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Abstract: With the advantages of simple model structure and performance-speed balance, the single
object tracking (SOT) model based on a Transformer has become a hot topic in the current object
tracking field. However, the tracking errors caused by the target leaving the shot, namely the target
out-of-view, are more likely to occur in videos than we imagine. To address this issue, we proposed a
target re-identification method for SOT called TRTrack. First, we built a bipartite matching model
of candidate tracklets and neighbor tracklets optimized by the Hopcroft–Karp algorithm, which is
used for preliminary tracking and judging the target leaves the shot. It achieves 76.3% mAO on
the tracking benchmark Generic Object Tracking-10k (GOT-10k). Then, we introduced the alpha-
IoU loss function in YOLOv5-DeepSORT to detect the shot boundary objects and attained 38.62%
mAP75:95 on Microsoft Common Objects in Context 2017 (MS COCO 2017). Eventually, we designed
a backtracking identification module in TRTrack to re-identify the target. Experimental results
confirmed the effectiveness of our method, which is superior to most of the state-of-the-art models.

Keywords: target re-identification; single object tracking; object detection; YOLO; DeepSORT

1. Introduction

Visual single object tracking (SOT) is a basic computer vision task that refers to the
detection, extraction, recognition, and tracking of the single object selected in the video
sequence, which can realize an understanding of the object’s behavior [1]. According to the
object specified in the first frame in the video, the SOT network predicts the location and size
of the object in subsequent frames. Visual SOT has a wide range of application prospects
in aspects such as video surveillance [2], automatic driving [3], and human–computer
interaction [4]. It is also the foundation for other computer vision tasks [5].

With the development of SOT, many practical and efficient algorithms have emerged [6].
One type of SOT model is based on correlation filters, such as KCF [7], SRDCF [8], and
ECO [9]. This kind of method’s idea is that the cyclic convolution operation is completed
by a fast Fourier transform through the obtained correlation filter in the next frame to
realize the positioning of the target center point [10]. Another type of model is based
on the Siamese network, which is designed to transform the object tracking task into a
feature-matching task between a given template image and candidate images [11]. Models
such as SiamFC [12], DaSiamRPN [13], and SiamAttn [14] are implemented based on this
idea. In recent years, other types of Transformer [15] based models, such as RGB-T [16],
STARK [17], MixFormer [18], and OSTrack [19], have become one of the most popular
SOT methods due to their advantages of simple model structure and performance–speed
balance. Another fundamental task in computer vision, object detection, is closely related
to object tracking. Object tracking networks are often used to track detected objects for
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long-term object detection [20]. Current object detectors based on deep learning have
become mainstream models, mainly divided into two-stage detectors and single-stage
detectors. The former uses a proposal mechanism to obtain image regions that are more
likely to contain objects in order to achieve target prediction, mainly including R-CNN [21],
Fast R-CNN [22], and Faster R-CNN [23]. The latter directly detects objects from anchors
after extracting input image features, mainly including SSD [24], YOLO series [25], and
DETR [26]. For example, the detectors of the YOLO series directly pre-define anchors
with multiple scales at all locations of the image and predict the category probability and
confidence score, greatly improving the speed of object detection [27].

However, there are some challenges that have been difficult to solve for SOT models,
mainly including target occlusion, out-of-view, deformation, and scale variation. These
challenges can easily result in an inability to continue tracking or result in tracking errors.
Figure 1 shows some examples in the tracking benchmark dataset GOT-10k [28].
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Figure 1. Example of SOT challenges in benchmark dataset GOT-10k.

In fact, not only in SOT but also in other tasks of computer vision, such as multi-object
tracking (MOT), object detection, and person re-identification (Re-ID), these four major
challenges are urgent issues to be addressed. The specific descriptions of these challenges
are as follows:

(1) Target occlusion. Due to the complex environment in videos, when the tracked targets
are moving or when other objects in the shots are moving, the tracked targets may
be obscured by other objects for a period of time. In Figure 1, the moving ship is
obstructed by the railing in front of the camera.

(2) Target out-of-view. This situation often occurs in videos where the tracked targets
are moving rapidly, regardless of whether the shots are fixed or moving. Because the
targets are generally not aware of the range of the shots, as they move, it may cause
them to leave the cameras. The monkey’s rapid movement causes it to leave the shot
in Figure 1.

(3) Target deformation. Tracked targets with irregular shapes and sizes or actively chang-
ing their own appearance can cause this situation, especially when they move. In
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Figure 1, the small boat changes its plane shape in the shots due to its rotational
motion.

(4) Target scale variation. This situation occurs when the tracked targets approach or
move away from the shots. The small dog’s running back and forth in front of the
camera changes its scale within the lens in Figure 1.

Even SOT models based on Transformers find it difficult to cope with these challenges,
resulting in tracking errors. The target out-of-view in these challenges, which means that
the object leaves the shot and reappears, is more likely to appear in videos than we imagine,
making it harder for SOT models to be well applied to real life. Through our analysis, the
main factors may be as follows:

(1) There is no uniform standard for videos, which are shot from different perspectives,
and it is common for objects to move in and out of view. Videos, especially daily
videos, are often casually shot, capturing scenes that are not the entire actual space but
a limited fan-shaped area. At the same time, due to the ease of interaction between
objects in videos and the uncertainty of their behavior, it is easy to cause objects to
leave the shot.

