mining strategy is as follows:

* Find all leaf nodes;
* Find all branches by iteratively combining the whole nodes from the leaf node to the

Root node;
* For each branch, delete the infrequent nodes whose count is less than threshold NT.

Then, find the whole candidate CCBs from each branch with the following steps.
(1): Unique the counts of the nodes in the branch to obtain the unique counts array
[mcc1, . . . , mcci, . . . , mccn] (1 ≤ i ≤ n) where n is the length of the array, mcc means
the maximal common counts among the whole nodes in the CCB. For each mcc,
calculate the whole nodes whose count is greater than or equal to the mcc, then the
volume of the CCB can be obtained by Equation (2). Finally, the bicluster with the
biggest volume is selected.
Take the first branch (0:5 1:4 3:4 5:3) of the FVSFP tree generated by the original dataset
in Figure 2, for instance, to illustrate mining CCB. Suppose the minimal support rate
is 0.4, therefore, the minimal supports is 0.4 × 5 = 2, the nodes whose count is less
than 2 are unfrequent nodes, no node is unfrequent node, all the four nodes should
be preserved. Then, the remaining effective branch becomes (0:5 1:4 3:4 5:3). Unique
the counts [3 4 5], because the number of the nodes whose count is no less than 5 is
less than 3, therefore remaining valid counts are [3 4]. Two candidate CCBs (shown
in Table 3) can be generated, both CCBs have identical volume, but counts are more
important than the node number, finally, the optimal CCB (0,1,3):4 is outputted.

* Delete the identical and subset CCBs. Because the optimal CCBs generated from
different branches may be identical, identical CCBs should be deleted. Additionally,
some CCBs may be the subsets of other CCBs, the subset CCBs also should be deleted.
The maximal common count deleting subset pattern can guarantee that the obtained
CCBs are inclusion-maximal.

Vi = Ni ∗mcci (2)

where mcc denotes the least common counts of the nodes, Ni denotes the number of nodes
whose count is no less than mcci.

Table 3. Selecting the optimal CCB from the whole candidate patterns.

CCB No. Nodes
Least Common

Counts (lcc) Volume

1 (0, 1, 3, 5) 3 3 × 4 = 12

2 (0, 1, 3) 4 4 × 3 = 12

Appl. Sci. 2023, 13, 6458 9 of 16

As shown in the top part of Figure 2, Do is composed of 5 samples, the feature values
in sample are non-repetitive. The feature values in the original header table are sorted
according to feature values’ ascending order. With Algorithm 1, the original FVSFP tree
can be constructed. The final step is to mine CCB from the branches of the tree. There are
3 branches, each of which is listed in the top subtable of the rightmost table. The middle
subtable shows the optimal CCB mined from each branch. The subtable below is the final
outputted CCB after deleting the identical and subset CCB.

2.3. Incremental CCB Mining
2.3.1. Updation of Initial FVSFP Tree

With the arrival of the newly added dataset, update the initial FVSFP tree through
scanning only the updated dataset instead of scanning the entire datasets that is composed
of the original dataset and the newly added dataset. The updation process involves
inserting each sample to the initial FVSFP tree with Algorithm 1, the same method as
constructing the initial FVSFP tree.

2.3.2. Remining of CCB

The next step is to mine biclusters from the updated FVSFP tree. The mining process is
the same as the initial CCB mining. As shown in the lower part of Figure 2, the incremental
(newly added) dataset consisting of 2 samples is inputted to the update initial FVSFP
tree and remine CCB. There is no reordering in the header table. The tree is updated by
inserting each sample in the incremental dataset to the initial FVSFP tree. Finally, two
CCBs are outputted. One CCB is the refinement of previously generated CCB, the other is
newly generated.

3. Experiments
3.1. Experimental Settings

To verify the performance of the proposed incrementally mining CCB method, it is
tested on 5 datasets. The experiment scheme is similar to the scheme in [32]. Firstly, the
whole dataset is equally divided into disjoint two subsets, namely, the original dataset and
incremental dataset.

