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Abstract: We introduce a novel methodological framework based on additive value-based efficiency
analysis. It considers inputs and outputs organized in a hierarchical structure. Such an approach
allows us to decompose the problem into manageable pieces and determine the analyzed units’
strengths and weaknesses. We provide robust outcomes by analyzing all feasible weight vectors
at different hierarchy levels. The analysis concerns three complementary points of view: distances
to the efficient unit, ranks, and pairwise preference relations. For each of them, we determine the
exact extreme results and the distribution of probabilistic results. We apply the proposed method
to a case study concerning the performance of healthcare systems in sixteen Polish voivodeships
(provinces). We discuss the results based on the entire set of factors (the root of the hierarchy) and
three subcategories. They concern health improvement of inhabitants, efficient financial management,
and consumer satisfaction. Finally, we show the practical conclusions that can be derived from the
hierarchical decomposition of the problem and robustness analysis.

Keywords: data envelopment analysis; value-based efficiency; hierarchical structure; robustness
analysis; healthcare

1. Introduction

Data Envelopment Analysis (DEA) measures the relative efficiency of Decision Making
Units (DMUs) that convert inputs to outputs. It was originally proposed by Charnes et al. [1]
as a nonparametric approach, making no assumptions about the production frontier or the
weights assigned to the various factors relevant to the analysis. To assess the efficiency of
DMUs, they are compared to the best-practice frontier determined by the group of units
with the most favorable input–output performance. The traditional methods divide the
units into efficient ones, i.e., those on the efficient frontier, and inefficient ones, i.e., those
below the frontier. Due to its versatility, DEA has been widely used in various areas such
as management, economics, agriculture, education, healthcare, and logistics [2]. The recent
example applications concerned the assessment of public administration [3] and the urban
rail transit network [4].

Since its first formulation, DEA has been extended in multiple ways [5,6]. For example,
various efficiency models have been introduced to admit static or dynamic analysis or
handle constant or variable returns to scale. In particular, an additive model was formulated
to guarantee that the units it indicates as efficient satisfy this property in Koopman’s
sense [7]. However, this model has also been criticized for assuming equal weights of all
factors, vulnerability to the factors’ scale differences, and nonintuitive interpretation of
the efficiency scores. These drawbacks have motivated the development of an additive
value-based efficiency analysis [8,9], inspired by Multi-Attribute Value Theory (MAVT) [10].
This model transforms the input and output values using the marginal functions. Such
per-criterion components are aggregated into a comprehensive efficiency measure with
an additive value model incorporating weights assigned to various factors. The units that
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attain the greatest comprehensive value for at least one feasible weight vector are deemed
efficient. Such an analysis is insensitive to scale problems due to applying value functions
with a common scale. Moreover, the efficiency scores have an intuitive interpretation
built on the notion of “min–max regret”. Note that the hybrid methods combining ideas
from DEA and Multiple Criteria Decision Analysis (MCDA) have become more and more
popular in recent years (see, e.g., [11,12]).

This paper contributes to the literature concerning an additive value-based efficiency
analysis in a three-fold way. This methodology handles only flat structures of inputs
and outputs considered at the same level, without subcategories [8]. Hence, our first
contribution consists of adjusting it to handle hierarchical structures of factors used to
assess the performance of DMUs. This is useful in real-world decision analysis for a
few reasons. First, it helps to structure inputs and outputs logically and systematically.
The higher-level factors are more general, whereas those at lower hierarchy levels are
more specific. Moreover, when new information becomes available, the hierarchy can be
easily modified or updated, allowing it to handle evolving decision problems. Second, a
hierarchical decomposition of factors allows for the breaking down of complex problems
into manageable, coherent pieces representing different levels of abstraction. By analyzing
the efficiency at various levels of the hierarchy, it is possible to understand the strengths
and weaknesses of DMUs and explain the comprehensive results taking into account their
evolution along the hierarchy. Third, a hierarchical structure of factors makes efficiency
analysis more transparent, flexible, and adaptable. In particular, we support the trade-off
analysis, where weights can be associated with lower and higher-level categories of factors,
and hence, their relative and absolute impact can be controlled more easily. In this regard,
we incorporate the preferences elicited at each hierarchy level into the analysis. These
preferences form the linear weight restrictions between factor categories at the same level.

The benefits of using a hierarchical structure have been explored in MCDA. The
example methods that handle such a decomposition include the Analytical Hierarchy
Process (AHP) [13], the Multiple Criteria Hierarchy Process (MCHP) [14,15], and ELECTRE-
III-H [16]. In the DEA context, the first attempt was made with a two-layer nonlinear
model [17] and its linear counterpart [18]. Then, Ref. [19] proposed a multiple-layer DEA
model (MLDEA) handling an arbitrary number of levels of inputs and outputs. Further,
MLDEA was combined with AHP to consider relative priorities of various factors, mainly
in the scenarios where DEA is used as a mathematical tool for constructing so-called
composite indicators [20,21]. Finally, the latter approach was generalized to the setting
of Network and Fuzzy DEA [22]. The above-mentioned DEA models require inputs and
outputs to be considered in separate hierarchies. We fill this research gap by admitting a
single multiple-layer hierarchical structure containing inputs and outputs. In this way, the
properly defined efficiency can be analyzed in each hierarchy node.

Second, in the proposed framework, we go beyond classifying the DMUs only into
efficient and inefficient, as in the original value-based efficiency analysis [8]. This is attained
by verifying the robustness of efficiency results observable for the entire space of feasible
input and output weights. We focus on three perspectives: distances to the efficient DMU,
ranks, and pairwise preference relations. For each of them, we compute the exact (necessary,
possible, and extreme) outcomes by solving dedicated mathematical programming models.
Moreover, we estimate the distribution of results using Monte Carlo simulations. The
proposed framework is inspired by [23], being adapted to the multiple-level hierarchy
value-based efficiency analysis. The formulations of dedicated procedures and types
of considered results are similar to those considered in [24]. However, we admit the
stakeholders studying the stability of efficiency outcomes in each hierarchy node instead of
forcing them to consider all inputs and outputs simultaneously. In this regard, the main
challenge is adequately handling the indicator weights considered at different hierarchy
levels. We also formulate the properties of the exact efficiency outcomes observed along the
hierarchy tree. Typically, they relate the results observed in all children nodes of some more
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general category to the outcomes obtained in the parent node. Hence, they help understand
the evolution of necessary, impossible, and extreme conclusions.

Third, we apply the proposed framework to a case study concerning healthcare. As
noted in [25], the efficiency of using resources to ensure a decent level of healthcare has
become one of the most critical public policy issues in recent decades. Its assessment
can be conducted from the perspective of the entire system or individual organization
(e.g., hospitals). A detailed review of the applications of efficiency analysis in healthcare
can be found in [26], and a detailed description of the healthcare system in Poland is given
in [25].

We analyzed nine indicators capturing the quality of healthcare systems in sixteen
Polish voivodeships. The indicators were grouped under three main categories: inhabitants’
health improvement, financial management, and consumer satisfaction. We elicited the
preferences in the form of marginal value functions for all inputs and outputs and weight
constraints. We report the results given a comprehensive efficiency index encompassing all
relevant viewpoints and the three subproblems that allow for an understanding of each
voivodeship’s strong and weak points. The paper’s three significant contributions, along
with their essential aspects, are summarized in Figure 1.

I. Value-based efficiency analysis handling hierarchical structures of factors
§ Preferences in the form of weight constraints may be elicited in each hierarchy node
§ Efficiency results can be analyzed in each hierarchy node
§ Inputs and outputs can be handled under the same hierarchy node

M
ai

n
co

nt
ri

bu
tio

ns II. Robustness analysis methods adjusted to hierarchical value-based efficiency analysis
§ All feasible weight vectors respecting the constraints on different levels are exploited
§ Exact and stochastic robust outcomes are computed in each hierarchy node
§ The outcomes concern efficiency distances, ranks, and preference relations
§ Dedicated properties summarize the evolution of exact outcomes along the hierarchy tree

III. Case study concerning the quality of the healthcare system in Poland
§ Sixteen voivodeships are analyzed in terms of nine indicators and three sub-categories
§ Managerial conclusions are drawn from various robust results
§ Cross-category analysis indicates each province’s strong and weak points

Figure 1. Paper’s main contributions.

The paper’s remainder is organized as follows. Section 2 describes an additive value-
based efficiency model. Section 3 defines a hierarchical structure of inputs and outputs,
while Section 4 describes a respective framework for robustness analysis. In Section 5, we
report the outcomes of a case study concerning the efficiency assessment of the healthcare
system in Poland. The last section concludes the paper.

2. Additive Value-Based Efficiency Analysis

Let us consider a set of DMUs D = {D1, . . . , DK}. In value-based analysis, efficiency
Eo of DMUo ∈ D is defined using an additive value model:

Eo =
Q

∑
q=1

wq · uq(DMUo), (1)

where wq is the weight of factor q (i.e., input x ∈ x = {x1, x2, . . . , xm} or output
y ∈ y = {y1, y2, . . . , yn}), such that ∑Q

q=1 wq = 1, and uq is a monotonic marginal value
function for q. It is nondecreasing for outputs and nonincreasing for inputs. To verify if
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DMUo is efficient, we solve the following Linear Programming (LP) model, minimizing
the maximal distance of efficiency of DMUo to any other unit:

Minimize do

s.t.
∑Q

q=1 wquq(DMUk)−∑Q
q=1 wquq(DMUo) ≤ do, for k = 1, . . . , K,

do ≥ 0,
∑Q

q=1 wq = 1,
wq ≥ 0, q = 1, . . . , Q,
w ∈ Sw,


(2)

where Sw is the feasible weight vector space delimited by the linear constraints. The optimal
value of do, denoted by d∗o , represents the minimal distance of DMUo from the efficient
unit. If d∗o = 0, DMUo attains the greatest efficiency for at least one feasible weight vector,
which implies that it is efficient. When d∗o > 0, for all feasible weights, there is at least one
unit with an efficiency greater than Eo, denoting the lack of efficiency of DMUo.

3. A Hierarchical Structure of Inputs and Outputs

The DMUs consume m inputs x and produce n outputs y. To simplify the notation, we
aggregate all inputs and outputs into a single set of factors f = x ∪ y = { f1, f2, . . . , fQ0}.
Set f forms level 0 of the hierarchy. These factors are grouped into Q1 categories of the
first level, named C(1) = {c(1)1 , c(1)2 , . . . , c(1)Q1

}. Analogously, the first-level categories can be

grouped into second-level categories, forming a set C(2) = {c(2)1 , c(2)2 , . . . , c(2)Q2
}, etc. The

entire structure contains L levels. In the last (L-th) level, there is only a single category
(c(L)

1 ), called a root.
From the mathematical viewpoint, the factors and categories form a tree (see Figure 2).

The set of all nodes in the tree (factors and categories) is denoted by N = f ∪ C(1) ∪
C(2) ∪ . . . ∪ C(L). For each node t ∈ N \ {root}, we define its parent p(t) as a category
in which it is directly contained. The set of direct children of category c(l)i is marked as

ch(c(l)i ) = {t ∈ N:p(t) = c(l)i }. The set of indirect children of category c(l)i contains all

direct children of c(l)i (ch(c(l)i )) and their direct and indirect children until reaching the

tree’s leaves. For each category at hierarchy level c(l)i , we define set A
c(l)i

as a subset of f

(inputs and outputs), which are the indirect children of c(l)i . In particular, all factors are
indirect children of the root category, i.e., A

c(L)
1

= f . On the contrary, for an elementary

factor f , A f is a singleton, i.e., A f = { f }, f ∈ f . To maintain the spirit of DEA, for each

category c(l)i , the respective set of factors (A
c(l)i

) needs to contain at least one input and one

output, i.e., A
c(l)i
∩ x 6= ∅ and A

c(l)i
∩ y 6= ∅, for l = 1, 2, . . . , L, i = 1, 2, . . . , Ql .