(2) The SOT algorithms are generally weak in the re-identification of objects out of
shots [29]. Most SOT models focus on enhancing the performance of tracking by
improving the ability of feature extraction and relation modeling [19]. However, when
objects are obscured or change their appearance, the effective features of the object
itself are extremely limited [30]. After the target leaves the shot, the model will choose
the object with the highest confidence score in the current frame for long-term tracking,
causing an inability to achieve target re-identification in a short period of time.

Figure 2 shows the two possible reasons for poor tracking performance.
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In attempting to address the problem of poor tracking results of target out-of-view, this
paper proposes a target re-identification method based on shot boundary object detection
for single object tracking, called TRTrack. Specifically, we build a bipartite matching model
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of candidate tracklets and neighbor tracklets optimized by the Hopcroft–Karp algorithm,
which is used for preliminary tracking and judging the target leaves the shot. Then, TRTrack
carries out object detection at the shot boundary by improved YOLOv5-DeepSORT, in which
the original loss function is substituted with the alpha-IoU. The backtracking identification
module in TRTrack crops the detected objects and inputs them back into the tracking
model as the search region image. Finally, the target with high confidence score will be
re-identified.

The contributions of this paper are shown below:

• To deal with the problem of unsatisfactory tracking results resulting from target out-
of-view, we propose a target re-identification method based on shot boundary object
detection for single object tracking, called TRTrack;

• We build a bipartite matching model of candidate tracklets and neighbor tracklets
optimized by the Hopcroft–Karp algorithm to judge the target leaves the shot and in-
troduce the alpha-IoU loss function to YOLOv5-DeepSORT to enhance object detection
capability;

• Through a wide range of experiments by self-built videos dataset CLV and benchmark
dataset, TRTrack is verified to be applied well for target re-identification in most video
tracking tasks.

The rest of this paper is structured as follows: Section 2 presents the related work,
including disappearing objects re-identification methods, a single object tracking model
based on Transformer, and an object detection model following a top-down approach.
Section 3 describes the proposed methodology of the target re-identification method TR-
Track with a preliminary object tracking module, boundary object detection module, and
backtracking identification module. Section 4 shows the detailed experiment and results.
Section 5 concludes our work.

2. Related Work
2.1. Methods of Disappearing Target Re-Identification

The target re-identification mentioned in this paper is fundamentally different from a
major task of computer vision, namely, person re-identification (Re-ID). Re-ID is geared
to recognize the same person through videos obtained from different cameras [31]. It
can be categorized into person detection, person tracking, and person retrieval [32]. The
introduction of infrared technology has become a new development hotspot for Re-ID, and
people have also begun to attach importance to infrared technology in other fields [33–35].
By contrast, the target re-identification in this paper only refers to the identification of
targets that leaves the shot and reappears in SOT tasks.

Target out-of-view is essentially a special case of target disappearing, for which there
are various algorithms that strive to resolve, especially for another special case, target
occlusion. In fact, the target out-of-view is essentially the same as the target being obscured
by the shot boundary.

The LMCF [36] model proposed by Wang et al. determines whether the object is
obscured or disappears by observing the change degree of self-created metric APCE.
Liu et al. [37] designed the BM Net with a multi-stream convolutional-LSTM network,
which predicts the position of the target in subsequent frames based on its past trajectory.
The Siam R-CNN [38] model uses the mechanism of object redetection to input the nearest
object into the redetection network to judge and retrieve the object. Chen et al. [30]
created the NeighborTrack, which uses the confidence score output from the object tracking
model to automatically utilize the information of neighbor regions that are not obscured
to re-identify the tracking target. For multi-object tracking, Ahn et al. [39] introduced
an attention-based re-identification model, which extracts feature vectors from images to
correlate objects based on their appearance effectively.

However, most of these methods rarely use the Transformer [15], leading to their lack
of tracking performance and computation speed. They aim more at reducing the tracking
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errors caused by the object being obscured in the shots instead of re-identifying the object
that leaves the shot and reappears.

2.2. Single Object Tracking Model Based on Transformer

Transformer stands out in object tracking after Dosovitskiy et al. [40] formally intro-
duced the Transformer model into computer vision, especially in the field of human pose
estimation [41] or head posed estimation [42].

SOT models based on Transformers can be divided into two- and one-stream frame-
works [19]. The basic difference lies in how to carry out feature extraction and relation
modeling on the template image and the search region image:

(1) Two-stream framework. This framework first inputs the template and the search
region into the backbone of the model and shares the weight. It then concatenates
the output results to feed into the Transformer. Finally, the location of the object
is predicted by classification, regression, and other methods. In recent years, Chen
et al. [43] proposed TransT, which fuses iterative features through stacked self-concern
layers and cross-concern layers. The STARK [21] model implemented by Yan et al.
connects a new template with the search region in a way that automatically updates
template images. Lin et al. [44] proposed SwinTrack based on the total attention
mechanism instead of using CNN and other neural networks. These algorithms have
satisfactory tracking accuracy, but their inference efficiency is not very fast because of
heavy relation modeling.