Subsequently, the original dataset is inputted to the algorithm to produce the initial
FVSFP tree and initial CCBs. Then, the following experiment is divided into two parts.
The first part is inputting the incremental dataset and initial FVSFP tree to the algorithm
to obtain the updated FVSFP tree and CCBs. The second part is inputting the whole
dataset that consists of original and incremental datasets to the algorithm without the
initial FVSFP tree. The 5 testing datasets can be divided into three parts. The first is the
FIM dataset http://fimi.uantwerpen.be/data/ (accessed on 11 October 2022), FIM are
frequently used in frequent pattern mining experiments. The second is the UCI dataset
https://archive.ics.uci.edu/ml/index.php (accessed on 11 October 2022), UCI is commonly
applied in classification and clustering experiments in the literature. The third is the
BIRADS dataset [6] which is collected by our team. Detailed information on the 5 datasets
is displayed in Table 4.

The methods are implemented in the C++ programming language in the Microsoft
Visual Studio 2019 platform. The proposed method was run on a laptop. The configuration
of the laptop is shown in Figure 4. To our knowledge, no previous studies about incre-
mentally mining CCB have been reported, this study is the first study about incrementally
mining CCB, thus, comparison experiments cannot be conducted.

http://fimi.uantwerpen.be/data/
https://archive.ics.uci.edu/ml/index.php

Appl. Sci. 2023, 13, 6458 10 of 16

Table 4. Description of 5 datasets.

Dataset Division Sample
Counts Size (KB) Unique

Feature?

chess

Original 1598 179

YesIncremental 1598 180

Whole 3196 359

mushroom

Original 4062 308

YesIncremental 4062 312

Whole 8124 620

semeion

Original 797 793

NoIncremental 796 793

Whole 1593 1586

Spambase

Original 2301 343

NoIncremental 2300 343

Whole 4601 686

BIRADS

Original 531 30

NoIncremental 531 31

Whole 1062 61

Figure 4. Laptop configuration.

Experiment runtime and maximal memory utility under different minimal support
rates are two important indicators [33] for evaluating performance. In this study, minimal
support rates are set as 0.002, 0.004, 0.006, 0.008, and 0.01, respectively. Because the
memory utility when running the algorithm is dynamic, only the maximal memory utility
is reported. Comparatively speaking, the memory indicator is more important than the
runtime indicator. When running IMB on each dataset, the mean and standard deviation
of maximal memory utility and runtime of five times in incremental way and batch way
are reported.

3.2. Experimental Results
3.2.1. Ablation Study

The proposed method contains two parts, namely, FVSFP tree and CCB mining.
Therefore, to investigate the effectiveness of the two parts, an ablation study is conducted.
As shown in Table 5, four combinations can be obtained. For each combination, “×” means
that the corresponding part is not included. If the FVSFP tree is not contained, a standard
FP tree [31] is used. If CCB mining is not contained, standard FP pattern mining [31]
is used.

Ablation study result on chess dataset is shown in Table 5. We can see that the proposed
FVSFP tree outperforms standard FP tree, the proposed CCB mining is better than standard
FP pattern mining, demonstrating the effectiveness of the proposed two parts.

Appl. Sci. 2023, 13, 6458 11 of 16

Table 5. Ablation study about the components. (bold means better result)

Components Different Combinations of Components

FVSFP tree × ×
√ √

CCB mining ×
√

×
√

Runtime (s) (mean ± std) 39.39 ± 0.81 25.11 ± 0.93 28.72 ± 1.07 15.76 ± 0.88
Memory (MB) (mean ± std) 120.11 ± 1.25 79.25 ± 0.87 96.72 ± 0.04 56.62 ± 0.68

3.2.2. Testing on Chess Dataset

The experiment results on the chess dataset are displayed in Table 6. The first column
denotes the minimal support rate. The second column represents two ways, “Incremental”
means running in an incremental way, “Batch” means running in a batch way when
processing the incremental dataset. Black bold indicates a better result. For the two
performance indicators, the “Incremental” method achieves better performance than the
“Batch” method in all cases.

Furthermore, with the decrease in minimal support rate, the runtime increases and
the maximal memory utility also increases. This can be explained by the fact that in small
minimal support rate cases, fewer nodes are deleted, more nodes are preserved, it will take
a longer time and bigger memory to run. This can be explained by two advantages of the
proposed method. The first is that the nodes in FVSFP tree are arranged with regard to feature
value instead of feature value’s counts. The second is that the infrequent nodes are preserved
in the FVSFP tree construction process, they are deleted in the later mining process.