Figure 2. A hierarchical structure of inputs and outputs.
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To illustrate the notation used in the paper, we will describe it using a simple hierarchy
of factors in Figure 3. This example involves two inputs (x = {i1, i2}) and two outputs
(y = {o1, o2}). The set of factors f containing all elements from x and y is f = {i1, o1, i2, o2}.
Overall, there are four factors (Q0 = 4), two first-level categories (C1 = {C(1)

1 , C(1)
2 };

Q1 = 2), and one root corresponding to a second-level category (C2 = {C(2)
1 }; Q2 = 1). The

hierarchy contains two levels of categories (L = 2). The parent category for input i1 is C(1)
1

(p(i1) = C(1)
1 ). For C(1)

1 and C(1)
2 , the parent category is C(2)

1 , i.e., p(C(1)
1 ) = p(C(1)

2 ) = C(2)
1 .

The considered sets of factors A
C(k)

i
for example categories are the following: Ai1 = {i1},

A
C(1)

1
= {i1, o1}, A

C(1)
2

= {i2, o2}, and A
C(2)

1
= f = {i1, i2, o1, o2}.

Figure 3. An example hierarchical structure of inputs and outputs.

Given a hierarchy of relevant factors and categories, we assign weight wt to each
node t except the root. Moreover, we admit specifying the linear constraints for these
weights at each hierarchy level. Factors or categories involved in a single constraint must
have a common parent. For example, for the considered hierarchy, the constraint can take
the form wi1 ≤ 2 · wo1 or w

c(1)1
≥ w

c(1)2
, as i1 and o1 or C(1)

1 and C(1)
2 have the same parent.

On the contrary, the example constraint wi1 ≤ wi2 is not allowed, because i1 and i2 have
different parents (p(i1) 6= p(i2)). The space of weight vectors that meet these restrictions is
denoted by Sw.

To introduce weight restrictions, we consider additional variables (ŵq), representing
the aggregated weights of elementary factors in the hierarchy. They are defined as the
products of all weights on the path from the analyzed category (c(l)i ) at the hierarchy level l
to the analyzed factor f :

ŵ
c(l)i
q = wq · ∏

t=1,...,l−1∧t∈c(l)i ∧ f∈At

wt. (3)

For factor i1 in the considered example, when taking into account the root category

(C(2)
1 ), the above formula takes the following form ŵ

C(2)
1

i1
= wi1 ·wC(1)

1
, and when considering

category C(1)
1 , it is expressed as follows ŵ

C(1)
1

i1
= wi1 .

We analyze the efficiency of DMUo in each node of the hierarchy. For category c(l)i ,
such efficiency is defined as follows:

E
c(l)i
o = ∑

q∈A
c(l)i

ŵ
c(l)i
q · uq(DMUo). (4)



Appl. Sci. 2023, 13, 6406 6 of 33

The true weights assigned to each hierarchy category c(l)i from the set of the indirect

children of the analyzed category c(k)j are defined as the ratio of the sum of weights of indica-
tors contained in this category and the sum of weights of indicators in the parent category:

w
c(k)j

c(l)i

=

∑ f∈A
c(l)i

ŵ
c(k)j
f

∑ fp∈A
p(c(l)i )

ŵ
c(k)j
fp

. (5)

Note that the value of weight w
c(k)j

c(l)i

is always the same, regardless of the consid-

ered category (c(k)j ), so we replace symbol w
c(k)j

c(l)i

with w
c(l)i

. For example, when consid-

ering the root category (C(2)
1 ), the weight wi1 of indicator i1 in the considered exam-

ple can be calculated as wi1 =
ŵ

C2
1

i1

ŵ
C2

1
i1

+ŵ
C2

1
o1

, whereas the weight w
C(1)

2
of category C(1)

2 is

w
C(1)

2
=

ŵ
C(2)1
i2

+ŵ
C(2)1
o2

ŵ
C(2)1
i1

+ŵ
C(2)1
o1 +ŵ

C(2)1
i2

+ŵ
C(2)1
o2

.

4. Robustness Analysis for Additive Value-Based Efficiency Analysis with a
Hierarchical Structure of Factors

The standard value-based efficiency model verifies if each DMU is efficient. Such
an analysis builds on the weight vector that is the most advantageous for a given DMU,
allowing it to minimize the distance from some efficient DMU. In this section, we introduce
a suite of methods that investigate the robustness of efficiency outcomes given all feasible
weights. They can be divided into two groups. First, the exact approaches use mathemati-
cal programming to find the extreme outcomes for each DMU. In turn, the probabilistic
methods estimate the stochastic acceptability indices based on Monte Carlo simulations, re-
flecting the distributions of possible results. Each group concerns three relevant viewpoints:
distances to the efficient unit, ranks, and pairwise preference relations. In what follows, we
present the approaches that are flexible enough to determine the relevant results in each
hierarchy node.

4.1. Exact Methods

In this section, we present the mathematical programming models that determine
the exact robust results. These include extreme (the most and the least advantageous),
necessary (observable for all feasible weight vectors), and possible (holding for at least one
feasible weight vector) conclusions. Let us first focus on verifying the stability of distances

to the efficient unit. The best (minimal) distance d
c(l)i∗,o for DMUo considering category c(l)i

can be computed by solving the following model:

Minimize d
c(l)i
o

s.t.
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∑q∈A
c(l)i

ŵ
c(l)i
q uq(DMUk)−∑q∈A

c(l)i

ŵ
c(l)i
q uq(DMUo) ≤ d

c(l)i
o , for k = 1, . . . , K,

d
c(l)i
o ≥ 0,

∑q∈A
c(l)i

ŵ
c(l)i
q = 1,

ŵq ≥ 0, q ∈ A
c(l)i

,

wt =
∑ f∈At ŵ

c(l)i
f

∑ f∈Ap(t)
ŵ

c(l)i
f

∈ Sw, for t ∈ N \ {root}.


W



(6)

Similarly to the standard efficiency analysis, DMUo with d
c(l)i∗,o = 0 is deemed efficient,

given category c(l)i , while d
c(l)i∗,o > 0 implies inefficiency.

To compute the worst (maximal) distance d
∗,c(l)i
o for DMUo, given category c(l)i , we

solve the following Mixed-Integer Linear Programming (MILP) model:

Maximize d
c(l)i
o

s.t.

∑q∈A
c(l)i

ŵ
c(l)i
q uq(DMUk)− d

c(l)i
o ≥ ∑q∈A

c(l)i

ŵ
c(l)i
q uq(DMUo)− C(1− bk), for k = 1, . . . , K,

∑k=1,...,K bk = 1,
bk ∈ {0, 1}, for k = 1, 2, . . . , K,

d
c(l)i
o ≥ 0,
W ,


(7)

where C is a large positive constant. The above model uses binary variables bk,

k = 1, . . . , K, to ensure that d
c(l)i
o is equal to the efficiency difference between DMUo and

some DMUk, k = 1, . . . , K, for which bk = 1. Maximizing d
c(l)i
o guarantees that we obtain

the greatest possible difference observable in the set of feasible weights W . Note that
when bk = 0, the respective constraint is satisfied for all possible variable values; hence,
it is relaxed.

The second perspective concerns the bounds of efficiency ranks attained by DMUo. To

find the best (minimal) rank R
c(l)i∗,o of DMUo, given category c(l)i , we minimize the number

of other DMUs with greater efficiencies than E
c(l)i
o :

Minimize 1 + ∑
k=1,...,K; k 6=o

bk

s.t.

∑q∈A
c(l)i

ŵ
c(l)i
q uq(DMUk)−∑q∈A

c(l)i

ŵ
c(l)i
q uq(DMUo) ≤ Cbk, for k = 1, . . . , K; k 6= o,

bk ∈ {0, 1}, for k = 1, 2, . . . , K; k 6= o,
W .

 (8)

Note that when bk = 0, k = 1, . . . , K, the respective constraint ensures that DMUo is

ranked not worse than DMUk since E
c(l)i
k ≤ E

c(l)i
o . When bk = 1, DMUk is ranked better than

DMUo, deteriorating its best rank by one.
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To obtain the worst (maximal) rank R
∗,c(l)i
o for DMUo, given category c(l)i , we maximize

the number of DMUs with the efficiencies not worse than E
c(l)i
o :

Maximize 1 + ∑
k=1,...,K; k 6=o

bk

s.t.

∑q∈A
c(l)i

ŵ
c(l)i
q uq(DMUo)−∑q∈A

c(l)i

ŵ
c(l)i
q uq(DMUk) ≤ C(1− bk), for k = 1, . . . , K; k 6= o,

bk ∈ {0, 1}, for k = 1, 2, . . . , K; k 6= o,
W .

 (9)

Note that when bk = 1, k = 1, . . . , K, the respective constraint ensures that DMUk is

ranked no worse than DMUo since E
c(l)i
o ≤ E

c(l)i
k . This deteriorates the worst rank of DMUo

by one. When bk = 0, the respective constraint is satisfied for all variable values; hence,
it relaxed.

The third perspective focuses on the pairwise comparisons between DMUs using
two relations: necessary and possible. Given the uncertainty of selecting a specific weight
vector, the necessary relation can be considered robust. Specifically, DMUo is necessarily

preferred to DMUk, given category c(l)i (DMUo %
N,c(l)i
E DMUk), when DMUo is not worse

at level c(l)i in terms of efficiency than DMUk for all feasible weight vectors. Its truth for

pair (DMUo, DMUk) and category c(l)i can be verified using the following model:

Minimize d
c(l)i
o,k , s.t. ∑

q∈A
c(l)i

ŵ
c(l)i
q uq(DMUo)− ∑

q∈A
c(l)i

ŵ
c(l)i
q uq(DMUk) ≤ d

c(l)i
o,k andW . (10)

Its optimal solution d
c(l)i
o,k,∗ is equal to the minimal difference between efficiencies of

DMUo and DMUk observable in the set of feasible weights W , given category c(l)i . If

d
c(l)i
o,k,∗ ≥ 0, then for all feasible weights E

c(l)i
o ≥ E

c(l)i
k , and hence DMUo %

N,c(l)i
E DMUk.

Otherwise, ¬(DMUo %
N,c(l)i
E DMUk) because there is at least one feasible weight vector,

such that E
c(l)i
o < E

c(l)i
k .

Furthermore, DMUo is possibly preferred to DMUk, given category c(l)i (DMUo %
P,c(l)i
E

DMUk), when DMUo is not worse at level c(l)i in terms of efficiency than DMUk for at least

one feasible weight vector. Its truth for pair (DMUo, DMUk) and category c(l)i is verified
using the following model:

Maximize d
c(l)i
o,k , s.t. ∑

q∈A
c(l)i

ŵ
c(l)i
q uq(DMUo)− ∑

q∈A
c(l)i

ŵqu
c(l)i
q (DMUk) ≥ d

c(l)i
o,k andW . (11)

Its optimal solution d
c(l)i ,∗
o,k is equal to the maximal difference between efficiencies

of DMUo and DMUk observable in the set of feasible weightsW , given category c(l)i . If

d
c(l)i ,∗
o,k ≥ 0, then for at least one feasible weight E

c(l)i
o ≥ E

c(l)i
k , and hence, DMUo %

P,c(l)i
E DMUk.

Otherwise, ¬(DMUo %
P,c(l)i
E DMUk) because there is no feasible weight vector, such that

E
c(l)i
o ≥ E

c(l)i
k .
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The relevant properties of the exact robust results given the hierarchical structure
are presented in Appendix A. The formulations of example mathematical programming
models that support understanding the general formulations are given in Appendix B.

4.2. Simulation-Based Methods

The results determined with mathematical programming are often insufficiently con-
clusive. In particular, the difference between extreme distances or ranks may be significant,
the necessary relation may be poor, and the possible relation may be very rich. If so, it
would be helpful to determine the distribution of results observed for the set of feasible
weight vectors. Unfortunately, such distribution cannot be computed exactly. However,
using Monte Carlo simulations, we can estimate the share of feasible weight space con-
firming a particular outcome. Specifically, we use the hit-And-run algorithm to generate a
predefined number of weight vector samples [27]. We generate weights for all categories
and factors while respecting that the sum of weights of categories or factors with the
same parent must be equal to one. In the example problem, the sum of the weights of
two categories C(1)

1 and C(1)
2 must be equal to one (w

C(1)
1

+ w
C(1)

2
= 1), and the sums of

weights assigned to the elementary indicators in the same category also need to be one
(wi1 + wo1 = 1 and wi2 + wo2 = 1). Moreover, we obey the provided weight constraints
for all hierarchy levels. After generating a predefined number of weight samples, we
compute the efficiencies of all DMUs for each. This lets us calculate the relevant stochastic
acceptability indices estimating the respective shares of feasible weight vectors.