(2) One-stream framework. In this framework, the template and the search region are
concatenated before they are input into the backbone, and the subsequent process is
similar to that of the two-stream framework. A typical example is the MixFormer [18]
developed by Cui et al., which introduces a mixed attention module to build an infor-
mation interaction channel between the template-search image pairs. The OSTrack [19]
proposed by Ye et al. connects the template and the search region to bidirectional
information flows to combine feature learning with interaction. Chen et al. [45] built
the SimTrack, which is a simplified tracking model using the Transformer as a back-
bone for relation modeling and feature extraction. These algorithms achieve not
only high tracking accuracy but also fast inference speed, thereby balancing between
performance and speed.

However, regardless of the two-stream framework or one-stream framework, most
single object tracking methods based on Transformer focuses on enhancing the performance
by improving the relation modeling and feature extraction capabilities and lack targeted
solutions to common object tracking cases such as object occlusion and deformation [29].
When the object is obscured or changes its appearance, the effective features of the object
itself are extremely limited [30]. Target out-of-view is a special case of target disappearing,
so it is difficult to re-identify the target in a short time when it reappears.

2.3. Object Detection Method Following the Top-Down Approach

Object detection is a basic task in computer vision, with the purpose of identifying
categories and predicting the position of objects in image sequences. It is widely used in
fields such as pedestrian recognition [46], autonomous driving [47], and crop planting [48].

Object detection algorithms can be separated into top-down and bottom-up methods,
with the main distinction being the period of holistic object generation and evaluation.
The top-down approach is still the most commonly used method nowadays, including
two-stage and one-stage methods:

(1) Two-stage method. This method uses a proposal mechanism to decrease negative
candidates generated by anchors and outputs the object detection results consisting of
prediction bounding boxes and corresponding probabilities of object category through
the detection network, such as CNNs. R-CNN [21], proposed by Donahue et al.,
combines region proposals with CNNs and can predict and partition objects by
applying high-capacity convolutional neural networks. Girshick [22] designed the Fast
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R-CNN object detection model, which uses deep convolutional networks to classify
object proposals efficiently; R-FCN [49], developed by Dai et al., contains position-
sensitive score maps to resolve the contradiction between image classification and
object detection. However, this method often results in a long training time and slow
testing speed due to a large amount of repeated computation of convolutional features.

(2) One-stage method. This method is created to realize object detection directly from an-
chors after extracting the input image features without using any proposal elimination
mechanisms. Wei et al. [24] presented the SSD, which removes the generating pro-
posal and image feature extraction modules and implements all the work of the model
into a single network. RetinaNet [50] is designed to address imbalance problems of
object detection by optimizing the standard cross entropy loss. Redmon et al. [25]
converted the object detection task into a regression problem of object bounding boxes
and corresponding category probabilities while proposing a single object detection
network, YOLO, which has attained optimal accuracy and speed performance. This
type of method can optimize the detection performance from end to end and has very
high computation efficiency.

Regardless of whether a two- or a one-stage method is used, inherent problems arise
in the object detection model, such as frequent ID switching of the detected object may
result from occlusions. Therefore, extra models such as DeepSORT [20] can be used to
improve object detection results. DeepSORT introduces deep learning into the SORT [51]
algorithm and reduces identity switching by adding appearance descriptors.

3. Proposed Method

The overall architecture of TRTrack, a target re-identification method based on shot
boundary object detection for single object tracking, is shown in Figure 3.
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boundary object detection, and backtracking identification. First, for any frame IT with template
image patch z ∈ R3×Hz×Wz and search region image patch x ∈ R3×Hx×Wx , TRTrack inputs them into
the preliminary object tracking module for preliminary tracking. Then, the tracking results from the
head will be optimized by the bipartite matching model, which is introduced the Hopcroft–Karp
algorithm to judge whether the target leaves the shot. If not, the tracking will continue; otherwise,
tracking will be stopped. In the latter case, the search region image patch x of the frame IT will be
input into the boundary object detection module to detect the objects within a certain shot boundary
range. Finally, in the backtracking identification module, the detected objects will be cropped out and
used to replace the original search region in the next frame and input back into the tracking model.
Eventually, TRTrack judges whether the target reappears according to the confidence score St from
object tracking head and realizes the rapid target re-identification.

3.1. Preliminary Object Tracking Module

In the preliminary object tracking module, the base structure of OSTrack-384 [19] with
powerful SOT performance-speed balance perfectly fits our goal, which is selected as the
main component of the module. The post-processor NeighborTrack [30] is used to optimize
the preliminary tracking results. It is a method that uses the confidence score output
from the backbone of an object tracking model to automatically derive the information of
neighbor regions that are not obscured.