Table 6. Experimental results on the chess dataset. (bold means better result)

Minimal Support Rate Methods Runtime (s)
(Mean ± std)

Memory (MB)
(Mean ± std)

0.01
Incremental 15.76 ± 0.88 56.62 ± 0.68

Batch 28.72 ± 1.07 96.72 ± 0.04

0.008
Incremental 15.96 ± 0.22 57.22 ± 0.13

Batch 28.60 ± 0.83 97.06 ± 0.11

0.006
Incremental 16.41 ± 1.50 57.54 ± 0.08

Batch 28.94 ± 1.05 97.26 ± 0.11

0.004
Incremental 16.98 ± 0.32 58.4 ± 0.14

Batch 29.71 ± 0.35 98.04 ± 0.11

0.002
Incremental 23.15 ± 1.17 59.92 ± 0.24

Batch 35.06 ± 0.22 99.38 ± 0.99

3.2.3. Testing on the Mushroom Dataset

Table 7 shows the experimental results on the mushroom dataset. Mining CCB in an
incremental way costs less in terms of runtime and memory than mining in a batch way on
all minimal support rates.

Appl. Sci. 2023, 13, 6458 12 of 16

Table 7. Experimental results on the mushroom dataset. (bold means better result)

Minimal Support Rate Methods Runtime (s)
(Mean ± std)

Memory (MB)
(Mean ± std)

0.01
Incremental 117.56 ± 4.99 89.22 ± 0.08

Batch 150.6 ± 1.51 144.06 ± 1.36

0.008
Incremental 114.26 ± 5.16 97.6 ± 6.17

Batch 159 ± 2.34 145.44 ± 2.80

0.006
Incremental 119.43 ± 8.52 79.4 ± 0.73

Batch 176.2 ± 10.80 147.76 ± 3.15

0.004
Incremental 122.09 ± 9.43 80.18 ± 0.38

Batch 171.8 ± 9.49 147.28 ± 2.43

0.002
Incremental 115.65 ± 6.90 88.68 ± 4.74

Batch 171.4 ± 5.77 149.44 ± 4.80

3.2.4. Testing on the Spambase Dataset

Test results on the Spambase dataset are reported in Table 8. The incremental method
greatly outperforms the batch method on all minimal support rates.

Table 8. Experiment results on the Spambase dataset. (bold means better result)

Minimal Support Rate Methods Runtime (s)
(Mean ± std)

Memory (MB)
(Mean ± std)

0.01
Incremental 26.16 ± 0.98 83.12 ± 0.78

Batch 48.22 ± 109 177.17 ± 0.52

0.008
Incremental 26.99 ± 0.42 83.67 ± 0.23

Batch 48.90 ± 0.89 177.86 ± 0.41

0.006
Incremental 27.39 ± 1.60 84.14 ± 0.11

Batch 49.24 ± 1.45 178.66 ± 0.41

0.004
Incremental 27.84 ± 0.12 84.64 ± 0.34

Batch 49.91 ± 0.25 178.95 ± 0.21

0.002
Incremental 38.05 ± 1.02 87.12 ± 0.26

Batch 60.86 ± 0.32 180.48 ± 0.59

3.2.5. Testing on the Semeion Dataset

Experiment results for the incremental method and batch method on the semeion
dataset are shown in Table 9. The incremental method costs much less in terms of runtime
and memory than the batch method on all minimal support rates.

Appl. Sci. 2023, 13, 6458 13 of 16

Table 9. Experiment results on semeion dataset. (bold means better result)

Minimal Support Rate Methods Runtime (s)
(Mean ± std)

Memory (MB)
(Mean ± std)

0.01
Incremental 37.76 ± 0.48 236.62 ± 3.75

Batch 67.8 ± 1.48 367.48 ± 0.25

0.008
Incremental 37.77 ± 0.48 239.36 ± 0.32

Batch 67.2 ± 0.44 367.62 ± 0.08

0.006
Incremental 39.16 ± 0.46 238.86 ± 1.19

Batch 68.6 ± 2.07 369.26 ± 2.54

0.004
Incremental 40.91 ± 1.46 240.8 ± 4.40

Batch 70.4 ± 2.07 368.84 ± 0.11

0.002
Incremental 60.92 ± 3.52 244.08 ± 3.30

Batch 90 ± 7.84 371.38 ± 0.04

3.2.6. Testing on the BIRADS Dataset

Comparison results of two methods on the BIRADS dataset are reported in Table 10.
Incrementally mining CCB costs less runtime and less memory than mining using the
batch method.