In what follows, when considering category c(l)i and referring to weight vectors, we
mean the weights assigned to all categories and factors that are direct or indirect children of
c(l)i in the hierarchy. The most interesting stochastic acceptabilities are defined as follows:

• Distance Acceptability Interval Index (DAIIc(l)i (DMUo, bi)) for unit DMUo, interval

bi ⊆ [0, 1], and category c(l)i is the share of feasible weight vectors for which E
c(l)i
o

belongs to bi. Note that all intervals must be disjoint (bi ∩ bj = ∅, i 6= j), and their sum
must cover the space of possible distances (b1 ∪ b2 ∪ . . . ∪ bz = [0, 1]; z—the number
of intervals).

• Efficiency Rank Acceptability Index (ERAIc(l)i (DMUo, r)) for unit DMUo and rank r
is the share of feasible weight vectors for which DMUo attains r-th position in the
efficiency ranking of all DMUs given category c(l)i .

• Pairwise Efficiency Outranking Index (PEOIc(l)i (DMUo, DMUk)) for pair (DMUo,

DMUk) and category c(l)i is the share of feasible weight vectors for which DMUo is at

least as efficiency as DMUk at level c(l)i , i.e., E
c(l)i
o ≥ E

c(l)i
k .

Moreover, we compute the expected distance Ed to the efficient unit and expected rank
ER for each DMU [28]. This is performed by averaging the distances or ranks observed
for all samples. Note that by default, we use uniform distribution for weight sampling.
However, the weights can be generated from any predefined distribution, but it is hard to
define as it requires in-depth knowledge about the specific application domain.

In Appendix C, we illustrate the process of computing the stochastic results on a small
sample of weight vectors.

5. Case Study concerning Evaluation of Healthcare System in Poland

This section reports the results of a case study concerning an assessment of the quality
of the healthcare system in Poland. This sector faces the challenge of improving the quality
of provided services. This can be attained by advancing some indicators reflecting both
the system’s functioning and the perception by patients. We consider sixteen voivodeships
(provinces) in Poland as DMUs (see Table 1). These administrative areas govern their
healthcare independently, so it makes sense to highlight their differences using a uniformly
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computed set of indicators. Such an evaluation is critical, given the rapid development of
new technologies and major transformations in the healthcare sector.

Table 1. Values of inputs and outputs related to the healthcare systems in sixteen Polish voivode-
ships [29] (data publicly available at https://www.pwc.pl/pl/publikacje/2019/indeks-sprawnosci-
ochrony-zdrowia-2018.html, accessed on 22 May 2023).

Voivodeship Short Name H1 H2 H3 F1 F2 F3 S1 S2 S3

Zachodniopomorskie ZPM 44.44 4.05 17.6 −1.5 46.1 46.9 19.23 3.55 9.30
Pomorskie POM 45.31 5.36 21.3 0.08 38.9 51.3 27.04 3.82 33.33

Warmińsko−Mazurskie WM 43.34 7.11 15.7 −1.09 44.8 47.8 22.19 3.72 22.73
Podlaskie PDL 37.54 6.93 15.8 2.3 49.4 43.4 19.47 3.61 11.11
Lubuskie LBU 50.21 5.83 18.0 1.9 42.0 51.3 18.32 3.84 13.04

Wielkopolskie WLKP 47.88 4.36 25.7 −0.3 43.4 50.5 15.16 3.69 17.24
Kujawsko−Pomorskie KP 39.90 6.80 15.7 3.8 46.5 41.8 22.36 3.77 33.33

Mazowieckie MAZ 38.59 5.32 16.7 −1.57 47.4 47.8 20.26 3.62 20.56
Lubelskie LBL 45.17 6.74 8.1 0.41 51.8 43.0 13.40 3.77 20.37

Dolnośląskie DSL 45.04 7.66 13.8 −1.77 50.8 43.8 24.55 3.57 17.28
Opolskie OPO 33.71 6.88 10.0 −0.36 44.1 40.9 23.03 3.67 35.71
Łódzkie LDZ 42.00 5.88 6.0 1.02 50.6 47.3 19.90 3.78 15.15
Śląskie SL 40.70 4.54 13.9 −1.63 55.5 39.1 22.02 3.75 16.88

Świętokrzyskie SW 41.14 5.79 7.8 0.17 49.5 47.2 12.44 3.57 29.17
Małopolskie MLP 32.22 5.61 9.1 0.79 43.7 44.3 18.27 3.64 25.84

Podkarpackie PKR 38.73 5.76 1.9 −4.31 48.0 45.8 14.39 3.84 20.51

Following [29], we consider three main categories of factors representing desirable
characteristics in the complex healthcare system. Two areas—health improvement and
financial management—are based on objective indicators and parameters, whereas the
system’s evaluation by patients is, to some extent, subjective. In particular, improving
health is the ultimate aim of the healthcare system. In this regard, it is relevant to consider
the example dimensions of the health status that are affected by how the system is operated,
given the ever-growing needs of patients. Financial management is essential in healthcare,
as this sector experiences the availability of limited resources. Hence, it is vital to assess the
financial situation of medical facilities, the management of infrastructure, and the economic
efficiency of treatments and therapies. Finally, consumer satisfaction is becoming more and
more important in evaluating the healthcare sector. Thus, it is desirable to consider the
quality of services, comfort in using patients’ services, and patient rights.

The hierarchy of inputs and outputs for the case study is presented in Figure 4. Among
the nine factors, there are six outputs (H1, H3, F1, F3, S2, and S3) and three inputs (H2, F2, and
S1). The selected indicators are representative of the three dimensions and the viewpoints
of the most important stakeholders. The indicators in the health improvement category (H)
are representative of the dimensions of preventing diseases (H1), their exacerbation (H2),
and deaths (H3). The factors considered in the financial management category stand for the
financial situation of healthcare units (F1) and infrastructure management (F2 and F3). The
inputs and outputs in the system’s evaluation category (S) represent the waiting time (S1),
official quality system (S2), and patient satisfaction (S3). Moreover, we verified that the
trends that these indicators confirm also represent other factors that could be considered in
the three categories. Note that analysis including over 40 indicators available for assessing
the healthcare system in Poland [29] would not make much sense in the context of DEA, as
the number of inputs and outputs would be too large compared to the number of DMUs.
Typically, such analyses indicate that all or almost all units are efficient, as even the worst
performers tend to specialize in some particular aspects. Hence, we opted for an analysis
with a reduced—though carefully selected—set of indicators. The performances of the
sixteen voivodeships in terms of nine considered factors are given in Table 1.

https://www.pwc.pl/pl/publikacje/2019/indeks-sprawnosci-ochrony-zdrowia-2018.html
https://www.pwc.pl/pl/publikacje/2019/indeks-sprawnosci-ochrony-zdrowia-2018.html
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Figure 4. A hierarchy of indicators considered in the quality evaluation of healthcare systems.

For all factors, we elicited marginal value functions from experts in the healthcare
system in Poland. They are provided in Figure 5. They are decreasing for inputs and
increasing for outputs. Moreover, they differ in shape. The function is, e.g., close to linear
for H2, convex for F3, concave for F2, and S-shaped for S2. Moreover, we incorporated the
relative and absolute weight constraints. The category of inhabitants’ health improvement
is more important than the two other categories. Hence, we introduced the following
constraints: wH ≥ wF and wH ≥ wS, where wH , wF, and wS are the weights of the three
categories. Finally, we wanted to avoid both the minor and dominating roles of any
individual factor or category in the analysis. Hence, we restricted the weight of each
category to be not less than 0.2 and the weights of second-level elementary factors to the
interval [0.2, 0.5]. In what follows, we discuss the results attained in the root hierarchy level
and for each of the three categories separately.

5.1. Comprehensive Evaluation of the Quality of Healthcare Systems

In this section, we discuss the results of the comprehensive assessment of Polish
voivodeships, taking into account all nine indicators. Figure 6 presents the extreme and
expected distances to the best unit for each analyzed province. Three voivodeships are
efficient: POM, LBU, and WLKP. POM also attains the lowest maximal distance (0.105),
which confirms its most favorable evaluation of the healthcare system for all feasible
weights. Moreover, the distances for POM are the most stable, as it is characterized by the
narrowest range (dI,∗ − dI

∗ = 0.105). Among the efficient provinces, WLKP has the worst
pessimistic distance to the best province. However, its expected distance is better than that
of LBU, meaning that for some weight vectors, WLKP performs worse than LBU, but its
efficiency score is closer to the best province on average. The worst provinces in the most
and the least favorable scenarios are DSL (dI

∗ = 0.306, dI,∗ = 0.522) and SL (dI
∗ = 0.251,

dI,∗ = 0.526). The greatest sensitivity of the distances depending on the selected weight
vector is observed for SW, as the width of its distance interval equals 0.355.

The analysis of extreme distances can be enriched with the distribution of distances
over all feasible weight vectors (see Table 2). The efficient provinces (POM, LBU, and
WLKP) are the only ones whose distances were not greater than 0.1 for some samples.
When considering these three voivodeships, only for LBU, the distance was greater than 0.1
for some marginal share of weights (0.8%). Hence, these provinces are robustly better than
the remaining ones. Among the inefficient units, the most favorable results were attained
by ZPM and KP.
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Figure 5. The marginal value functions associated with the inputs and outputs considered in the
case study.

Figure 6. Extreme and expected distances to the best unit for Polish voivodeships in the comprehen-
sive analysis of the healthcare system.

Some provinces are characterized by rather stable distance values. For example, for
MAZ and WM, for over 95% of weight vectors, the distance is the interval (0.2, 0.3]. On
the contrary, the distance for PKR varies more depending on the chosen weight vector.
In this case, positive DAIIs were observed for all buckets between 0.1 and 0.5 with the
greatest values for the intervals (0.3, 0.4] (DAII(PKR, (0.3, 0.4]) = 65.9%) and [0.2, 0.3]
(DAII(PKR, (0.2, 0.3]) = 29.5%). The complete ranking determined by the expected dis-
tances (see Figure 6) indicates POM (0.009) and WLKP (0.017) as the best units and DSL
(0.408) and OPO (0.409) as the worst.
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Table 2. Distribution of distances to the best unit for Polish voivodeships in the comprehensive
analysis of the healthcare system.

DAII [0.0, 0.1] (0.1, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5] (0.5, 0.6] (0.6, 0.7] (0.7, 0.8] (0.8, 0.9] (0.9, 1.0]

ZPM 0 0.523 0.475 0.002 0 0 0 0 0 0
POM 1 0 0 0 0 0 0 0 0 0
WM 0 0.006 0.956 0.038 0 0 0 0 0 0
PDL 0 0 0.006 0.714 0.280 0 0 0 0 0
LBU 0.992 0.008 0 0 0 0 0 0 0 0

WLKP 1 0 0 0 0 0 0 0 0 0
KP 0 0.160 0.798 0.042 0 0 0 0 0 0

MAZ 0 0.001 0.963 0.036 0 0 0 0 0 0
LBL 0 0.074 0.729 0.197 0 0 0 0 0 0
DSL 0 0 0 0.406 0.594 0 0 0 0 0
OPO 0 0 0 0.407 0.587 0.006 0 0 0 0
LDZ 0 0 0.599 0.401 0 0 0 0 0 0
SL 0 0 0.254 0.732 0.014 0 0 0 0 0
SW 0 0.127 0.762 0.111 0 0 0 0 0 0

MLP 0 0 0.307 0.675 0.018 0 0 0 0 0
PKR 0 0.002 0.295 0.659 0.044 0 0 0 0 0

The results of robustness analysis for efficiency ranks are presented in Figure 7 and
Table 3. The three efficient voivodeships attain the first rank in the most favorable scenario.
POM and LBU are ranked third in their worst scenario, while WLKP falls fourth in the
pessimistic case. These units are also the best, given their expected ranks. In this regard,
POM (1.543) is followed by WLKP (1.783) and LBU (2.674). Among the inefficient units,
KP is the most advantageous when considering the most favorable ranks (R∗ = 2). Other
inefficient units ranked relatively high in their best scenario are ZPM, WM, LBL, LDZ,
SW, MLP, and PKR (R∗ = 4). However, all inefficient provinces are ranked low in the
least favorable scenario. The best maximal rank among them is observed for KP and LBL
(R∗ = 12), while five provinces can be ranked at the bottom (PDL, DSL, OPO, SL, and PKR).
Finally, the best expected ranks among inefficient units are attained by ZPM (4.962), KP
(5.878), and SW (6.611), while the worst expected positions are associated with DSL (15.166)
and OPO (15.195).