The bipartite matching model in TRTrack maintains both the candidate pool Pc and
the neighbor pool Pn. The former is used to select the most suitable prediction tracking
object, and the latter is used to verify the selected prediction tracking object. It converts
the association problem between the template and search region in SOT into the bipartite
matching problem between the candidate tracklets Sc = Pc and the neighbor tracklets
Sn = Pn ∪ {η}, where η = {bt−1, . . . , bt−τ} represents the real prediction tracking boxes,
t is the sequence number of frames at any time, and τ is the number of frames to be
traced. The weight wij on the edge between two nodes, ξt

i ∈ Sc and ζt
j ∈ Sn, represents

the average Jaccard overlap calculation between the two tracklets. This means that if
ξt

i =
(
bc

t−1, . . . , bc
t−τ

)
and ζt

j =
(
bn

t−1, . . . , bn
t−τ

)
, the formula of the weight is denoted as

wij =
1
τ

t−1

∑
k=t−τ

IoU(bc
k, bn

k ) (1)

where IoU represents the Jaccard overlap calculation between the two prediction bounding
boxes, which reflects the similarity between the candidate tracklets Sc and the neighbor
tracklets Sn.

It is worth noting that the Hopcroft–Karp algorithm, which can achieve the maximum
matching of the bipartite graph and has high computation efficiency, is introduced to
implement bipartite matching. The time complexity of it is O =

(
|E|
√
|V|
)

, where |E| is
the number of edges of the bipartite graph and |V| is the number of vertices in the bipartite
graph. The specific formula of the improved bipartite matching result is as follows

matt = HK(Sc, Sn) (2)

where matt indicates the bipartite matching result of the It frame. If Sc does not match Sn,
which means the candidate tracklet ξt

m does not match the target tracklet η, it indicates that
the target object is obscured or disappears. A function at_bdy is added to judge whether
the prediction bounding box bt of the current frame It is at the shot boundary. The equation
is as follows

at_bdy(bt) =
(

x ∈
(

0, W
13

))
∩
(

y ∈
(

0, H
13

))
∩
(

x + w ∈
(

12W
13 , W

))
∩
(

y + h ∈
(

12H
13 , H

)) (3)
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where bt = (x, y, w, h) are the bounding box containing abscissas and ordinates of the upper
left corner and the size, W is the width of the video, and H is the length of the video. The
final judgment of whether the target leaves the shot is shown as

outt = m̃att ∩ at_bdy(bt) (4)

where m̃att represents the inverse value of matt, and outt ∈ {0, 1} is the judgment variable
of whether the target leaves the shot in the frame It. If the value is 1, the target has left the
shot. Conversely, a value of 0 means that the target is still in the shot.

Figure 4 shows the feature maps obtained in the tracking network of the preliminary
tracking module in TRTrack. The color in the feature maps reflects the similarity estimation
between each position of the search region image and the target, and the greener the color
indicates that the position of the current image is more likely to be the target.
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3.2. Boundary Object Detection Module

In videos, the positions of the out-of-view targets returning from outside to inside
the shots are uncertain, meaning that the target can reappear from almost any location at
the shot boundary. Therefore, the YOLOv5-DeepSORT model, with excellent accuracy of
object detection and inference speed, becomes a suitable tool for detecting the target in the
boundary object detection module.

He et al. [52] utilized the power transformations to existing IoU loss functions, such
as GIoU and CIoU, to develop a new IoU loss function, alpha-IoU. The α in the alpha-IoU
represents a power parameter that provides greater flexibility for the detector to achieve
different bounding box regression accuracy. Abundant experimental results reveal that the
alpha-IoU can realize more accurate object detection by weighting the gradient and loss of
objects with high IoU values in object detection models [53].

The original loss function of YOLOv5 is replaced by the alpha-IoU in the boundary
object detection module of TRTrack to enhance the object detection accuracy and flexibility
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of the boundary object detection module. Based on the idea of alpha-IoU, we set the loss
function only takes effect when the parameter α is greater than 1. The formula is as follows

Lα−IoU =
1− IoUα

α
, α > 1 (5)

where IoU means the original Jaccard overlap calculation representing the intersection
ratio of the prediction bounding box and the ground truth. In this case, the whole loss
value of YOLOv5 in TRTrack is as follows

Ltotal = Lcon f + Lclass + Lα−IoU
′ (6)

where Lcon f , Lclass, and Lα−IoU
′ indicate the confidence loss, the classification loss, and the

actual alpha-IoU loss, respectively. The specific alpha-IoU calculation equation is shown as

Lα−IoU
′ =

S2

∑
i=0

B

∑
j=0

(1− Lα−IoU) (7)

where S2 represents the number of image grids, and B is the number of every grid anchor
box in object detection.

On this basis, after the method in Section 3.1 is used to judge whether the target
leaves the shot, the object detection is conducted at the shot boundary, and the detection
range function is at_bdy mentioned in Section 3.1. Then, the results of object detection are
shown as

det = {d1, . . . , dn} ∈ at_bdy(bd) (8)

which represents a collection of detection bounding boxes for objects at the shot boundary,
and bd = (x, y, w, h) are the whole object detection bounding boxes.

3.3. Backtracking Identification Module

By taking advantage of the peculiarity of the SOT model in TRTrack that it transforms
object tracking tasks into a feature extraction and matching problem between the template
image and the search region image, we design the backtracking identification module,
which is implemented on the object detection results det = {d1, . . . , dn}.

