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Abstract: This paper proposes a distributed algorithm for games with shared coupling constraints
based on the variational approach and the proximal-point algorithm. The paper demonstrates
the effectiveness of the proximal-point algorithm in distributed computing of generalized Nash
equilibrium (GNE) problems using local data and communication with neighbors in any networked
game. The algorithm achieves the goal of reflecting local decisions in the Nash–Cournot game
under partial-decision information while maintaining the distributed nature and convergence of
the algorithm.
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1. Introduction

The problem of finding a generalized Nash equilibrium (GNE) for networked systems
has gained significant interest recently owing to its applicability to multi-agent decision-
making scenarios, such as demand-side management in intelligent grids [1], demand
response in competitive markets [2], and electric vehicle charging [3]. In such systems,
the agents aim to minimize cost functions under joint feasibility constraints with non-
cooperative settings. They cannot reduce their local costs by unilaterally changing their
decisions but by relying on the decisions of the other agents. The GNE is a self-executing
outcome, and once computed, all agents execute it to achieve their own minimum cost. In
these systems, each user has a local cost function to minimize, which is a function of their
own and other users’ decisions. Moreover, each user’s feasible decision set is coupled with
other users’ decisions due to the limited network resources. A natural solution concept
for such systems is the GNE, which captures the non-cooperative behavior of multiple
interacting agents. A GNE is a vector of decisions such that no user can reduce their local
cost by unilaterally deviating from it, given the decisions of other users. Hence, a GNE is a
self-enforcing outcome that all agents will implement once computed, as it achieves their
individual minimum costs.

To compute GNE introspectively, most algorithms for finding Nash equilibrium re-
quire a central information center to collect and store all game information such as cost
functions, coupling constraints, and feasible local sets in a traditional computing environ-
ment. However, this approach is not suitable for large-scale network games because it is
difficult to observe the true decisions of all other players in this type of game. Additionally,
having a central coordinator node may be impractical due to technical, geographical, or
game-related reasons. In this case, each player needs to compute their local decision cor-
responding to GNE in a distributed way by utilizing their local objective function, local
feasible set, and possibly local data related to the coupling constraints and communicat-
ing with their neighbors. Therefore, our goal is to develop a distributed algorithm that
estimates the strategies of all other agents only by communicating with adjacent agents.
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This algorithm can achieve the goal of reflecting local decisions in the absence of global
information and eventually reconstructing actual value.

The proximal-point algorithm has been widely used in distributed computing of GNE
problems. In our study, we demonstrate that it can achieve the goal of reflecting local
decisions in the absence of global information while maintaining the distributed nature
and convergence of the algorithm. That is to say, in the absence of a central coordinator, the
generalized Nash equilibrium point is calculated by each participant using local information
and communication with neighbors. This approach enables each player to compute a local
decision corresponding to GNE by utilizing its local objective function, local feasible set,
and possibly local data related to the coupling constraints and communicating with its
neighbors. By continuously updating the proximal point, the proximal-point algorithm can
achieve the convergence of restricted monotone and Lipschitz continuous pseudo-gradient
games under appropriate fixed step size conditions. Our study proposes a new distributed
GNE algorithm for games with shared biomimetic coupling constraints, which is based on
the variational GNE approach and the proximal-point algorithm. Our results demonstrate
the effectiveness of the proposed algorithm in achieving GNE in a distributed manner in
the presence of shared constraints.

1.1. Literature Review

The research of GNE was initiated by the seminal works of [4,5]. In recent years, the
computation of distributed GNE in monotone games has received considerable interest.
However, most existing studies rely on the assumption that every agent in the system
has access to the decision information of other agents, i.e., by employing a central node
coordinator to orchestrate the information processing. The initial approach was based on
the variational inequality method [6]. The variational inequality framework for generalized
Nash equilibrium problems established in [6] has been extended to more general settings,
such as time-dependent or stochastic problems in [7]. Ref. [8] developed a Tikhonov-
regularized primal-dual algorithm, and [9] devised a primal-dual gradient method, which
can reduce the compensation and assumed that it can acquire the decisions of all adversaries
that influence each cost. In ref. [10], a payoff-based GNE algorithm was introduced, which
has a diminishing step size and converges to a class of convex games. Recently, an operator-
splitting method has emerged as a very powerful design technique, which ensures global
convergence and features a fixed step size and succinct convergence analysis. However,
most GNE application scenarios are aggregative games, such as [3,11–14]. In refs. [12,13],
the algorithms are semi-decentralized, requiring a central node to disseminate the common
multipliers and aggregate variables, thus resulting in a star topology. In ref. [14], this is
relaxed by a projection gradient algorithm based on two-layer consensus, both of which
are only suitable for aggregative games.