Figure 7. Extreme and expected ranks for Polish voivodeships in the comprehensive analysis of the
healthcare system.

The analysis of efficiency rank acceptability indices (see Table 3) confirms the superior-
ity of POM over other provinces. It is ranked first for most feasible weight vectors (57.7%),
and it is in the top two for almost 90% of samples. Similarly, WLKP is at least second for
over 84% of samples, though its most frequent position is second rather than first. In turn,
LBU is ranked third for most scenarios (72.4%). Even though the best possible rank for KP
is second, such a position was not observed for any weight vector. The highest for which
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ERAI for KP is positive is fourth (24.8%). However, this place is predominantly occupied
by ZPM, which is ranked in the interval [4, 7] for over 90% of feasible scenarios.

Table 3. Distribution of ranks for Polish voivodeships in the comprehensive analysis of the
healthcare system.

ERAI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ZPM 0 0 0 0.594 0.144 0.095 0.072 0.065 0.028 0.002 0 0 0 0 0 0
POM 0.577 0.303 0.120 0 0 0 0 0 0 0 0 0 0 0 0 0
WM 0 0 0 0.029 0.192 0.210 0.191 0.183 0.103 0.042 0.030 0.020 0 0 0 0
PDL 0 0 0 0 0 0 0 0 0 0.002 0.009 0.072 0.114 0.443 0.288 0.072
LBU 0.050 0.226 0.724 0 0 0 0 0 0 0 0 0 0 0 0 0

WLKP 0.373 0.471 0.156 0 0 0 0 0 0 0 0 0 0 0 0 0
KP 0 0 0 0.248 0.245 0.174 0.162 0.099 0.039 0.023 0.010 0 0 0 0 0

MAZ 0 0 0 0 0.101 0.161 0.215 0.171 0.220 0.096 0.033 0.003 0 0 0 0
LBL 0 0 0 0.033 0.084 0.151 0.149 0.158 0.256 0.104 0.044 0.017 0.004 0 0 0
DSL 0 0 0 0 0 0 0 0 0 0 0.003 0.022 0.042 0.140 0.325 0.468
OPO 0 0 0 0 0 0 0 0 0 0 0.001 0.001 0.017 0.217 0.311 0.453
LDZ 0 0 0 0 0 0.007 0.028 0.069 0.139 0.360 0.278 0.090 0.027 0.002 0 0
SL 0 0 0 0 0.007 0.010 0.028 0.032 0.041 0.120 0.150 0.184 0.335 0.068 0.022 0.003
SW 0 0 0 0.096 0.227 0.190 0.146 0.195 0.098 0.040 0.008 0 0 0 0 0

MLP 0 0 0 0 0 0 0.003 0.018 0.052 0.117 0.248 0.266 0.254 0.033 0.009 0
PKR 0 0 0 0 0 0.002 0.006 0.010 0.024 0.094 0.186 0.325 0.207 0.097 0.045 0.004

Table 4 presents the results of exact robustness analysis from the perspective of pair-
wise comparisons. For clarity of presentation, the necessary relation is also presented
in the form of the Hasse diagram in Figure 8. For efficient provinces (POM, WLKP, and
LBU), no other unit is necessarily preferred to them. As expected, these provinces are
necessarily preferred to the greatest number of other units. POM is robustly better than
all thirteen inefficient provinces, and WLKP and LBU prove their superiority over all
units but KP. Among the inefficient provinces, KP is necessarily preferred to the highest
number (4) of other provinces. Eight voivodeships are not robustly as good as any other
unit. The least favorable among them is DSL, which is not even possibly preferred to eight
other provinces.

Table 4. The necessary (N) and possible (P) efficiency preference relations for pairs of Polish voivode-
ships in the comprehensive analysis of the healthcare system.

Voivodeship ZPM POM WM PDL LBU WLKP KP MAZ LBL DSL OPO LDZ SL SW MLP PKR

ZPM N P P P P P N P P P P P P
POM N N N N P P N N N N N N N N N N
WM P N P P P P N N P P P P P
PDL P P N P P P P P P P P P
LBU N P N N N P P N N N N N N N N N

WLKP N P N N P N P N N N N N N N N N
KP P P N P P N P P N N P N P P P

MAZ P P P P N P P P P P P P P
LBL P P P P P N N P P N P P P
DSL P P N P P P P P
OPO P P P P P N P P P P P
LDZ P P P P P P P P N P P P P
SL P P P P P P P N P P P
SW P P P P P P N P P P N P P

MLP P P P P P P P P P P P N P
PKR P P P P P P P P P P P P N
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Figure 8. The Hasse diagram of the necessary efficiency preference relation in the comprehensive
analysis of the healthcare system.

For pairs of voivodeships that are not related by the necessary preference, it is worth
analyzing the pairwise efficiency outranking indices (see Table 5). For some, one province
proves better for most scenarios (see, e.g., ZPM and PKR with PEOI I(ZPM, PKR) = 99.4%
or MAZ and MLP with PEOI I(MAZ, MLP) = 99.3%). For other pairs, the shares of
feasible scenarios confirming the preference in both directions are more balanced (see,
e.g., MAZ and LBL with PEOI I(MAZ, LBL) = 53.4% and PEOI I(LBL, MAZ) = 46.6%, or
PKR and SL with PEOI I(PKR, SL) = 47.6% and PEOIL(SL, PKR) = 52.4%).

Table 5. Pairwise efficiency outranking indices for pairs of Polish voivodeships in the comprehensive
analysis of the healthcare system.

PEOI ZPM POM WM PDL LBU WLKP KP MAZ LBL DSL OPO LDZ SL SW MLP PKR

ZPM 1 0 0.835 1 0 0 0.690 0.962 0.852 1 1 0.989 1 0.791 1 0.994
POM 1 1 1 1 0.870 0.625 1 1 1 1 1 1 1 1 1 1
WM 0.165 0 1 1 0 0 0.286 0.609 0.630 1 1 0.890 0.918 0.481 0.960 0.967
PDL 0 0 0 1 0 0 0 0 0 0.760 0.748 0.006 0.095 0 0.039 0.146
LBU 1 0.130 1 1 1 0.181 1 1 1 1 1 1 1 1 1 1

WLKP 1 0.375 1 1 0.819 1 1 1 1 1 1 1 1 1 1 1
KP 0.310 0 0.714 1 0 0 1 0.758 0.805 1 1 0.953 0.974 0.651 0.996 0.990

MAZ 0.038 0 0.391 1 0 0 0.242 1 0.534 1 1 0.850 0.981 0.378 0.993 0.958
LBL 0.148 0 0.370 1 0 0 0.195 0.466 1 1 1 0.879 0.909 0.295 0.898 0.988
DSL 0 0 0 0.240 0 0 0 0 0 1 0.487 0.001 0.016 0 0.052 0.061
OPO 0 0 0 0.252 0 0 0 0 0 0.513 1 0.002 0.023 0 0 0.020
LDZ 0.011 0 0.110 0.994 0 0 0.047 0.150 0.121 0.999 0.998 1 0.745 0.051 0.757 0.849
SL 0 0 0.082 0.905 0 0 0.026 0.019 0.091 0.984 0.977 0.255 1 0.049 0.489 0.524
SW 0.209 0 0.519 1 0 0 0.349 0.622 0.705 1 1 0.949 0.951 1 0.997 0.992

MLP 0 0 0.040 0.961 0 0 0.004 0.007 0.102 0.948 1 0.243 0.511 0.003 1 0.568
PKR 0.006 0 0.033 0.854 0 0 0.010 0.042 0.012 0.939 0.980 0.151 0.476 0.008 0.432 1

5.2. The Category of Inhabitants’ Health Improvement

In this section, we focus on the results attained when considering only inputs and
outputs from the inhabitants’ health improvement category. In addition, we emphasize the
differences with respect to the comprehensive level.

Figure 9 presents the extreme and expected distances to the best unit for all considered
voivodeships. WLKP is the only efficient province given this category, so its distance to
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the best unit always equals zero. Hence, POM and LBU lose the status of efficient units.
However, these two voivodeships and ZPM have relatively low distances to the best one:
ZPM (dH ∈ [0.065, 0.146]), POM (dH ∈ [0.130, 0.180]), and LBU (dH ∈ [0.114, 0.246]). In
general, the widths of distance intervals are notably more precise than when considering
all relevant factors jointly. They are also more diverse, encompassing a greater range.
In particular, seven provinces have maximal distances greater than 0.6, with three even
exceeding the threshold of 0.7. At the comprehensive level, this was not observed for
any voivodeship.

Among the inefficient provinces, ZPM can be considered the best, as it has the lowest
distances to the best unit in both optimistic and pessimistic settings. Moreover, its best
expected distance (0.109) is twice lower than at the comprehensive level, letting it overtake
POM and LBU, which were judged efficient in the hierarchy’s root. The other twelve
inefficient provinces are significantly worse. The least favorable among them is OPO, with
the distance to the best unit in its optimistic scenario equal to 0.73 and an expected distance
of 0.754. In the average case, OPO is directly preceded by MLP (0.659) and PKR (0.652).
Note that at the comprehensive level, the worst maximal distances were attained by SL, DSL,
and PDL. They all prove slightly better regarding inhabitants’ health improvement results.

Figure 9. Extreme and expected distances to the best unit for Polish voivodeships when considering
inhabitants’ health improvement level.

Table 6 presents the distribution of distances for all voivodeships when considering the
inhabitants’ health improvement level. The only two provinces for which this distance is
lower than 0.1 are WLKP (100%) and ZPM (33.2%). Such a favorable result was not attained
by ZPM at the comprehensive level for any feasible weight vector. Then, its distance could
drop even above 0.4. For the two units mentioned above, as well as POM and LBU, all
samples confirm distances not higher than 0.2. Furthermore, for all provinces, we can
indicate a single bucket in which the unit’s distance falls for most samples. For example, it
is (0.2, 0.3] for LBU, (0.3, 0.4] for MAZ, and (0.7, 0.8] for OPO. For these three provinces,
the predominating distance buckets at the comprehensive level were better. However, for
other voivodeships, including SW, MLP, and PKR, the most often repeated distance range
worsened when limiting the analysis to the inhabitants’ health improvement level.

The extreme and expected efficiency ranks at the inhabitants’ health improvement
level are provided in Figure 10. WLKP, as the only efficient province, is always ranked
first. Both ZPM and POM are ranked between second and fourth, while for LBU, this range
is slightly wider ([2, 5]). Conversely, only two voivodeships—OPO and PKR—fall to the
bottom ranking at any point, and three others (WM, DSL, and MLP) are ranked fifteenth
in the least favorable scenario. Finally, for DSL and MAZ, the difference between their
extreme ranks is the greatest. For example, DSL is ranked between sixth and fifteenth.
According to the expected ranks, WLKP (ER = 1), ZPM (2.110), POM (3.034), and LBU
(3.860) are the best, and PKR (14.205), MLP (14.339), and OPO (15.990) are the worst.
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Table 6. Distribution of distances to the best unit for Polish voivodeships when considering inhabi-
tants’ health improvement level.