Table 10. Experimental results on the BIRADS dataset. (bold means better result)

Minimal Support Rate Methods Runtime (s)
(Mean ± std)

Memory (MB)
(Mean ± std)

0.01
Incremental 2.03 ± 0.12 20.54 ± 0.13

Batch 3.19 ± 0.46 26.88 ± 0.14

0.008
Incremental 2.04 ± 0.02 21.52 ± 0.14

Batch 3.27 ± 0.18 26.98 ± 0.08

0.006
Incremental 2.31 ± 0.04 19.64 ± 0.23

Batch 3.65 ± 0.262 27.14 ± 0.11

0.004
Incremental 3.20 ± 0.12 21.08 ± 0.13

Batch 4.20 ± 0.25 27.58 ± 0.04

0.002
Incremental 5.40 ± 0.20 20.46 ± 0.13

Batch 7.62 ± 0.23 28.62 ± 0.08

3.2.7. Testing on the WebDocs Dataset

In addition to the five small datasets, one big dataset WebDocs http://fimi.uantwerpen.
be/data/ (accessed on 11 October 2022) is tested. The size of T10I4D100K is 1.4 GB. It
contains 1,692,082 samples. Running in a batch way fails because the required memory
for the batch method is bigger than the maximal available memory. For the incremental
method, WebDocs is divided into 20 equal subsets (71 MB), the required maximal memory
is about 1.2 GB. The incremental method succeeds in running.

The final FVSFP tree and CCBs produced in both “Incremental” and “Batch” ways are
identical. The average saved runtime and memory on five datasets is shown in Table 11.
It can be found that the bigger the dataset size is, the longer time and more memory can
be saved. If the dataset size is TB-level, the advantage of the proposed method can be
more apparent.

http://fimi.uantwerpen.be/data/
http://fimi.uantwerpen.be/data/

Appl. Sci. 2023, 13, 6458 14 of 16

Table 11. Saved time and memory on different datasets.

Dataset Size (KB) Average Saved
Runtime (s)

Average Saved
Memory (MB)

BIRADS 61 1.39 5.79

chess 359 12.55 44.75

mushroom 620 48.8 59.78

Spambase 686 22.3 54.2

semeion 1586 30.5 130.97

3.2.8. Comparison with State-of-the-Art Methods

To comprehensively investigate the performance of the proposed IMB method, it is
compared with three state-of-the-art methods, FPMSIM [16], FIUFP [34] and TSTP [35].
FPMSIM and FIUFP improved the standard FP-growth [31] to update more effectively.
TSTP is an evolutionary algorithm-based biclustering method that is designed to mine
all kinds of biclusters. Since this study aims to only mine column constant biclusters, the
fitness function of TSTP is modified as the variance sum of each column in a biclsuter. The
comparison result of the four methods on five datasets when the minimal support rate
is 0.01 is shown in Figure 5. We can see that the proposed IMB method costs much less
runtime and memory than the three comparison methods, demonstrating its superiority.

chess mushroom semeion Spambase BIRADS
0

50

100

150

200

dataset

R
u
n
ti

m
e(

se
c)

chess mushroom semeion Spambase BIRADS
0

200

400

600

dataset

M
em

o
ry

(M
B

)

FPMSIM

FIUFP

TSTP

IMB

FPMSIM

FIUFP

TSTP

IMB

Figure 5. Comparison with state-of-the-art methods.

Analyzing the found CCBs, it can be found that for the mined CCBs of all methods
(IMB, batch and the three state-of-the-art comparison methods), the number of mined CCBs
of different methods are equal. Each CCB has identical elements. The difference of different
methods lies only in the time and memory used to find the column constant bicluster.