In networked non-cooperative games, a distributed forward-backward operator-
splitting algorithm for seeking the GNE has been proposed by Yi and Pavel [15], based on
the convex analysis framework of Bauschke and Combettes [16]. Under partial informa-
tion, the algorithm requires only local objective function, feasible set, and block of affine
constraints for each agent. It also introduces a local estimate of all agents’ decisions. They
further extended their algorithm to an asynchronous setting by using auxiliary variables
associated with Graphology [17]. In this setting, each agent uses private data and delay
information from their neighbors’ latency information to iterate asynchronously. They
proved the convergence and effectiveness of their algorithm under mild assumptions.
Ref. [18] investigated a generalized Nash equilibrium problem in which players are mod-
eled as nodes of a network and each player’s utility function depends on its own and its
neighbors’ actions, and derived a variational decomposition of the game under a quadratic
reference model with shared constraints, which is illustrated with numerical examples.
Bianchi et al. [19] has developed a novel algorithm that differs from the existing projective
pseudo gradient dynamics in that it is fully distributed, one-layer, and uses a proximal best
response with consensus terms. It can overcome the limitations of double-layer iterations or
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conservative step sizes of the gradient-based methods. It can also extend the applicability
of the proximal point method by analyzing the restricted monotonicity property. Pavel [20]
applied a preconditioned proximal point algorithm (PPPA) that decomposes the merit-
seeking task into Nash equilibrium (NE) computation of regularised subgame sequences
based on local information. The PPPA also performs distributed updates of multipliers
and auxiliary variables, which require multiple communications among agents to solve the
subgame. For games with general coupling costs and affine coupling constraints, [15,21]
adopt operator methods to perform distributed decentralized GNE optimization: forward-
backward optimization algorithm for strongly monotone games [15] and preconditioned
proximal optimization algorithm for monotone games [21]. The players exchange local
multipliers over the network with arbitrary topology, but each user can access all the agent
decisions that affect its cost, thus obtaining complete decision information.

1.2. Contributions

Compared with most existing distributed optimization algorithms, the main contribu-
tions of this paper are summarized as follows:

• The proposal of a GNE algorithm for games with shared biomimetic coupling con-
straints. The algorithm is based on the variational GNE approach and the proximal-
point algorithm, and is improved by introducing two choice matrices to enhance its
accuracy, as in [22,23], where we design a novel preconditioning matrix to distribute
the computation and obtain a single-layer iteration. Each player has an auxiliary
variable to estimate the decisions of other agents. The algorithm is distributed, where
each player only utilizes its local objective function, local feasible set, and local data
related to the coupling constraints, and there is no centralized coordinator to update
and propagate dual variables.

• An original dual analysis of the Karush–Kuhn–Tucker (KKT) conditions of the vari-
ational inequality (VI) is conducted, which introduces a local copy of the multiplier
and an auxiliary variable for each player. It is observed that the KKT conditions
mandate consensus among all agents on the multiplier for shared constraints. By
reformulating the original problem as finding the zero point of a monotone operator
that includes the Laplacian matrix of the connected graph, the consistency of local
multipliers is enhanced.

This paper presents global and distributed methods for finding GNE in games with
shared affine coupling constraints under partial decision information. Section 2 introduces
the game model and formulates the GNE problem. Section 3 proposes a global GNE-seeking
method based on the proximal-point algorithm with global information. Section 4 develops
a distributed GNE-finding method with partial information and proves its convergence and
implementation feasibility. Section 5 illustrates the performance of our methods through
numerical simulations. Finally, Section 6 concludes the paper and discusses some future
work directions.

2. Game Formulation

We study a non-cooperative generalized game with a crowd of agents. Each agent
i ∈ I (I = 1, . . . , N) has a local decision set Ωi ⊆ Rni and chooses its own decision xi ∈ Ωi,
where R is the set of real numbers and ni is the dimension of agent i’s decision-making. The

global decision space is Ω = ∏N
i=1 Ωi ⊂ Rn where n =

N
∑

i=1
ni and the stacked vector of all

agents’ decisions is x = col
(
(xi)i∈I

)
. Let x−i = col

((
xj
)

j∈I ,j 6=i

)
denote the decision profile

of all other agents except for agent i, then x = (xi, x−i). The feasible set for any agent
depends on the coupling constraints shared with other agents and their own decisions.
Each agent aims to minimize its objective function over this feasible set as follows:

min
xi

Ji(xi, x−i) := fi(xi, x−i) + gi(xi). (1)
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The objective function (1) can describe how multiple participants can optimize their
interests in a non-cooperative situation while being affected by sharing constraints. This
model can be applied to a variety of practical scenarios, such as smart grids, competitive
markets, and electric vehicle charging.