DAII [0.0, 0.1] (0.1, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5] (0.5, 0.6] (0.6, 0.7] (0.7, 0.8] (0.8, 0.9] (0.9, 1.0]

ZPM 0.332 0.668 0 0 0 0 0 0 0 0
POM 0 1 0 0 0 0 0 0 0 0
WM 0 0 0 0.055 0.727 0.218 0 0 0 0
PDL 0 0 0 0 0 0.658 0.342 0 0 0
LBU 0 0.713 0.287 0 0 0 0 0 0 0

WLKP 1 0 0 0 0 0 0 0 0 0
KP 0 0 0 0 0.341 0.659 0 0 0 0

MAZ 0 0 0 0.817 0.183 0 0 0 0 0
LBL 0 0 0 0 0.342 0.618 0.040 0 0 0
DSL 0 0 0 0.033 0.510 0.433 0.024 0 0 0
OPO 0 0 0 0 0 0 0 1 0 0
LDZ 0 0 0 0 0.150 0.710 0.140 0 0 0
SL 0 0 0.433 0.567 0 0 0 0 0 0
SW 0 0 0 0 0.256 0.744 0 0 0 0

MLP 0 0 0 0 0 0.088 0.715 0.197 0 0
PKR 0 0 0 0 0 0.125 0.708 0.167 0 0

When compared to the comprehensive level, the greatest improvement in the attained
ranks can be observed for ZPM ([2, 4] rather than [4, 15]) and SL ([4, 5] rather than [7, 16]). On
the contrary, the greatest deterioration of possible positions is noted for OPO ([15, 16] rather
than [8, 16]) and MLP ([11, 16] rather than [4, 15]). For many provinces, including WM, POL,
MAZ, LBL, LDZ, and SW, the ranking intervals got significantly narrower, confirming the
lower diversity of results when limiting the scope of the analysis to health improvement.

Figure 10. Extreme and expected ranks for Polish voivodeships when considering inhabitants’ health
improvement level.

The distribution of efficiency ranks given the inhabitants’ health improvement level
is presented in Table 7. The most stable individual positions were observed for WLKP
(1–100%), SL (5–99.6%), OPO (16–99.0%), and ZPM (2–91.6%). Such high acceptabilities
were not observed at the comprehensive level for any position and unit. In fact, the
greatest share of weights (72.4%) supported the third position of LBU. Returning to the
health improvement category, for some other voivodeships, the vast majority of weights
indicate a pair of ranks (e.g., MLP and PKR are ranked 14th or 15th for 92.3% or 78.3%
samples, respectively). Finally, the ranks of some units are more dependent on the chosen
weight vector. For example, KP attained positions between 8th and 12th, with no ERAI
exceeding 28%. Similarly, SW is ranked within the range [7, 12] with ERAIs not less than
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6.9% and not greater than 31.1%. Still, these outcomes exhibit less diversity than at the
comprehensive level.

Table 7. Distribution of ranks for Polish voivodeships when considering inhabitants’ health improve-
ment level.

ERAI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ZPM 0 0.916 0.058 0.026 0 0 0 0 0 0 0 0 0 0 0 0
POM 0 0.054 0.858 0.088 0 0 0 0 0 0 0 0 0 0 0 0
WM 0 0 0 0 0 0.029 0.705 0.110 0.093 0.063 0 0 0 0 0 0
PDL 0 0 0 0 0 0 0 0 0.003 0.179 0.096 0.075 0.403 0.142 0.102 0
LBU 0 0.030 0.084 0.882 0.004 0 0 0 0 0 0 0 0 0 0 0

WLKP 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
KP 0 0 0 0 0 0 0 0.212 0.272 0.182 0.087 0.247 0 0 0 0

MAZ 0 0 0 0 0 0.932 0.013 0.046 0.009 0 0 0 0 0 0 0
LBL 0 0 0 0 0 0 0.049 0.036 0.294 0.206 0.177 0.176 0.049 0.013 0 0
DSL 0 0 0 0 0 0.039 0.039 0.399 0.201 0.070 0.142 0.064 0.019 0.026 0.001 0
OPO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.010 0.990
LDZ 0 0 0 0 0 0 0 0.120 0.059 0.085 0.159 0.281 0.296 0 0 0
SL 0 0 0 0.004 0.996 0 0 0 0 0 0 0 0 0 0 0
SW 0 0 0 0 0 0 0.194 0.077 0.069 0.215 0.311 0.134 0 0 0 0

MLP 0 0 0 0 0 0 0 0 0 0 0.023 0.011 0.043 0.450 0.473 0
PKR 0 0 0 0 0 0 0 0 0 0 0.005 0.012 0.190 0.369 0.414 0.010

The graph of the necessary relation at the inhabitants’ health improvement level is
shown in Figure 11. The robust conclusions are richer than at the comprehensive level.
For example, the number of pairs of different provinces that are related by the necessary
preference increased from 47 to 85. Moreover, the number of levels in the respective Hasse
diagram increased from 3 to 7.

In particular, WLKP is necessarily preferred to all other provinces, and four other
voivodeships—POM, ZMP, LBU, and SL—proves to be necessarily better than the remain-
ing eleven units. The worst unit is OPO, which is not necessarily preferred to any other
province while being possibly preferred only to PKR. Further, MLP and PKR are necessarily
worse than 10 and 9 other provinces, respectively. Finally, SL benefited the most from
limiting the scope to the health improvement level, because in the hierarchy’s root, it was
not robustly better than any other voivodeship.

The respective PEOIs are given in Table 8. Similarly, as at the comprehensive level,
for some pairs, one unit is significantly better than the other (see, e.g., ZPM and POM with
PEOI(ZPM, POM) = 94.8% or LBU and SL with PEOIH(LBU, SL) = 98.7%). In turn,
other pairs are characterized by more balanced stochastic acceptabilities, indicating an ad-
vantage of either voivodeship (see, e.g., PKR and MLP with PEOIH(PKR, MLP) = 52.2%
or KP and SW with PEOIH(KP, SW) = 52.4%). However, the absolute values of POEIs
for some pairs differ vastly compared to the hierarchy’s root. For example, POM is nec-
essarily better than ZPM at the comprehensive level, but when considering only health
improvement, ZPM attains no worse efficiency for 94.8% of feasible weights.

5.3. The Category of Financial Management

In this section, we discuss the results attained at the level of financial management.
Instead of comparing them to the outcomes at the comprehensive level, we emphasize how
managers can use them to improve the relative efficiency of provinces. Similar improvement
strategies can be designed for other categories or hierarchy nodes.

Figure 12 presents the extreme and expected distances to the best province when
limiting the scope to financial management. The most important result derived from their
analysis is the division of provinces into efficient and inefficient. The minimal distance
equals zero only for two units: POM and LBU. This means that they are the best performers
among the sixteen voivodeships for at least one feasible weight vector. However, LBU
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has slightly better maximal and expected distances to the best province than POM. When
looking at their inputs and outputs within the financial category, they perform equally
well (51.3) on output F3. It is the best value among all provinces. Moreover, the other two
financial factors are greater for LBU, confirming that it transforms more beds (input F2)
into a more significant profit (output F1). These two voivodeships should serve as ultimate
peers for the remaining inefficient units in terms of financial management.

Figure 11. The Hasse diagram of the necessary efficiency preference relation when considering
inhabitants’ health improvement level.

Table 8. Pairwise efficiency outranking indices for pairs of Polish voivodeships when considering
inhabitants’ health improvement level.

PEOI ZPM POM WM PDL LBU WLKP KP MAZ LBL DSL OPO LDZ SL SW MLP PKR

ZPM 1 0.948 1 1 0.973 0 1 1 1 1 1 1 1 1 1 1
POM 0.052 1 1 1 0.897 0 1 1 1 1 1 1 1 1 1 1
WM 0 0 1 1 0 0 0.995 0.070 0.904 0.921 1 0.851 0 0.786 1 1
PDL 0 0 0 1 0 0 0 0 0.240 0.014 1 0.320 0 0.209 0.844 0.767
LBU 0.027 0.103 1 1 1 0 1 1 1 1 1 1 0.987 1 1 1

WLKP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
KP 0 0 0.005 1 0 0 1 0 0.565 0.395 1 0.640 0 0.524 1 0.996

MAZ 0 0 0.930 1 0 0 1 1 0.989 0.939 1 1 0 1 1 1
LBL 0 0 0.096 0.760 0 0 0.435 0.011 1 0.278 1 0.688 0 0.489 0.962 1
DSL 0 0 0.079 0.986 0 0 0.605 0.061 0.722 1 1 0.728 0 0.635 0.942 0.947
OPO 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0.015
LDZ 0 0 0.149 0.680 0 0 0.360 0 0.312 0.272 1 1 0 0.011 1 1
SL 0 0 1 1 0.013 0 1 1 1 1 1 1 1 1 1 1
SW 0 0 0.214 0.791 0 0 0.476 0 0.511 0.365 1 0.989 0 1 1 1

MLP 0 0 0 0.156 0 0 0 0 0.038 0.058 1 0 0 0 1 0.478
PKR 0 0 0 0.233 0 0 0.004 0 0 0.053 0.985 0 0 0 0.522 1

Among them, the overall good performers are WLKP (EdF = 0.1689) and MLP
(EdF = 0.2328). They do not optimize one specific input or output, but perform decently
on all indicators. In the optimistic, pessimistic, and expected scenarios, SL attains the least
favorable results with the significantly greatest distances to the best province. In turn, KP
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has the broadest range of distances ([0.140, 0.416]), confirming its performance’s sensitivity
to the selection of particular priorities. This results from an imbalanced performance profile
with a highly favorable value on output F1 and a relatively poor value on output F3. Finally,
when complete order is desired, it can be imposed by the expected distances. In this
case, LBU (EdF = 0.010) and POM (EdF = 0.021) are safely ranked at the top, and DSL
(EdF = 0.509) and SL (EdF = 0.735) are ranked at the bottom.

Figure 12. Extreme and expected distances to the best unit for Polish voivodeships when considering
financial management level.

The distance distribution at the financial management level is presented in Table 9.
For both efficient provinces (POM and LBU), the distance is always within the first bucket
([0.0, 0.1]). Among the inefficient provinces, WLKP confirms its superiority over the remain-
ing units, as for over 99% samples, its distance from the efficient unit is not greater than
0.2. The only two other provinces with positive DAIIs for bucket (0.1, 0.2] are KP (14.2%)
and MLP (4.3%). The greatest stability of distances among inefficient provinces is observed
for ZPM with DAIIF(ZPM, (0.3, 0.4]) = 1. There are only two provinces, PDL and KP, for
which most samples confirm no single distance bucket. Furthermore, KP is the only unit
with positive DAIIs for more than three buckets ((0.1, 0.5]).

Table 9. Distribution of distances to the best unit for Polish voivodeships when considering financial
management level.