For the objects detected at the boundary of the shot, TRTrack crops them out by setting
the pixel values in the frame except for the region of objects as 0 or 255. That is, only the
detected objects are retained in the current frame. The formula is as follows

crop =
n

∑
k=1

dk, dk ∈ det (9)

Then, the cropped image crop is input back to the SOT model and replaces the current
frame image as the new search region image for tracking. Then the confidence score S,
corresponding to each current prediction tracking bounding box B, will be output from the
head of the tracking model. The confidence score S can be used to judge whether the target
returns to the shot. The formula for judging results is shown as

int =

{
1, S ≥ λ
0, S < λ

(10)

where int ∈ {0, 1} is the judgment variable of whether the target in the frame It has
returned to the shot, and λ is the identification threshold parameter, which is set to 0.56 in
this paper. Figure 5 shows some examples of using the backtracking identification module.
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ments with more than 1.5 million manually labeled bounding boxes. It contains a total of 
over 560 types of moving objects and 87 motion modes. We follow the split of GOT-10k, 
approximately 9.34 k of training data, and 420 test data in GOT-10k. 

Figure 5. Effectiveness of the backtracking identification module. It shows the visual effect of using
the object tracking model to track images of cropped shot boundary objects. It can be seen that the
tracker will accurately track the target rather than other objects.

A flow-process diagram of the backtracking identification module is shown in Figure 6
to demonstrate its practical process better.
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Figure 6. Flow-process diagram of the backtracking identification module. It can be seen that when
the target is judged to have left the shot, the backtracking identification module will crop out the
objects at the shot boundary and input them back into the object tracking model. The output of the
tracking model includes the prediction bounding box and the corresponding confidence score. If the
score is greater than the parameter λ, it indicates that the target is re-identified.

4. Experimental Results

The experimental platform is a Windows 11 64-bit system with two Nvidia GeForce
RTX 4070Ti graphics cards, 64 GB running memory, Pytorch 1.10.0 deep learning framework,
and Cuda 11.3 parallel computing platform, implemented on Python 3.8.

4.1. Experimental Setup
4.1.1. Datasets

We used two mainstream medium and long-term datasets of the SOT field, i.e., La-
SOT [54] and GOT-10k [28], to evaluate the performance of the object tracking module in
TRTrack. The LaSOT dataset consists of 1400 sequences, totaling over 3.5 million frames.
Each sequence of it includes various challenges originating from the wild, such as target
occlusion, deformation, etc. We also divided the training set and the test set according to the
4/1 ratio given by LaSOT. The GOT-10k dataset includes over 10,000 video segments with
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more than 1.5 million manually labeled bounding boxes. It contains a total of over 560 types
of moving objects and 87 motion modes. We follow the split of GOT-10k, approximately
9.34 k of training data, and 420 test data in GOT-10k.

The benchmark dataset MS COCO 2017 was selected to evaluate our object detection
model. MS COCO 2017 is an object detection dataset built by Microsoft, with a total of
80 object categories. The dataset contains objects of various sizes, some of which are noisy
or obstructed, making it challenging. There are over 118 k and 5 k images in the training
and testing sets, respectively. We follow this split in experiments.

For target re-identification, considering the target re-identification problem of objects
in videos studied in this paper, we found that the classroom videos fit our research needs
very well. In classroom videos, because the interaction between teacher and student is
crucial in a lecture, the behavior of a teacher leaving the podium to communicate with
students can easily lead to the teacher being out of view.

On this basis, we established a classroom video dataset CLV, which is selected from ac-
tual classroom videos with prominent classroom video features, such as targets’ frequently
moving in and out of the shots. It includes 16 main classroom video segments, with more
than 6400 manually labeled bounding boxes when the target leaves the shot and reappears.
The video information of the dataset is shown in Table 1.

Table 1. Basic information of classroom video dataset CLV.

Video ID Video Duration Video Size Frame Rate Number of Times the
Target Leaves the Shot

Total Time of the Target
Leaves the Shot

001 40:20 1920 × 1080 30 fps 11 times 79.674 s
002 50:35 1920 × 1080 30 fps 9 times 179.614 s
003 37:42 1920 × 1080 30 fps 11 times 106.721 s
004 33:51 1920 × 1080 30 fps 9 times 142.153 s
005 43:35 1920 × 1080 30 fps 24 times 332.490 s
006 45:14 1920 × 1080 30 fps 15 times 163.069 s
007 32:04 1920 × 1080 30 fps 3 times 110.833 s
008 41:40 1280 × 960 30 fps 8 times 58.689 s
009 38:26 1920 × 1080 30 fps 7 times 174.110 s
010 32:11 1920 × 1080 30 fps 14 times 88.457 s
011 36:58 1280 × 960 30 fps 6 times 101.776 s
012 40:46 1920 × 1080 30 fps 19 times 254.330 s
013 30:09 1280 × 960 30 fps 4 times 76.541 s
014 31:32 1920 × 1080 30 fps 13 times 94.879 s
015 35:27 1920 × 1080 30 fps 16 times 143.556 s
016 38:43 1920 × 1080 30 fps 12 times 167.123 s

4.1.2. Evaluation Metrics

We tested our preliminary tracking module using the evaluation metrics proposed
by GOT-10k and LaSOT. For GOT-10k, including mean average overlap (mAO) and mean
success rate (mSR). For LaSOT, including area under the curve (AUC), normalized precision
(PNorm), and precision (P). Three average precision (AP) and two mean average precision
(mAP) in MS COCO 2017 were used to evaluate our object detection model.