Assumption 1. The cost functions fi and gi of each agent i ∈ I are convex. The common
cost function fi is continuously differentiable and the local idiosyncratic cost function gi is lower
semicontinuous. Ωi is bounded and closed for any i ∈ I .

We denote A := [A1, · · · , AN ] and b := ∑N
i=1 bi, where Ai ∈ Rm×ni and bi ∈ Rm are

local parameters. By the affine function above, the set of overall feasible decisions via affine
coupling constraints and cost functions is denoted as follows:

X := Ω
⋂{

x ∈ RnN | Ax− b ≤ 0m

}
⊆ RnN , (2)

where X is a closed and convex set of decisions that is nonempty. It is used to simulate
some phenomena in nature, such as group behavior, competition, and cooperation. Such
constraints can reflect the interactions and dependencies among participants, making the
game more complex and interesting.

Assumption 2. Slater’s constraint qualification holds for the collective set X . Therefore, each agent
i ∈ I in the generalized game tries to solve this interdependent optimization problem as follows:

∀i ∈ I :


min
xi∈Ωi

Ji(xi, x−i)

s.t. Aixi ≤ b−
N
∑
j 6=i

Ajxj.
(3)

To obtain the primal-dual characterization of each agent i ∈ I , we define a Lagrangian
function with dual variable multiplier λi ∈ Rm

+ as follows:

Li(xi, x−i; λi) := fi(xi, x−i) + gi(xi) + λT
i

(
N

∑
i=1

(Aixi − bi)

)
. (4)

We call a decision x∗ ∈ X that satisfies (3) a GNE of the game. This implies that for
any agent i ∈ I ,

Ji
(
x∗i , x∗−i

)
≤ inf

{
Ji
(
y, x∗−i

)
| y ∈ Xi

(
x∗−i
)}

, (5)

where Xi(x−i) :=

{
yi ∈ Ωi | Aiyi ≤ b−

N
∑
j 6=i

Ajxj

}
.

If x∗i ∈ Ωi satisfies the KKT conditions below with λ∗i ∈ Rm
+, then it is an optimal

solution to (3).

∀i ∈ I :


∇xiLi

(
x∗i , x∗−i

)
= 0

〈λ∗i , Ax∗ − b〉 = 0

− (Ax∗ − b) ≥ 0

λ∗i ≥ 0.

(6)

We reformulate the KKT condition using the normal cone operator as follows:
0 ∈ ∇xi fi

(
x∗i , x∗−i

)
+ ∂gi(x∗i ) + AT

i λ∗i

0 ∈
N

∑
i=1

Aix∗i −
N

∑
i=1

bi −NRm
>0
(λ∗i ).

(7)
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We denote the pseudogradient of fi(xi, x−i) as F(x) = col(∇xi fi(xi, x−i))i∈I ∈ Rn.

Denote the pseudogradient of gi(xi) as g(x) =
N
∑

i=1
gi(xi).

Let λ = col(λi)i∈N denote the vector of Lagrangian multipliers associated with each
agent i ∈ N. A variational GNE is a decision x∗ ∈ X that satisfies the variational inequality
problem VI(F,X ) and has equal Lagrangian multipliers (λ1 = . . . = λN).

find x∗ ∈ X =

{
x ∈ Rn |

N

∑
i=1

Aixi ≤
N

∑
i=1

bi

}
,

s.t. 〈F(x∗), x− x∗〉+ g(x) ≥ 0, ∀x ∈ X .

(8)

Under Assumption 1, Ji is a continuous and convex function, and Ωi is a bounded
local decision set. These ensure that VI(F,X ) has a solution. Let x∗ be such a solution.
Then it satisfies (7) with equal Lagrange multipliers λ∗. Therefore, x∗ is a variational GNE
for (3).

3. Iterative Algorithms with Global Information

We propose a distributed algorithm based on preconditioned proximal-point algo-
rithms that use full-decision information. This means that every agent can access the
decisions of all other agents that affect its local objective function directly.