DAII [0.0, 0.1] (0.1, 0.2] (0.2, 0.3] (0.3, 0.4] (0.4, 0.5] (0.5, 0.6] (0.6, 0.7] (0.7, 0.8] (0.8, 0.9] (0.9, 1.0]

ZPM 0 0 0 1 0 0 0 0 0 0
POM 1 0 0 0 0 0 0 0 0 0
WM 0 0 0.757 0.243 0 0 0 0 0 0
PDL 0 0 0.475 0.483 0.042 0 0 0 0 0
LBU 1 0 0 0 0 0 0 0 0 0

WLKP 0 0.993 0.007 0 0 0 0 0 0 0
KP 0 0.142 0.453 0.379 0.026 0 0 0 0 0

MAZ 0 0 0 0.857 0.143 0 0 0 0 0
LBL 0 0 0 0.139 0.775 0.086 0 0 0 0
DSL 0 0 0 0 0.312 0.688 0 0 0 0
OPO 0 0 0 0.240 0.708 0.052 0 0 0 0
LDZ 0 0 0.705 0.295 0 0 0 0 0 0
SL 0 0 0 0 0 0 0.220 0.743 0.037 0
SW 0 0 0.366 0.628 0.006 0 0 0 0 0

MLP 0 0.043 0.957 0 0 0 0 0 0 0
PKR 0 0 0 0 0.545 0.455 0 0 0 0

The results of the robustness analysis for efficiency ranks at the financial management
level are presented in Figure 13 (extreme and expected positions) and Table 10 (efficiency
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rank acceptability indices). They provide additional insights into the comparisons of
efficient provinces. Specifically, even if LUB and POM can be ranked first for some weight
vectors, the former is ranked first almost twice as often as the latter. This makes it the
most favorable province regarding financial management, as additionally confirmed by
the expected ranks (ERF(LUB) = 1.377 vs. ERF(POM) = 1.623). The remaining provinces
are at most third in the best case. Again, WLKP proves to be the most advantageous
among them, with ERF(WLKP) = 3.107. Further, KP has the broadest range of efficiency
positions, being ranked between third and eleventh. ERAIs confirm that its ranks are rather
equally distributed between these extreme positions, with the maximal value for the fifth
rank (ERAIF(KP, 5) = 24.8%) and acceptabilities greater than 6% for all ranks within the
range [3, 11]. Such great diversity is a consequence of its extreme performances. In fact,
it is the best among all provinces on F1 while being in the bottom three on F3. Thus, KP
is focused on the profit attained by healthcare institutions rather than on the number of
treated patients. This aspect needs to be improved when aiming for higher ranks.

There are three other provinces with relatively wide possible efficiency rank intervals:
ZPM ([6, 12]), PDL ([5, 11]), and OPO ([9, 15]). Among them, only ZPM attains a single
rank for most samples (ERAIF(ZPM, 10) = 62.4%). Finally, SL is ranked at the bottom
regardless of the weight vector. This is related to its greatest value on input F2, the lowest
value on output F3, and a relatively low value on output F1. Thus, even if the financial
input of SL is the greatest, its outputs are less favorable than for provinces with lesser
financial resources. The complete ranking established with the expected efficiency ranks
aligns with the one based on expected distances, with LBU, POM, WLKP, and MLP being
ranked among the best provinces and SL, DSL, and PKR placed at the bottom.

Figure 13. Extreme and expected ranks for Polish voivodeships when considering financial manage-
ment level.

Figure 14 presents the necessary ranking at the financial management level. POM and
LBU are necessarily preferred to all other provinces, confirming their superiority given
the financial category. The second level includes KP, WLKP, and MLP, and the lowest
one contains PKR, DSL, and SL. They are possibly preferred to 4, 3, and 0 other units,
respectively. Moreover, SL is necessarily worse than all other voivodeships.

The pairwise comparisons are useful for analysts particularly familiar with some
provinces. For example, the authorities of OPO can compare it to other provinces searching
for possible improvements. They can note that OPO is robustly worse than PDL or LBU and
robustly better than SL. Notably, the necessary ranking (see Figure 14) is a good starting
point to find the improvement paths for provinces. OPO has multiple paths to achieve
efficiency. For example, it can take PDL as the first benchmark, follow WLKP, and finally
refer to POM or LBU. An alternative improvement path runs through KP and POM.
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Table 10. Distribution of ranks for Polish voivodeships when considering financial management level.

ERAI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ZPM 0 0 0 0 0 0.011 0.046 0.182 0.062 0.624 0.068 0.007 0 0 0 0
POM 0.377 0.623 0 0 0 0 0 0 0 0 0 0 0 0 0 0
WM 0 0 0 0.048 0.318 0.207 0.089 0.143 0.195 0 0 0 0 0 0 0
PDL 0 0 0 0 0.001 0.206 0.200 0.205 0.133 0.164 0.091 0 0 0 0 0
LBU 0.623 0.377 0 0 0 0 0 0 0 0 0 0 0 0 0 0

WLKP 0 0 0.900 0.093 0.007 0 0 0 0 0 0 0 0 0 0 0
KP 0 0 0.100 0.088 0.248 0.169 0.066 0.077 0.074 0.061 0.117 0 0 0 0 0

MAZ 0 0 0 0 0 0 0 0.003 0.151 0.054 0.563 0.187 0.042 0 0 0
LBL 0 0 0 0 0 0 0 0 0 0.012 0.046 0.379 0.424 0.139 0 0
DSL 0 0 0 0 0 0 0 0 0 0 0 0 0 0.382 0.618 0
OPO 0 0 0 0 0 0 0 0 0.005 0.059 0.114 0.300 0.339 0.092 0.091 0
LDZ 0 0 0 0.100 0.126 0.365 0.332 0.077 0 0 0 0 0 0 0 0
SL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
SW 0 0 0 0 0 0.013 0.267 0.313 0.380 0.026 0.001 0 0 0 0 0

MLP 0 0 0 0.671 0.300 0.029 0 0 0 0 0 0 0 0 0 0
PKR 0 0 0 0 0 0 0 0 0 0 0 0.127 0.195 0.387 0.291 0

Figure 14. The Hasse diagram of the necessary efficiency preference relation when considering
financial management level.

The analysis of PEOIs (see Table 11) is helpful for pairs related by mutual possible pref-
erence. For some, one province attains greater efficiency more often (e.g.,
PEOIF(SW, ZPM) = 91.2%). For other pairs, indicating a better voivodeship is more
challenging, as the shares of weights confirming the advantage of either unit are sim-
ilar. An example of such a pair is LDZ and KP with PEOIF(LDZ, KP) = 48.3% and
PEOIF(KP, LDZ) = 51.7%.
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Table 11. Pairwise efficiency outranking indices for pairs of Polish voivodeships when considering
financial management level.

PEOI ZPM POM WM PDL LBU WLKP KP MAZ LBL DSL OPO LDZ SL SW MLP PKR

ZPM 1 0 0 0.285 0 0 0.244 0.999 0.986 1 0.925 0.012 1 0.088 0 1
POM 1 1 1 1 0.403 1 1 1 1 1 1 1 1 1 1 1
WM 1 0 1 0.661 0 0 0.512 1 1 1 1 0.510 1 0.816 0.083 1
PDL 0.715 0 0.339 1 0 0 0.197 0.800 1 1 1 0.251 1 0.546 0.005 1
LBU 1 0.597 1 1 1 1 1 1 1 1 1 1 1 1 1 1

WLKP 1 0 1 1 0 1 0.920 1 1 1 1 1 1 1 0.996 1
KP 0.756 0 0.488 0.803 0 0.080 1 0.813 1 1 1 0.517 1 0.665 0.172 1

MAZ 0.001 0 0 0.200 0 0 0.187 1 0.932 1 0.809 0 1 0 0 1
LBL 0.014 0 0 0 0 0 0 0.068 1 1 0.480 0 1 0 0 0.752
DSL 0 0 0 0 0 0 0 0 0 1 0.102 0 1 0 0 0.287
OPO 0.075 0 0 0 0 0 0 0.191 0.520 0.898 1 0 1 0.006 0 0.754
LDZ 0.988 0 0.490 0.749 0 0 0.483 1 1 1 1 1 1 1 0.109 1
SL 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
SW 0.912 0 0.184 0.454 0 0 0.335 1 1 1 0.994 0 1 1 0 1

MLP 1 0 0.917 0.995 0 0.004 0.828 1 1 1 1 0.891 1 1 1 1
PKR 0 0 0 0 0 0 0 0 0.248 0.713 0.246 0 1 0 0 1

5.4. The Category of Consumer Satisfaction

In this section, we present the results of provinces’ performance analysis at the level of
consumer satisfaction with the healthcare system. To save space, we refer only to the exact
and expected results without reporting the complete tables with stochastic acceptabilities.

Figure 15 presents the extreme and expected distances when considering the satisfac-
tion of consumers. There are five efficient provinces with dS

∗ = 0: POM, KP, LBL, SW, and
PKR. This is the greatest number for any node in the considered hierarchy. Among them,
two provinces, LBL and PKR, have particularly narrow distance intervals, being close to
the efficient units regardless of the weight vector (dS,∗ = 0.081 for LBL and dS,∗ = 0.057
for PKR). They are also the best regarding the expected distance (for PKR—EdS = 0.005
and for LBL—EdS = 0.029). In turn, the maximal (worst) possible distances for SW (0.285)
and POM (0.307) are vastly greater, emphasizing their sensitivity to the selection of a partic-
ular weight vector. Among the inefficient units, the best minimal (optimistic) distance is
achieved by OPO (0.049), and the best maximal (pessimistic) distance is attained by WLKP
(0.312). The three provinces that are the worst considering both minimal and maximal
distance are PDL (dS

∗ = 0.454, dS,∗ = 0.556), DSL (dS
∗ = 0.449, dS,∗ = 0.623), and ZPM

(dS
∗ = 0.513, dS,∗ = 0.670). Their poor performance is also reflected in the bottom ranks

according to the expected distances.

Figure 15. Extreme and expected distances to the best unit for Polish voivodeships when considering
consumer satisfaction level.
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The extreme and expected efficiency ranks in consumer satisfaction are presented in
Figure 16. Among the five efficient provinces, PKR has the narrowest rank interval; in
the least favorable scenario, it is ranked third. On the contrary, even if POM is efficient,
it can drop even to the tenth position, making its performance the least stable among all
voivodeships. LBU is the best inefficient province when it comes to the best rank (RS

∗ = 3),
and the best-ranked inefficient units in the pessimistic settings are WM, LBU, and OPO
(RS,∗ = 9). The worst provinces considering both the minimal and maximal ranks are ZPM
([15, 16]), PDL ([14, 15]), and DSL ([14, 16]). Notably, their rank intervals are very narrow.
As far as the expected ranks are concerned, the best province is PKR (1.426), followed by
LBL (2.249) and KP (3.441). On the other extreme, PDL (14.192), DSL (14.988), and ZPM
(15.820) are the least favorable.

Figure 16. Extreme and expected ranks for Polish voivodeships when considering consumer satisfac-
tion level.

The necessary efficiency preference relation is presented as the Hasse diagram in
Figure 17. The provinces form the multiple-level structure, with efficient ones (POM, PKR,
LBL, KP, and SW) at the top. Among them, PKR and LBL are necessarily preferred to
the most significant number of eleven other provinces, while POM proves robustly better
than only six other provinces. Five other voivodeships (WM, LBU, OPO, WLKP, and MLP)
are placed in the second level. All of them are necessarily preferred to four or five other
provinces. Finally, DSL and ZPM are confirmed as the worst provinces, as they are not
necessarily preferred to any other province. In fact, DSL is possibly preferred to only two
other units (ZPM and PDL), while ZPM is at least as efficient for at least one weight vector
only when compared to DSL.

5.5. Complete Efficiency Rankings of Voivodeships

The expected distances (Ed) and ranks (ER) allow for the construction of a complete
ranking of voivodeships. In this section, we compare such orders with the ones obtained
with the most commonly used ranking procedures for DEA, i.e., Cross-efficiency (CE) [30]
and Super-efficiency (SE) [31]. We adapted them to a value-based additive efficiency model
and ran it on each category of indicators.

The rankings generated by all four procedures for the level of inhabitants’ health
improvement are provided in Table 12. To quantify the agreement level of such rankings
for all hierarchy nodes, we used Kendall’s τ coefficient [28,32]. Its values are shown in
Table 13. Note that −1 means the rankings are inverse, whereas 1 denotes a pair of the
same rankings.

All four procedures provide highly correlated rankings. The two methods proposed in
this paper (Ed and ER) offer the most similar orders of provinces. The rankings constructed
with these two procedures are the same for the comprehensive analysis of the healthcare
systems and the customer satisfaction category. For the remaining two categories, Kendall’s
τ coefficient equals 0.97.

The similarity between the rankings based on Ed, ER, and CE is between 0.73 for
the comprehensive analysis and 0.97 for health improvement and financial management
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perspectives. The average measure value is 0.904. When comparing the orders imposed by
SE and the two robustness-based methods, Kendall’s τ is between 0.72 and 0.95 (0.92) for
Ed (ER), with an average value of 0.879 (0.863). Given that the maximal possible value of
Kendall’s τ is 1, the observed similarity levels are very high.