For the self-built dataset CLV, we defined three metrics to evaluate the performance of
target re-identification:

• ET

The unit is “times”, which represents the number of tracking errors using the SOT
model in a video for tracking the target, mainly reflecting the stability of the model.

ET =
n

∑
k=1

1, Tek ∈ TE (11)
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where TE represents the total moments when tracking errors occur, and Tek means the
moment when a tracking error occurs during the k-th tracking error process.

• ED

The unit is “second”, which represents the total duration of tracking errors by using
the SOT model in a video for tracking the target, mainly reflecting the accuracy of the model.

ED =
n

∑
k=1

(Tck − Tek) (12)

where Tck represents the moment when the tracking error was corrected during the k-th
tracking error process.

• TD

The unit is “second”, which represents the total duration of the time interval between
the target’s reappearance after leaving the shot and being tracked again by using the SOT
model in a video, mainly reflecting the ability of target re-identification of the model.

TD =
n

∑
k=1

(Trk − Tak) (13)

where Trk and Tak represent the moment when the tracker re-identifies the target and the
moment the target reappears in the shot during the k-th target re-identification process,
respectively.

4.1.3. Implementation Details

In this study, the OSTrack-384 [19] is selected as the main component of the preliminary
object tracking module. The input sizes of templates and search regions are 192 × 192
pixels and 384 × 384 pixels, the initial learning rate was set to 4 × 10−5, the batch size was
set to 128, and the training epoch was defined as 300.

The bipartite matching model in TRTrack based on NeighborTrack [30] is used to
optimize the tracking results. For SoftNMS in it, the IoU threshold was set to 0.25, and the
time period τ of backtracking tracklets was set to 9.

For YOLOv5-DeepSORT in the boundary object detection module of TRTrack, the
YOLOv5n network with balanced performance is chosen as the basic module of object
detection, which is introduced in the alpha-IoU loss function. Following the universal
approach, the training batch size was valued at 32, the decay rate was set to 5 × 10−4, and
the learning rate was defined as 1 × 10−2. In particular, the value of parameter α of the
alpha-IoU loss function is 3.

4.2. Results and Analysis
4.2.1. Results of Preliminary Object Tracking

As we mentioned in Section 4.1.1, two mainstream medium and long-term SOT bench-
mark datasets, LaSOT [54] and GOT-10k [28], were selected to evaluate the performance of
our preliminary tracking module. LaSOT is a challenging long-term tracking benchmark.
GOT-10k adopts a one-shot tracking rule, which requires only training the tracker on its
training split, and the object classes between the train and test split do not overlap. We
follow this rule to train our model. The comparison of our preliminary tracking module
and state-of-the-art models tracking results on two SOT benchmarks, LaSOT and GOT-10k,
are concluded in Table 2.

It can be seen that, for LaSOT, compared with the best version of NeighborTrack,
namely, NeighboTrack-OSTrack, the metric AUC and P of the preliminary object tracking
module in TRTrack are better, which are 0.731 and 0.787, respectively. A similar situation
also occurs in the results of GOT-10k, in which the metric mAO and mSR75 of ours are
higher than other state-of-the-art models, which are 0.763 and 0.739, respectively.
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Table 2. Comparison with state-of-the-art models on two SOT benchmarks: LaSOT and GOT-10k.

Model
LaSOT GOT-10k

AUC PNorm P mAO mSR50 mSR75

AiATrack 0.690 0.794 0.738 0.696 0.800 0.632
SwinTrack-B-384 0.702 0.784 0.753 0.724 0.805 0.678

MixFormer-L 0.701 0.799 0.763 0.756 0.8573 * 0.728
OSTrack-384 0.711 0.811 0.776 0.737 0.832 0.708

NeighborTrack-OSTrack 0.722 0.818 0.780 0.757 0.8572 0.733
Ours 0.731 0.814 0.787 0.763 0.854 0.739

* The bold numbers in the table represents the optimal value in the evaluation metrics.

4.2.2. Results of Object Detection

For our object detection model, the benchmark dataset MS COCO 2017 was selected
to test. The object detection results of different loss functions on MS COCO 2017 are
demonstrated in Table 3.

Table 3. Detection results of YOLOv5-DeepSORT in our method with different loss functions.

Loss Function AP AP50 AP75 mAP mAP75:95

LIoU 47.61% 67.52% 53.48% 48.76% 34.51%
LGIoU 50.10% 69.49% 55.58% 51.22% 36.04%
LCIoU 49.38% 68.84% 54.69% 50.59% 35.58%
Ours 52.97% * 72.19% 57.84% 53.51% 38.62%

* The bold numbers in the table represents the optimal value in the evaluation metrics.

Compared with IoU, GioU, and CIoU, YOLOv5-DeepSORT, with the alpha-IoU loss
function in our method, achieves impressive results. The metric AP, AP50, AP75, mAP, and
mAP75:95 are improved by 2.87%, 2.70%, 2.26%, 2.29%, and 2.58%, respectively. Such a
high object detection accuracy of the model is easily estimated to be appropriate for the
detection task of the shot boundary objects.