3.1. Communication Graph

Let |N | = N and |E | = M. We define Ei as the set of edges adjacent to i, which consists
of Eiin (the incoming edges) and Eiout (the outgoing edges). Let W =

[
wi,j
]

i,j∈I ∈ RN×N be

the symmetric weight matrix of G, where wi,j > 0 if (i, j) ∈ E and wi,j = 0 otherwise. We
also set wi,i = 0 for all agents. The Laplacian matrix of G is denoted by L := D−W, where
D := diag

(
(di)i∈I

)
is the degree matrix and di := ∑N

j=1 wi,j for all i ∈ I .

Assumption 3. G is a connected and undirected graph.

3.2. Algorithm Development

Assumption 4. F(x) is a µ-strongly monotone function, meaning that
〈F(x)− F(y), x− y〉 ≥ µ|x− y|22, ∀x, y ∈ Ω, and a θ0-Lipschitz continuous function, implying
that |F(x)− F(y)|2 ≤ θ0|x− y|2, ∀x, y ∈ Ω.

The strong monotonicity of F implies that a v-GNE exists and is unique. We can write
the variational problem for the original game problem as follows:

min
x∈Rn

〈F(x∗), x〉+ g(x),

s.t.
N

∑
i=1

Aixi ≤
N

∑
i=1

bi.
(9)

The objective function is defined by the following Lagrangian function:

L̃
(
x, λg

)
:= 〈F(x∗), x〉+ g(x) + λT

g

(
N

∑
i=1

(Aixi − bi)

)
. (10)

Let λg ∈ Rm be a global Lagrangian multiplier. To design distributed optimization
algorithms, we impose the consistency constraints λi = λj, ∀(i, j) ∈ E , i.e., (L⊗ Im)λ = 0,
where Im is an identity matrix of order m. Define G(x) = col(∂gi(xi))i∈I ∈ Rn,
λ = col(λ1, · · · , λN) = col(λi) ∈ Rm, A = [A1, · · · , AN ] ∈ Rm×n, and b = col(bi) ∈ Rm.
Then,

L1(x, λ) := 〈F(x∗), x〉+ g(x) + λT(Ax− b). (11)
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Its corresponding saddle point problem would be

max
λ

min
x
〈F(x∗), x〉+ g(x) + λT(Ax− b),

s.t. (L⊗ Im)λ = 0.
(12)

Let L = (L⊗ Im), W = (W ⊗ Im) and D = (D⊗ Im), the Lagrangian function that
defines this saddle point problem is L2(x, λ, z) = 〈F(x∗), x〉+ g(x) + λT(Ax− b) + zTLλ.
The optimal conditions for this problem are obtained by sequentially finding the partial
derivatives of the variables x, y, and z as follows:

0 ∈ F(x) +G(x) + ATλ
0 = Lλ
0 ∈ b + Lλ + NRNm

≥0
(λ)− Ax− Lz.

(13)

It follows from Lagrange’s dual theorem that the variational problem has an optimal
solution x∗ =

(
x∗i , x∗−i

)
only when λ∗g ∈ Rm satisfies the KKT conditions (13).

Lemma 1. If Assumptions 1–3 hold, then (13) implies (7).

Let v = col(x, z, λ) and consider the following operator:

A

 x
z
λ

 =

 F(x)
0
b

+

 G(x)
0

NRNm
≥0

(λ)

+

 ATλ
Lλ

−Ax− Lz

. (14)

We regard the iterative algorithm as a special case of proximal-point algorithms
(PPA) [16] for finding a zero of A. The general form of PPA can be written as

vk+1 ∈ JA
(

vk
)

, (15)

where JA
(

vk
)
6= ∅.

We apply the interaction rule (9) to the operator Φ−1A, where Φ is defined as the following:

Φ =

 0 0 −AT

0 0 −L
−A −L 0

+

 α−1 0 0
0 τ−1 0
0 0 γ−1

. (16)

We choose the step sizes α = diag(αi Ini ), τ = diag(τi Im) and γ = diag(γi Im) such
that Φ > 0.The next lemma provides sufficient conditions for Φ > 0 based on Gershgorin’s
circle theorem.

Lemma 2. For any agent i ∈ I and any δ > 0, the preconditioning matrix Φ in (16) is positive
definite if

0 < αi ≤
(

max
j∈{1,...,ni}

m

∑
k=1

∣∣∣∣[A>i
]

jk

∣∣∣∣+ δ

)−1

,

0 < τi ≤ (2di + δ)−1,

0 < γi ≤
(

max
j∈{1,...,m}

ni

∑
k=1

∣∣∣[Ai]jk

∣∣∣+ 2di + δ

)−1

.