Figure 17. The Hasse diagram of the necessary efficiency preference relation when considering
consumer satisfaction level.

Table 12. The voivodeships’ efficiency rankings imposed by four different measures at the level of
health improvement: expected distance (Ed), expected rank (ER), cross-efficiency (CE), and super-
efficiency (SE).

ZPM POM WM PDL LBU WLKP KP MAZ LBL DSL OPO LDZ SL SW MLP PKR

Ed 0.109 0.152 0.462 0.582 0.179 0.000 0.514 0.372 0.523 0.492 0.754 0.548 0.302 0.526 0.659 0.652
2 3 7 13 4 1 9 6 10 8 16 12 5 11 15 14

ER 2.110 3.034 7.456 12.530 3.860 1.000 9.885 6.132 10.215 9.164 15.990 11.310 4.996 9.774 14.339 14.205
2 3 7 13 4 1 10 6 11 8 16 12 5 9 15 14

CE 0.102 0.155 0.471 0.598 0.178 0.000 0.525 0.378 0.507 0.495 0.760 0.526 0.294 0.509 0.656 0.630
2 3 7 13 4 1 11 6 9 8 16 12 5 10 15 14

SE 0.065 0.130 0.383 0.514 0.114 -0.140 0.458 0.324 0.414 0.374 0.726 0.470 0.233 0.469 0.565 0.560
2 4 8 13 3 1 10 6 9 7 16 12 5 11 15 14

Table 13. Kendall’s τ coefficient for ranking procedures at each hierarchy level.

Comprehensive
Analysis

Inhabitants’ Health
Improvement

Effective Financial
Management

Consumer Satisfaction

Ed ER CE SE Ed ER CE SE Ed ER CE SE Ed ER CE SE

Ed 1.00 1.00 0.73 0.72 1.00 0.97 0.97 0.95 1.00 0.97 0.97 0.95 1.00 1.00 0.95 0.90
ER 1.00 1.00 0.73 0.72 0.97 1.00 0.97 0.92 0.97 1.00 0.97 0.92 1.00 1.00 0.95 0.90
CE 0.73 0.73 1.00 0.85 0.97 0.97 1.00 0.95 0.97 0.97 1.00 0.92 0.95 0.95 1.00 0.92
SE 0.72 0.72 0.85 1.00 0.95 0.92 0.95 1.00 0.95 0.92 0.92 1.00 0.90 0.90 0.92 1.00
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5.6. Discussion

Three provinces, namely POM, WLKP, and LBU, prove to be the best in the compre-
hensive analysis of the healthcare system in Poland. However, the results for the three
subcategories differ. This section discusses the conclusions that can be derived from the
cross-category analysis, indicating various provinces’ strong and weak points. For illus-
trative purposes, we refer to three example voivodeships representing the top (WLKP),
middle (PKR), and bottom (OPO) performers in the hierarchy’s root.

When it comes to WLKP, it proves to be the best at the inhabitants’ health improve-
ment level; it is necessarily preferred by POM and LBU for the financial management level,
and its ranks are between fifth and twelfth, given the consumer satisfaction perspective.
This suggests that despite the decent quality of medical services, there is room for im-
provement in patient satisfaction and financial management. In particular, managers can
conduct some training in soft skills for medical staff to improve consumer assessment of
the healthcare system.

PKR is the best province regarding consumer satisfaction, as confirmed by its favorable
expected distance and rank. However, when considering the comprehensive results and
conclusions drawn for the remaining two categories, it performs poorly. Its expected
rank is greater than 13 for inhabitants’ health improvement and financial management
categories, while in the hierarchy’s root, its average rank is 12.024. Hence, the healthcare
system managers in this province should focus on improvements in medical decisions and
financial management. In turn, other provinces can consider the healthcare system in PKR
as the benchmark of proper communication with the consumers.

Such a cross-category analysis can serve as the basis for designing an improvement
plan for provinces that proved to be relatively bad in the comprehensive analysis. In
particular, the analysis of OPO’s poor performance points to the inhabitants’ health im-
provement category and financial management. It is the worst province for the former
perspective for 99% of weight vectors, and its expected rank is only 12.549 for the latter
category. Hence, managers should first focus on improving inhabitants’ health, due to
the high importance of this category in the analysis. Then, they should design a plan for
advancing financial management.

6. Conclusions

This paper introduce a novel framework for robustness analysis in the context of
additive value-based efficiency analysis with a hierarchical structure. It admits a multiple-
layer organization of relevant factors from the most general to the most detailed ones while
tolerating both inputs and outputs in the same node. We accept the linear weight restrictions
concerning the importance and trade-offs between various factors or subcategories with
the common predecessor in the hierarchy. The results can be considered in each hierarchy
node, letting the analyst view the comprehensive outcomes and draw conclusions for
the subproblems where the relevant factors are limited to concise subsets of inputs and
outputs reflecting a particular perspective. The proposed framework can be used in
the standard efficiency analysis and the decision contexts requiring the consideration of
composite indicators.

We derived the results by considering three perspectives: score-based distances to the
efficient unit, ranks, and pairwise preference relations. For each of them, we proposed a
pair of methods. The first group was based on mathematical programming, offering the
exact, extreme outcomes that can be attained in the set of feasible input/output weights.
The other group was based on Monte Carlo simulations, providing the distribution of
efficiency outcomes through stochastic acceptabilities that estimate the share of the weight
subspaces confirming a given result. These approaches are complementary because the
exact outcomes often need more conclusiveness, whereas the stochastic indices—even if
approximated with high accuracy—may fail to capture some extreme results.

We illustrated the framework’s applicability by assessing the quality of the healthcare
system of sixteen Polish voivodeships. The analysis included nine indicators of different
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natures and concerned four levels. The comprehensive results were based on all relevant
characteristics considered jointly, while the three subproblems captured the perspectives
of inhabitants’ health improvement, financial management, and consumer satisfaction.
We reported three provinces—Pomorskie (POM), Wielkopolskie (WLKP), and Lubuskie
(LBU)—as the most efficient ones. We presented their strong and weak points by referring
to the results in all hierarchy nodes. Moreover, we discussed the practical usefulness of the
robustness analysis in terms of managerial implications.
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Appendix A. Properties of the Exact Robust Results

This section presents the relevant properties of the exact robust results given the
hierarchical structure. In particular, when the minimal distances in all children nodes of
some more general category are equal to zero, the minimal distance in this category must
also be zero.

Proposition A1. For DMUo ∈ D and category c(l)i ∈ N \ f , if ∀t ∈ ch(c(l)i ) : dt
∗,o = 0,

then d
c(l)i∗,o = 0.

Similarly, if the minimal rank of DMUo in all children nodes of some more general
category is 1 (K), then it needs to be ranked first (last) in this category in the best case.

Proposition A2. For DMUo and category c(l)i ∈ N \ f , if ∀t ∈ ch(c(l)i ) : Rt
∗,o = 1 then

R
c(l)i∗,o = 1.
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Proposition A3. For DMUo and category c(l)i inN \ f , if ∀t ∈ ch(c(l)i ) : Rt
∗,o = K, then

R
c(l)i∗,o = K.

Moreover, if the maximal rank of DMUo in all children nodes of some more general
category is 1, then it needs to be ranked first in this category, even in the worst case.

Proposition A4. For DMUo and category c(l)i ∈ N \ f , if ∀t ∈ ch(c(l)i ) : R∗,to = 1, then

R
∗,c(l)i
o = 1.

When DMUo is necessarily preferred to DMUk in all children nodes of some more
general category, then DMUo must be necessarily preferred to DMUk, given this category.

Proposition A5. For pair (DMUo, DMUk) and category c(l)i ∈ N \ f , if ∀t ∈ ch(c(l)i ) :

DMUo %
N,t
E DMUk, then DMUo %

N,c(l)i
E DMUk.

Note that %
N,c(l)i
E is a partial preorder (i.e., transitive and reflexive). When DMUo is

not possibly preferred to DMUk in all children nodes of some more general category, then
DMUo is not possibly preferred to DMUk, given this category.

Proposition A6. For pair (DMUo, DMUk) and category c(l)i ∈ N \ f , if ∀t ∈ ch(c(l)i ) :

¬(DMUo %
P,t
E DMUk), then ¬(DMUo %

P,c(l)i
E DMUk).

Moreover, when DMUo is necessarily preferred to DMUk in all children nodes of
some more general category except one node for which it is possibly preferred, then DMUo
needs to be possibly preferred to DMUk, given this category.

Proposition A7. For pair (DMUo, DMUk) and category c(l)i ∈ N \ f , if ∀t ∈ ch(c(l)i ) \ a :

DMUo %
N,t
E DMUk ∧ DMUo %

P,a
E DMUk, then DMUo %

P,c(l)i
E DMUk.

Note that %
P,c(l)i
E is negatively transitive and strongly complete. Moreover, the truth of

the necessary preference implies the truth of the possible preference (%
N,c(l)i
E ⊆%P,c(l)i

E ).

Appendix B. Formulations of Example Mathematical Programming Models for
Computing the Exact Robust Results

This section illustrates mathematical programming models for computing the exact
robust results. They support understanding the general formulations presented in Section 4.
We consider a hierarchical structure involving four indicators as presented in Figure 3. The
input and output values of four DMUs and the indicator bounds are shown in Table A1.
For simplicity, we assume that the marginal value functions are linear to make them easily
computable. For example, for DMU1 and input i1, the marginal value is calculated as
ui1(DMU1) = ui1(9) =

10−9
10−0 = 0.1. Analogously, for DMU3 and output o2, the value of

marginal function is equal to uo2(DMU3) = uo2(6) =
6−5

10−5 = 0.2. Moreover, the following
weight constraints are considered: w

C(1)
1
≥ w

C(1)
1

, w
C(1)

2
≥ 0.1, wi1 ≥ 0.2, and wo2 ≥ 0.6.
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Table A1. Input/output values for DMUs and indicators’ bounds in the illustrative problem.

DMU i1 o1 i2 o2

DMU1 9 5 8 7
DMU2 2 8 5 5
DMU3 5 6 7 6
DMU4 1 2 9 8

min 0 0 5 5
max 10 10 10 10

All formulations concern category C(2)
1 (i.e., the hierarchy’s root). Let us first provide

the model for computing the minimal distance of DMU1 to the best unit:

Minimize d1

s.t.

ŵC(2)
1

i1
ui1 (9) + ŵC(2)

1
o1 uo1 (5) + ŵC(2)

1
i2

ui2 (8) + ŵC(2)
1

o2 uo2 (7)− (ŵC(2)
1

i1
ui1 (9) + ŵC(2)

1
o1 uo1 (5) + ŵC(2)

1
i2

ui2 (8) + ŵC(2)
1

o2 uo2 (7)) ≤ d1

ŵC(2)
1

i1
ui1 (2) + ŵC(2)

1
o1 uo1 (8) + ŵC(2)

1
i2

ui2 (5) + ŵC(2)
1

o2 uo2 (5)− (ŵC(2)
1

i1
ui1 (9) + ŵC(2)

1
o1 uo1 (5) + ŵC(2)

1
i2

ui2 (8) + ŵC(2)
1

o2 uo2 (7)) ≤ d1

ŵC(2)
1

i1
ui1 (5) + ŵC(2)

1
o1 uo1 (6) + ŵC(2)

1
i2

ui2 (7) + ŵC(2)
1

o2 uo2 (6)− (ŵC(2)
1

i1
ui1 (9) + ŵC(2)

1
o1 uo1 (5) + ŵC(2)

1
i2

ui2 (8) + ŵC(2)
1

o2 uo2 (7)) ≤ d1

ŵC(2)
1

i1
ui1 (1) + ŵC(2)

1
o1 uo1 (2) + ŵC(2)

1
i2

ui2 (9) + ŵC(2)
1

o2 uo2 (8)− (ŵC(2)
1

i1
ui1 (9) + ŵC(2)

1
o1 uo1 (5) + ŵC(2)

1
i2

ui2 (8) + ŵC(2)
1

o2 uo2 (7)) ≤ d1

d1 ≥ 0

ŵC(2)
1

i1
+ ŵC(2)

1
o1 + ŵC(2)

1
i2

+ ŵC(2)
1

o2 = 1

ŵ
C(2)1
i1

+ŵ
C(2)1
o1

ŵ
C(2)1
i1

+ŵ
C(2)1
o1 +ŵ

C(2)1
i2

+ŵ
C(2)1
o2

≥
ŵ

C(2)1
i2

+ŵ
C(2)1
o2

ŵ
C(2)1
i1

+ŵ
C(2)1
o1 +ŵ

C(2)1
i2

+ŵ
C(2)1
o2

ŵ
C(2)1
i2

+ŵ
C(2)1
o2

ŵ
C(2)1
i1

+ŵ
C(2)1
o1 +ŵ

C(2)1
i2

+ŵ
C(2)1
o2

≥ 0.1

ŵ
C(2)1
i1

ŵ
C(2)1
i1

+ŵ
C(2)1
o1

≥ 0.2

ŵ
C(2)1
o2

ŵ
C(2)1
i2

+ŵ
C(2)1
o2

≤ 0.6

ŵC(2)
1

i1
≥ 0, ŵC(2)

1
o1 ≥ 0, ŵC(2)

1
i2
≥ 0, ŵC(2)

1
o2 ≥ 0.