Figure 7 reveals the results of using our boundary object detection module to detect
objects at the shot boundary in some classroom videos of the self-built dataset CLV.
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4.2.3. Results of Target Re-Identification

The experimental content of this part was mainly using the proposed model TRTrack,
a target re-identification method based on shot boundary object detection for SOT, and
state-of-the-art models, including OSTrack-384 [19], MixFormer-L [18], and NeighborTrack-
OSTrack [30], to conduct comparative experiments through the classroom video dataset
CLV established in this paper.

For these SOT models, OSTrack-384 (proposed by Ye et al.) connects the template
and the search region to bidirectional information flows to combine feature learning with
interaction. MixFormer-L, developed by Cui et al., introduced a mixed-attention module
to build an information interaction channel between the template–search image pairs.
NeighborTrack-OSTrack uses the confidence score to automatically utilize the information
of neighbor regions that are not obscured. The above three models all achieve good
performance in SOT tasks.

The experimental results can reflect the performance of TRTrack for target re-identification,
which is shown in Table 4.

Table 4. Target re-identification results of the CLV dataset.

Video ID

OSTrack-384 MixFormer-L NeighborTrack-OSTrack TRTrack (Ours)

ET
(Times)

ED
(s)

TD
(s)

ET
(Times)

ED
(s)

TD
(s)

ET
(Times)

ED
(s)

TD
(s)

ET
(Times)

ED
(s)

TD
(s)

001 20 44.62 13.98 26 49.83 18.65 9 25.42 24.49 2 * 2.72 2.64
002 15 27.93 8.72 24 32.11 14.56 5 430.76 416.88 2 2.71 2.71
003 16 34.77 14.21 13 24.89 17.55 6 29.56 27.14 4 5.27 5.27
004 19 41.10 17.44 19 29.74 18.33 8 24.11 23.98 4 2.94 2.94
005 22 137.73 95.56 26 113.86 106.49 5 38.66 36.54 3 3.01 3.01
006 8 146.29 136.61 12 90.01 74.79 4 9.12 7.55 2 2.01 1.89
007 17 24.80 8.56 8 17.13 6.59 0 0.00 0.00 0 0.00 0.00
008 9 13.11 6.78 6 14.89 4.23 1 1.29 1.29 0 0.00 0.00
009 14 47.88 24.96 12 39.47 26.55 11 26.54 24.48 3 5.42 4.89
010 7 16.22 14.56 9 21.54 17.77 4 5.89 5.43 2 1.69 1.43
011 16 42.98 36.66 17 54.32 47.62 1 4.32 4.16 2 5.67 4.93
012 24 145.96 115.43 22 121.11 103.67 13 254.55 241.69 7 9.43 9.12
013 9 54.22 38.14 10 43.12 34.56 6 16.55 14.29 3 8.76 7.84
014 12 15.77 12.97 11 18.56 12.13 3 3.98 3.68 0 0.00 0.00
015 14 66.35 38.54 16 64.59 42.84 8 54.51 48.67 2 7.56 7.07
016 15 101.56 87.52 18 121.76 105.43 7 43.56 41.70 4 11.56 8.79

Avg 14.81 60.08 41.92 15.56 53.56 40.74 5.69 60.55 57.62 2.50 4.30 3.91
Sum 237 961.29 670.64 249 856.93 651.76 91 968.82 921.97 40 68.75 62.53

* The bold numbers in the table represents the optimal value in the evaluation metrics.

The table shows that compared with OSTack-384, MixFormer-L, and NeighborTrack-
OSTrack, the TRTrack model proposed in this paper has an excellent performance in the
classroom video dataset CLV, and the metric ET, ED, and TD are almost optimal in 16 videos.

The average value of ET is 2.5 times, and the sum value of it is 40 times, which is less
than 3.19 times and 51 times of the second-best model NeighborTrack-OSTrack, indicating
that TRTrack possesses good tracking stability and is not prone to tracking errors. The
average value of ED is 4.3 s, and the sum value is 68.75 s, which is an order of magnitude
less than other popular algorithms, indicating that TRTrack has a high tracking accuracy.
The metric TD contains the average and sum value of the time interval between the target’s
reappearance after leaving the shot and being tracked again in a video. For other tracking
algorithm models, TD has the order of tens of seconds and hundreds of seconds, accounting
for most of the tracking error duration, namely the metric ED. This is enough to show that
the re-identification of the target after leaving the shot is a crucial object-tracking problem,
and the poor ability in this aspect of current SOT models is the major source of tracking
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errors. The average value of the TD of TRTrack is 3.91 s, and the sum value is 62.53 s,
indicating the effective target re-identification ability of our method.

The comparison between the target re-identification performance of TRTrack and other
algorithms is shown in Figure 8.
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4.2.4. Ablation Study of Target Re-Identification

To reflect the optimization results of several modules in TRTrack, including the bipar-
tite matching model in the preliminary object tracking module and improved YOLOv5-
DeepSORT in the boundary object detection module, extensive ablation experiments were
carried out.