(17)

Assuming that Φ > 0 for all chosen step sizes, we can state the following results.

Lemma 3. The iterative algorithm is equivalent to the following:

(∀k ∈ N) vk+1 ∈ JΦ−1A

(
vk
)

, (18)
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where A is given by (14), Φ is given by (16).

Proof of Lemma 3. We use the definition of the inverse operator and obtain that

vk+1 ∈
(

Id + Φ−1A
)−1(

vk
)

⇔0 ∈ Φ−1A
(

vk+1
)
− vk + vk+1

⇔0 ∈ Φ
(

vk+1 − vk
)
+A

(
vk+1

)
.

(19)

Substituting A and Φ into (19) and simplifying them, we obtain that

xk+1 + αF(xk+1) + αG(xk+1) = −αATλk + xk,

zk+1 = −τLλk + zk,

λk+1 + NRNm
≥0

(λk+1) = −γAxk − γLzk + λk + 2γAxk+1 + 2γLzk+1 − γb.
(20)

Using the definition of the proximal operator [16], we can write (20) as

xk+1 = arg min
x

(1
2
‖x− xk‖2 +

〈
x, αATλk

〉
+ α f (x) + αg(x)

)
,

zk+1 = −τLλk + zk,

λk+1 = projRNm
≥0

(λk − γAxk − γLzk + 2γAxk+1 + 2γLzk+1 − γb).

(21)

4. Distributed Algorithm with Partial Information

In a distributed setting, it is challenging to access the decisions of all other agents
requiring a central coordinator to collect and deliver information from all participants,
as assumed in the previous section. The global information assumptions in Section 3
are relaxed in this section, allowing each participant to iteratively update their decisions,
multipliers, and auxiliary variables using only their own local information and the estimates
exchanged with their neighbors. Therefore, this section proposes a distributed GNE-
seeking algorithm that uses partial information based on the preconditioned proximal-
point algorithm.

4.1. Algorithm Development

This section presents an algorithm for GNE-seeking in game (3) in a fully distributed manner.
Each agent i has a cost function Ji and a feasible set Ωi but does not know the full

state x−i of other agents. Agent i can only exchange information with its neighboring
agents over a network G(I , E). The edge (i, j) belongs to E if agents i and j can exchange

information mutually. xi := col
((

xi
j

)
j∈I

)
∈ Rn is defined as agent i’s estimate of agent

j’s decision. Then xi
i := xi and xj

−i := col
((

xj
`

)
`∈I\{i}

)
denotes j’s estimate of all other

agents except i. If xi = xj, we can replace the cost function of agent i with Ji
(
xi

i, xi
−i
)
. Then,

we equivalently transform the game (3) as the following:

min
xi

Ji
(
xi

i, xi
−i
)
= fi

(
xi

i, xi
−i
)
+ gi

(
xi

i
)
,

s.t. xi
i ∈ X̃i,

xi = xj, ∀j ∈ I .

(22)

It is worth noting that problems (3) and (22) are equivalent under a certain condition.
We will explain this point below.
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Let X̃i =

{
x ∈ Ωi | Aixi

i + ∑
j 6=i

Ajxi
j ≤

m
∑

i=1
bi

}
be the set of feasible solutions for agent i

under a consistency constraint. Then, agent i’s cost function Ji only depends on its own
local information xi.

We introduce matricesRi and Si to develop a distributed algorithm that uses partial
decision information for game (22).

Ri :=
[

0ni×n<i Ini 0ni×n>i

]
, (23)

Si :=
[

In<i 0n<i×ni 0n<i×n>i
0n>i×n<i 0n>i×ni In>i

]
. (24)

where n<i := ∑i−1
j=1 nj, n>i := ∑N

j=i+1 nj. Then, Rixi = xi
i = xi and Sixi = xi

−i. Let

R := diag
(
(Ri)i∈I

)
,S := diag

(
(Si)i∈I

)
. HenceRx = x andRx = col

((
xi
−i
)

i∈I

)
∈ R(N−1)n.