WC(2)
1



(A1)

In the above model, the first four constraints ensure that the optimized distance will
correspond to the greatest distance of DMU1 to other DMU. The fifth constraint ensures

that the distance is non-negative. The constraint set WC
(∈)
∞ corresponds to the weight

restrictions. In particular, the first constraint ensures that the sum of weights equals one,
whereas the last guarantees that all weights are non-negative. In turn, to find the maximal
distance of DMU1, we need to solve the following model:

Maximize d1

s.t.
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ŵ
C(2)

1
i1

ui1 (9) + ŵ
C(2)

1
o1 uo1 (5) + ŵ

C(2)
1

i2
ui2 (8) + ŵ

C(2)
1

o2 uo2 (7)− d1 ≥ ŵ
C(2)

1
i1

ui1 (9) + ŵ
C(2)

1
o1 uo1 (5) + ŵ

C(2)
1

i2
ui2 (8) + ŵ

C(2)
1

o2 uo2 (7)− C(1− b1)

ŵ
C(2)

1
i1

ui1 (2) + ŵ
C(2)

1
o1 uo1 (8) + ŵ

C(2)
1

i2
ui2 (5) + ŵ

C(2)
1

o2 uo2 (5)− d1 ≥ ŵ
C(2)

1
i1

ui1 (9) + ŵ
C(2)

1
o1 uo1 (5) + ŵ

C(2)
1

i2
ui2 (8) + ŵ

C(2)
1

o2 uo2 (7)− C(1− b2)

ŵ
C(2)

1
i1

ui1 (5) + ŵ
C(2)

1
o1 uo1 (6) + ŵ

C(2)
1

i2
ui2 (7) + ŵ

C(2)
1

o2 uo2 (6)− d1 ≥ ŵ
C(2)

1
i1

ui1 (9) + ŵ
C(2)

1
o1 uo1 (5) + ŵ

C(2)
1

i2
ui2 (8) + ŵ

C(2)
1

o2 uo2 (7)− C(1− b3)

ŵ
C(2)

1
i1

ui1 (1) + ŵ
C(2)

1
o1 uo1 (2) + ŵ

C(2)
1

i2
ui2 (9) + ŵ

C(2)
1

o2 uo2 (8)− d1 ≥ ŵ
C(2)

1
i1

ui1 (9) + ŵ
C(2)

1
o1 uo1 (5) + ŵ

C(2)
1

i2
ui2 (8) + ŵ

C(2)
1

o2 uo2 (7)− C(1− b4)

b1 + b2 + b3 + b4 = 1
b1, b2, b3, b4 ∈ {0, 1}
d1 ≥ 0,

WC(2)
1



(A2)

The following model allows us to find the minimal (best) efficiency rank for DMU1:

Minimize 1 + b2 + b3 + b4

s.t.

ŵC(2)
1

i1
ui1 (2) + ŵC(2)

1
o1 uo1 (8) + ŵC(2)

1
i2

ui2 (5) + ŵC(2)
1

o2 uo2 (5)− (ŵC(2)
1

i1
ui1 (9) + ŵC(2)

1
o1 uo1 (5) + ŵC(2)

1
i2

ui2 (8) + ŵC(2)
1

o2 uo2 (7)) ≤ Cb2

ŵC(2)
1

i1
ui1 (5) + ŵC(2)

1
o1 uo1 (6) + ŵC(2)

1
i2

ui2 (7) + ŵC(2)
1

o2 uo2 (6)− (ŵC(2)
1

i1
ui1 (9) + ŵC(2)

1
o1 uo1 (5) + ŵC(2)

1
i2

ui2 (8) + ŵC(2)
1

o2 uo2 (7)) ≤ Cb3

ŵC(2)
1

i1
ui1 (1) + ŵC(2)

1
o1 uo1 (2) + ŵC(2)

1
i2

ui2 (9) + ŵC(2)
1

o2 uo2 (8)− (ŵC(2)
1

i1
ui1 (9) + ŵC(2)

1
o1 uo1 (5) + ŵC(2)

1
i2

ui2 (8) + ŵC(2)
1

o2 uo2 (7)) ≤ Cb4

b2, b3, b4 ∈ {0, 1}
WC(2)

1


(A3)

The maximal (worst) efficiency rank for DMU1 can be determined by solving the
following model:

Maximize 1 + b2 + b3 + b4

s.t.

ŵC(2)
1

i1
ui1 (9) + ŵC(2)

1
o1 uo1 (5) + ŵC(2)

1
i2

ui2 (8) + ŵC(2)
1

o2 uo2 (7)− (ŵC(2)
1

i1
ui1 (2) + ŵC(2)

1
o1 uo1 (8) + ŵC(2)

1
i2

ui2 (5) + ŵC(2)
1

o2 uo2 (5)) ≤ C(1− b2)

ŵC(2)
1

i1
ui1 (9) + ŵC(2)

1
o1 uo1 (5) + ŵC(2)

1
i2

ui2 (8) + ŵC(2)
1

o2 uo2 (7)− (ŵC(2)
1

i1
ui1 (5) + ŵC(2)

1
o1 uo1 (6) + ŵC(2)

1
i2

ui2 (7) + ŵC(2)
1

o2 uo2 (6)) ≤ C(1− b3)

ŵC(2)
1

i1
ui1 (9) + ŵC(2)

1
o1 uo1 (5) + ŵC(2)

1
i2

ui2 (8) + ŵC(2)
1

o2 uo2 (7)− (ŵC(2)
1

i1
ui1 (1) + ŵC(2)

1
o1 uo1 (2) + ŵC(2)

1
i2

ui2 (9) + ŵC(2)
1

o2 uo2 (8)) ≤ C(1− b4)

b2, b3, b4 ∈ {0, 1}
WC(2)

1


(A4)

When referring to pairwise preference relations, we consider an ordered pair
(DMU1, DMU2). The truth of the necessary preference relation can be verified by solving
the following model:

Minimize d1,2

s.t.

ŵC(2)
1

i1
ui1 (9) + ŵC(2)

1
o1 uo1 (5) + ŵC(2)

1
i2

ui2 (8) + ŵC(2)
1

o2 uo2 (7)− (ŵC(2)
1

i1
ui1 (2) + ŵC(2)

1
o1 uo1 (8) + ŵC(2)

1
i2

ui2 (5) + ŵC(2)
1

o2 uo2 (5)) ≤ d1,2

WC(2)
1

}
(A5)

If the minimal distance d1,2 is not lesser than zero, then DMU1 %
N,C(2)

1
E DMU2. The

following model allows us to verify the truth of the possible preference relation:

Maximize d1,2

s.t.
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ŵC(2)
1

i1
ui1 (9) + ŵC(2)

1
o1 uo1 (5) + ŵC(2)

1
i2

ui2 (8) + ŵC(2)
1

o2 uo2 (7)− (ŵC(2)
1

i1
ui1 (2) + ŵC(2)

1
o1 uo1 (8) + ŵC(2)

1
i2

ui2 (5) + ŵC(2)
1

o2 uo2 (5)) ≥ d1,2

WC(2)
1 .

}
(A6)

If the maximal value of d1,2 is greater or equal to zero, then DMU1 %
P,C(2)

1
E DMU2.

Appendix C. Computation of Stochastic Acceptability Indices

For illustrative purposes, we present the steps of computing the stochastic acceptability
indices for the exemplary DMUs from Appendix B considering the root category (C(2)

1 ).
Firstly, we use the hit-and-run algorithm to generate the weight samples for all children
of C(2)

1 . Table A2 presents the five example samples. Let us emphasize that to obtain
reliable estimates of stochastic acceptabilities, in practice, one uses a few thousand such
samples. Secondly, we compute a value-based efficiency score for each considered DMU
(see Table A3). Based on the efficiency scores, we determine the distance of each DMUo to
the best one as the difference between the maximal efficiency score obtained by any DMUk
for a given sample and the efficiency score of DMUo. For example, for sample 1 and DMU3,
such distance equals 0.773− 0.542 = 0.231. The efficiency rank of DMUo is equal to the
number of other DMUs, for which the efficiency score is better than that of DMUo (for a
given sample), increased by one. For example, for sample 1, DMU2 and DMU3 attained
an efficiency score greater than DMU4, ranking it 3rd. The distances to the best DMU and
efficiency ranks for all exemplary DMUs and samples are presented in Table A3.

Table A2. Five example weight vectors obtained with Monte Carlo simulation.

Sample 1 2 3 4 5

wi1 0.33 0.52 0.56 0.81 0.7
wo1 0.67 0.48 0.44 0.19 0.3
wi2 0.71 0.53 0.46 0.68 0.46
wo2 0.29 0.47 0.54 0.32 0.54

w
C(1)

1
0.7 0.68 0.75 0.53 0.69

w
C(1)

2
0.3 0.32 0.25 0.47 0.31

Having determined the distances to the best DMU and efficiency ranks, we compute
the stochastic indices. DAII is the share of the weight vectors for which the distance to the
best DMU is within a given bucket. For illustrative purposes, we use only four buckets.
For example, there are four out of five samples for which the distance of DMU4 to the best
unit is in the interval b1 = [0, 0.25], so DAII(DMU4, [0, 0.25]) = 0.8. Similarly, we calculate
ERAIs as the share of samples for which a given DMU is ranked r-th. For example, DMU3
is ranked 2nd only for sample 1, so ERAI(DMU3, 2) = 0.2. Finally, PEOI for an ordered
pair of units is computed as the share of samples for which the first DMU is at least as
efficient as the other. For example, DMU4 is not worse than DMU3 for all samples except
the first one, so PEOI(DMU4, DMU3) = 0.8. The results obtained by individual samples
are averaged, providing the estimates of the expected distances Ed to the best DMU and
expected efficiency ranks ER (see Table A3).
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Table A3. Efficiency scores E, distances d, and ranks R for the considered DMUs obtained with five
sampled weight vectors.

Sample Result DMU1 DMU2 DMU3 DMU4

1
E 0.378 0.773 0.542 0.397
d 0.395 0 0.231 0.377
R 4 1 2 3

2
E 0.327 0.714 0.504 0.508
d 0.387 0 0.209 0.206
R 4 1 3 2

3
E 0.307 0.715 0.504 0.548
d 0.408 0 0.211 0.167
R 4 1 3 2

4
E 0.281 0.744 0.497 0.561
d 0.462 0 0.247 0.183
R 4 1 3 2

5
E 0.276 0.695 0.485 0.605
d 0.419 0 0.210 0.090
R 4 1 3 2

Ed 0.251 0.202 0.304 0.377
ER 4.0 1.0 2.8 2.2
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23. Kadziński, M.; Labijak, A.; Napieraj, M. Integrated framework for robustness analysis using ratio-based efficiency model with
application to evaluation of Polish airports. Omega 2017, 67, 1–18. [CrossRef]
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