• Effect of the bipartite matching model of the preliminary object tracking module

We used the original NeighborTrack and the bipartite matching model in TRTrack to
conduct comparative experiments in our own classroom video dataset CLV to demonstrate
the effect of optimizing the NeighborTrack. A part of the experimental results is shown in
Table 5.

Table 5. Results of the bipartite matching model of the preliminary object tracking module.

Video ID

TRTrack with
Original NeighborTrack

TRTrack with
Bipartite Matching Model (Ours)

ET (Times) ED (s) TD (s) ET (Times) ED (s) TD (s)

001 4 8.74 6.79 2 * 2.72 2.64
002 5 9.26 7.42 2 2.71 2.71
003 4 6.38 5.16 4 5.27 5.27
004 5 7.29 6.94 4 2.94 2.94
005 7 12.16 10.07 3 3.01 3.01
006 6 6.11 4.83 2 2.01 1.89
007 0 0.00 0.00 0 0.00 0.00
008 1 1.65 0.54 0 0.00 0.00

* The bold numbers in the table represents the optimal value in the evaluation metrics.
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Table 5 shows that the bipartite matching model can enhance the ability of target
re-identification of TRTrack. In most videos of the CLV dataset, the metric ET, ED, and TD
of TRTrack with the bipartite matching model are superior to TRTrack with the original
NeighborTrack.

• Effect of improved YOLOv5-DeepSORT of boundary object detection module

Apart from comparing the effects of different loss functions on object tracking, the
original YOLOv5-DeepSORT and our improved YOLOv5-DeepSORT are used to conduct
a comparative experiment, which is also based on the classroom video dataset CLV to
demonstrate the optimized effect. A part of the experimental results is shown in Table 6.

Table 6. Results of improved YOLOv5-DeepSOT of boundary object detection module.

Video ID

TRTrack with
Original YOLOv5-DeepSORT

TRTrack with
Improved YOLOv5-DeepSORT (Ours)

ET (Times) ED (s) TD (s) ET (Times) ED (s) TD (s)

001 7 17.53 15.44 2 * 2.72 2.64
002 8 16.74 13.10 2 2.71 2.71
003 7 11.98 10.56 4 5.27 5.27
004 9 19.24 15.13 4 2.94 2.94
005 14 22.87 19.06 3 3.01 3.01
006 7 14.88 12.65 2 2.01 1.89
007 4 5.43 3.29 0 0.00 0.00
008 5 8.47 7.08 0 0.00 0.00

* The bold numbers in the table represents the optimal value in the evaluation metrics.

The effect of improving the loss function is obvious. Table 6 shows that the target
re-identification ability of TRTrack based on YOLOv5-DeepSORT with the alpha-IoU loss
function is significantly better than TRTrack with the original YOLOv5-DeepSORT. The
metric ET, ED, and TD have apparent optimization, indicating that different loss functions
have different impacts on the effectiveness of models.

4.2.5. More Visualization of Target Re-Identification

Apart from classroom videos, our target re-identification model, TRTrack, also has
excellent target re-identification results on publicly available SOT benchmark datasets.
Figure 9 shows the target re-identification effect of TRTrack when some tracking ob-
jects leave the shots and reappear in the GOT-10k dataset, which reflects the target re-
identification ability of TRTrack. It is worth noting that our model differs from other
tracking algorithms in that when the target is identified as leaving the shot, tracking is no
longer performed, and no prediction tracking bounding box is provided.
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5. Conclusions and Future Work
5.1. Conclusions

In this paper, a target re-identification method called TRTrack based on shot boundary
object detection is proposed to solve the issue of poor single object tracking due to target
out-of-view. First, we build a bipartite matching model of candidate tracklets and neighbor
tracklets optimized by the Hopcroft–Karp algorithm, which is used for preliminary tracking
and judging the target leaves the shot. If the target is in the shot, the tracking will continue.
Otherwise, the boundary object detection module based on improved YOLOv5-DeepSORT
with the alpha-IoU loss function will detect the shot boundary objects in the video. Finally,
the backtracking identification module in TRTrack will crop the detected objects out, replace
the current frame image with them as the search region image and input them back into
the object tracking model. According to the confidence score of tracking results, the target
can be re-identified in a very short time.

The experimental results show that the preliminary object tracking model in our
method achieves 73.1% AUC on LaSOT and 76.3% AO on GOT-10k. The YOLOv5-
DeepSORT of the boundary object detection module obtains 38.62% mAP75:95 on MS COCO
2017. The proposed target re-identification method TRTrack demonstrates its target re-
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identification ability at the self-built dataset CLV, which is superior to most state-of-the-art
models and has practical application value.

5.2. Future Work

Although our target re-identification method TRTrack has achieved good results, some
problems remain. For example, even though we used OSTrack-384 [19] and YOLOv5 with a
good performance-speed balance in our model, the real-time performance of our approach
is still not good enough. The current frame rate is about 10 fps, which can still be further
improved. In future studies, we are expected to further optimize our model by introducing
network pruning, model lightweight and other methods so as to improve the rate of target
re-identification while maintaining accuracy. We look forward to better development of
target re-identification for object tracking in the future.
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