4. Conclusions and Future Work

In this paper, we notice that nowadays the issue of incrementally mining column
constant bicluster has not been investigated yet. We propose a novel incrementally mining
column constant bicluster method based a modified FP tree named FVSFP. The technical
contribution of FVSFP tree lies in two parts. The first is that the nodes in the FVSFP tree
are arranged according to feature value instead of feature value’s counts. The second is

Appl. Sci. 2023, 13, 6458 15 of 16

that the infrequent nodes are preserved in the FVSFP tree construction process, they are
deleted in the later mining process. Therefore, the FVSFP tree structure can be very easily
maintained. Experiment results illustrate that the proposed model is capable of efficiently
incrementally mining column constant biclusters, saving runtime and memory compared
with mining in a batch way.

In the future, the following directions will be investigated: (1) In this study, only
constant column bicluster is investigated. In real cases, due to the widespread noise,
column nearly constant bicluster may be more frequently seen. In the future, the proposed
FVSFP should be modified to mine column nearly constant bicluster. (2) Biclusters can
be categorized as a constant bicluster, row constant bicluster, column constant bicluster,
additive bicluster and multiplicative bicluster. In this study, only the column constant
bicluster is studied. Incrementally mining other kinds of bicluster can be investigated in
the future.

Author Contributions: Methodology, J.Z.; Writing and original draft preparation, J.Z. and X.W.;
Writing, review and editing, J.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the NSFC under Grant No. 12071250.

Data Availability Statement: Data sharing not applicable No new data were created or analyzed in
this study. Data sharing is not applicable to this article.

Acknowledgments: The author is very grateful to the referees for their careful reading and valuable
suggestions, and to the teachers from the School of Management Science of Qufu Normal University
for their guidance and help.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Samir, R.; El-Hennawy, H.; Elbadawy, H. Cluster-Based Multi-User Multi-Server Caching Mechanism in Beyond 5G/6G MEC.

Sensors 2023, 23, 996. [CrossRef] [PubMed]
2. Li, M.; Wang, H.; Long, H.; Xiang, J.; Wang, B.; Xu, J.; Yang, J. Community Detection and Visualization in Complex Network by

the Density-Canopy-Kmeans Algorithm and MDS Embedding. IEEE Access 2019, 7, 120616–120625. [CrossRef]
3. Huang, Q.; Tao, D.; Li, X.; Liew, A. Parallelized Evolutionary Learning for Detection of Biclusters in Gene Expression Data.

IEEE/ACM Trans. Comput. Biol. Bioinform. 2012, 9, 560–570. [CrossRef] [PubMed]
4. Cheng, Y.; Church, G.M. Biclustering of expression data. In Proceedings of the Eighth International Conference on Intelligent

Systems for Molecular Biology, San Diego, CA, USA, 19–23 August 2000; pp. 799–808.
5. Cheng, H. Towards Accurate and Efficient Classification: A Discriminative and Frequent Pattern-Based Approach; Technical Report;

University of Illinois: Urbana, IL, USA, 2008.
6. Huang, Q.; Chen, Y.; Liu, L.; Tao, D.; Li, X. On Combining Biclustering Mining and AdaBoost for Breast Tumor Classification.

IEEE Trans. Knowl. Data Eng. 2020, 32, 728–738. [CrossRef]
7. Huang, Q.; Yang, J.; Feng, X.; Liew, A.W.; Li, X. Automated Trading Point Forecasting Based on Bicluster Mining and Fuzzy

Inference. IEEE Trans. Fuzzy Syst. 2020, 28, 259–272. [CrossRef]
8. Sun, J. Motor Imagery EEG Classification with Biclustering Based Fuzzy Inference. J. Med. Imaging Health Inform. 2020,

10, 1486–1493. [CrossRef]
9. Huang, Q.; Wang, T.; Tao, D.; Li, X. Biclustering Learning of Trading Rules. IEEE Trans. Cybern. 2015, 45, 2287–2298. [CrossRef]
10. Xue, Y.; Li, T.; Chen, J.; Zhao, H.; Zhang, H. A New Customer Segmentation Framework Based on Biclustering Analysis. J. Softw.

2014, 9, 1359–1366.
11. Huang, Q.; Jin, L.; Tao, D. An unsupervised feature ranking scheme by discovering biclusters. In Proceedings of the 2009

IEEE International Conference on Systems, Man and Cybernetics, San Antonio, TX, USA, 11–14 October 2009; pp. 4970–4975.
[CrossRef]

12. Saini, R.; Mussbacher, G.; Guo, J.L.; Kienzle, J. Machine learning-based incremental learning in interactive domain modelling. In
Proceedings of the 25th International Conference on Model Driven Engineering Languages and Systems, Montreal, QC, Canada,
16–21 October 2022; pp. 176–186.

13. Ditzler, G.; Polikar, R. Incremental Learning of Concept Drift from Streaming Imbalanced Data. IEEE Trans. Knowl. Data Eng.
2013, 25, 2283–2301. [CrossRef]

14. Lange, S.; Zilles, S. Formal models of incremental learning and their analysis. In Proceedings of the International Joint Conference
on Neural Networks, Portland, OR, USA, 20–24 July 2003; Volume 4, pp. 2691–2696. . [CrossRef]

http://doi.org/10.3390/s23020996
http://www.ncbi.nlm.nih.gov/pubmed/36679793
http://dx.doi.org/10.1109/ACCESS.2019.2936248
http://dx.doi.org/10.1109/TCBB.2011.53
http://www.ncbi.nlm.nih.gov/pubmed/21383419
http://dx.doi.org/10.1109/TKDE.2019.2891622
http://dx.doi.org/10.1109/TFUZZ.2019.2904920
http://dx.doi.org/10.1166/jmihi.2020.3040
http://dx.doi.org/10.1109/TCYB.2014.2370063
http://dx.doi.org/10.1109/ICSMC.2009.5346363
http://dx.doi.org/10.1109/TKDE.2012.136
http://dx.doi.org/10.1109/IJCNN.2003.1223992

Appl. Sci. 2023, 13, 6458 16 of 16

15. Liu, X.; Zheng, L.; Zhang, W.; Zhou, J.; Cao, S.; Yu, S. An evolutive frequent pattern tree-based incremental knowledge discovery
algorithm. ACM Trans. Manag. Inf. Syst. (TMIS) 2022, 13, 1–20. [CrossRef]

16. Xun, Y.; Cui, X.; Zhang, J.; Yin, Q. Incremental frequent itemsets mining based on frequent pattern tree and multi-scale. Expert
Syst. Appl. 2021, 163, 113805. [CrossRef]

17. Huang, Q.; Huang, X.; Kong, Z.; Li, X.; Tao, D. Bi-Phase Evolutionary Searching for Biclusters in Gene Expression Data. IEEE
Trans. Evol. Comput. 2019, 23, 803–814. [CrossRef]

18. Amos, T.; Roded, S.; Ron, S. Discovering statistically significant biclusters in gene expression data. Bioinformatics 2002,
18, S136–S144.

19. Gu, J.; Liu, J.S. Bayesian biclustering of gene expression data. BMC Genom. 2008, 9, S4. [CrossRef]
20. Han, J.; Cheng, H.; Xin, D.; Yan, X. Frequent pattern mining: current status and future directions. Data Min. Knowl. Discov. 2007,

15, 55–86. [CrossRef]
21. Djenouri, Y.; Belhadi, A.; Djenouri, D.; Lin, J.C.W. Cluster-based information retrieval using pattern mining. Appl. Intell. 2021,

51, 1888–1903. [CrossRef]
22. Belhadi, A.; Djenouri, Y.; Lin, J.C.W.; Cano, A. A general-purpose distributed pattern mining system. Appl. Intell. 2020,

50, 2647–2662. [CrossRef]
23. Wu, J.M.T.; Srivastava, G.; Wei, M.; Yun, U.; Lin, J.C.W. Fuzzy high-utility pattern mining in parallel and distributed Hadoop

framework. Inf. Sci. 2021, 553, 31–48. [CrossRef]
24. Azzam, B.; Harzendorf, F.; Schelenz, R.; Holweger, W.; Jacobs, G. Pattern discovery in white etching crack experimental data

using machine learning techniques. Appl. Sci. 2019, 9, 5502. [CrossRef]
25. Cheung, D.W.; Han, J.; Ng, V.T.; Wong, C.Y. Maintenance of discovered association rules in large databases: an incremental

updating technique. In Proceedings of the Twelfth International Conference on Data Engineering, New Orleans, LA, USA,
26 February–1 March 1996, pp. 106–114. [CrossRef]

26. Li, Y.; Zhang, Z.H.; Chen, W.B.; Min, F. TDUP: an approach to incremental mining of frequent itemsets with three-way-decision
pattern updating. Int. J. Mach. Learn. Cybern. 2017, 8, 441–453. [CrossRef]

27. Lin, C.; Hong, T.; Lu, W. The Pre-FUFP algorithm for incremental mining. Expert Syst. Appl. 2009, 36, 9498–9505. [CrossRef]
28. Nath, B.; Bhattacharyya, D.K.; Ghosh, A. Incremental association rule mining: a survey. InWiley Interdisciplinary Reviews: Data

Mining and Knowledge Discovery; Wiley: Hoboken, NJ, USA, 2013; Volume 3.
29. Koh, J.L.; Shieh, S.F. An Efficient Approach for Maintaining Association Rules Based on Adjusting FP-Tree Structures. Lect. Notes

Comput. Sci. 2004, 2973, 417–424.
30. Sun, J.; Xun, Y.; Zhang, J.; Li, J. Incremental Frequent Itemsets Mining with FCFP Tree. IEEE Access 2019, 7, 136511–136524.

[CrossRef]
31. Han, J.; Pei, J.; Yin, Y.; Mao, R. Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data

Min. Knowl. Discov. 2004, 8, 53–87. [CrossRef]
32. Giang, N.; Son, L.; Ngan, T.; Tuan, T.; Phuong, H.; Abdel-Basset, M.; de Macêdo, A.R.L.; de Albuquerque, V.H.C. Novel

Incremental Algorithms for Attribute Reduction From Dynamic Decision Tables Using Hybrid Filter-Wrapper With Fuzzy
Partition Distance. IEEE Trans. Fuzzy Syst. 2020, 28, 858–873. [CrossRef]

33. Goethals, B.; Zaki, M. Advances in frequent itemset mining implementations: introduction to FIMI’03. In Proceedings of the
Workshop on FIMI, Melbourne, FL, USA, 19 September 2003.

34. Thurachon, W.; Kreesuradej, W. Incremental association rule mining with a fast incremental updating frequent pattern growth
algorithm. IEEE Access 2021, 9, 55726–55741. [CrossRef]

35. Sun, J.; Huang, Q. Two stages biclustering with three populations. Biomed. Signal Process. Control. 2023, 79, 104182. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3495213
http://dx.doi.org/10.1016/j.eswa.2020.113805
http://dx.doi.org/10.1109/TEVC.2018.2884521
http://dx.doi.org/10.1186/1471-2164-9-S1-S4
http://dx.doi.org/10.1007/s10618-006-0059-1
http://dx.doi.org/10.1007/s10489-020-01922-x
http://dx.doi.org/10.1007/s10489-020-01664-w
http://dx.doi.org/10.1016/j.ins.2020.12.004
http://dx.doi.org/10.3390/app9245502
http://dx.doi.org/10.1109/ICDE.1996.492094
http://dx.doi.org/10.1007/s13042-015-0337-6
http://dx.doi.org/10.1016/j.eswa.2008.03.014
http://dx.doi.org/10.1109/ACCESS.2019.2943015
http://dx.doi.org/10.1023/B:DAMI.0000005258.31418.83
http://dx.doi.org/10.1109/TFUZZ.2019.2948586
http://dx.doi.org/10.1109/ACCESS.2021.3071777
http://dx.doi.org/10.1016/j.bspc.2022.104182

	Introduction
	Method
	Preprocessing
	Initial CCB Mining
	Construction of a Header Table
	Initial FVSFP Tree Construction
	Initial CCB Mining

	Incremental CCB Mining
	Updation of Initial FVSFP Tree
	Remining of CCB

	Experiments
	Experimental Settings
	Experimental Results
	Ablation Study
	Testing on Chess Dataset
	Testing on the Mushroom Dataset
	Testing on the Spambase Dataset
	Testing on the Semeion Dataset
	Testing on the BIRADS Dataset
	Testing on the WebDocs Dataset
	Comparison with State-of-the-Art Methods

	Conclusions and Future Work
	References