Moreover, x = R>x + S>Sx.
Similar to (13), we design sufficient conditions of (22) as follows:

0 ∈ RTF̂(x̂∗) +RTG(R∗ x̂∗) +RT ATλ∗ + cL̂x̂∗

0 = Lλ∗

0 ∈ ARx̂∗ − b + Lz∗ −NRNm
≥0

(λ∗),
(25)

where L̂ = (L⊗ In) ∈ RNn×Nn, R = diag{Ri}, F(x) = col
(
∇xi

i
fi
(
xi

i, xi
−i
))

i∈I
∈ Rn,

G(x) = col
(
∇gi

(
xi

i
))

i∈I ∈ Rn, Moreover, c is a parameter about the dual variable associ-
ated with the constraint 0 = −L̂x∗.

Define the following operator:

A :

 x̂
z
λ

 7→
 RTF̂(x̂) +RTG(Rx̂) +RT ATλ + cL̂x̂

Lλ
−ARx̂ + b− Lz + NRNm

≥0
(λ)

, (26)

Φ =

 cŴ 0 −RTAT

0 0 −L
−AR −L 0

+

 α−1 0 0
0 τ−1 0
0 0 γ−1

. (27)

The variables x, z and λ satisfy condition (25) if 0 ∈ Av where v =
[

x̂T, zT, λT
]T

.

Lemma 4. Algorithm 1 is equivalent to the following:

(∀k ∈ N) vk+1 ∈ JΦ−1A

(
vk
)

. (28)

Let A be defined as in (26) and Φ as in (27). Then, Algorithm 1 generates a sequence
(

xk, zk, λk
)

for k ∈ N and any initial condition v0 = col
(

x0, z0, λ0
)

.
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Proof of Lemma 4. By applying the definition of inverse operations, we obtain that

vk+1 ∈
(

Id+Φ−1A
)−1(

vk
)

⇔0 ∈ Φ−1A
(

vk+1
)
− vk + vk+1

⇔0 ∈ Φ
(

vk+1 − vk
)
+A

(
vk+1

)

⇔



0 ∈α−1(x̂k+1 − x̂k) + cŴx̂k+1 − cŴx̂k + cL̂x̂k+1 −R>A>λk+1 +R>A>λk

+RTF̂(x̂k+1) +RTG(Rx̂k+1)−R>A>λk+1

0 ∈τ−1
(

zk+1 − zk
)
+ Lλk+1 + Lλk − Lλk+1

0 ∈γ−1(λk+1 − λk) + NRmN
≥0

(
λk+1

)
+ b− AR(2x̂k+1 − x̂k) + L(2zk+1 − zk).

(29)

By L̂ = D̂− Ŵ,RαRT = α̃,SαRT = 0,RαL̂ = α̃RL̂, and SαL̂ = α̂Ŝ , we have

{
0 ∈S

((
I + cα̂D̂

)
xk+1 − xk − cα̂Ŵxk

)
0 ∈R

((
I + cα̃D̂

)
xk+1 − xk − cα̃Ŵxk

)
+ α̃F̂(x̂k+1) + α̃G(Rxk+1) + α̃ATλk

⇔
∀i∈I


xi
−i,k+1 = 1

1+cαidi

(
xi
−i,k + αic ∑N

j=1 wijx
j
−i,k

)
0ni ∈ ∂xk+1

i

(
1
2‖x− xi,k‖2 + αixT AT

i λi,k +
c
2 αidi

∥∥∥x− 1
di

∑N
j=1 wijx

j
i,k+1

∥∥∥2

+αi fi

(
x, xi
−i,k+1

)
+ αigi(x)

)
.

(30)

Hence, by the property that the subdifferential of a convex function contains only
zeros at its minima [16], we can reformulate (30) as follows.

∀i ∈ I :


xi
−i,k+1 = 1

1+τidi

(
xi
−i,k + τi ∑N

j=1 wi,jx
j
−i,k

)
xi,k+1 = argmin

x

(
1
2‖x− xi,k‖2 + αixT AT

i λi,k + αi fi

(
x, xi
−i,k+1

)
+αigi(x) + c

2 αidi

∥∥∥x− 1
di

∑N
j=1 wijx

j
i,k+1

∥∥∥2)
,

zk+1 = −τLλk + zk,

λk+1 = projRmN
≥0

(
λk + γAR(2x̂k+1 − x̂k) + 2γLzk+1 − γLzk − γb

)
.

(31)

Write (31) as a distributed algorithm as Algorithm 1.

Algorithm 1 Distributed Algorithm with Partial Information

Initialize: For all i ∈ I , set xi,0 ∈ Ωi,xi
−i,0 ∈ Rn−ni , λi,0 ∈ Rm

+, zi,0 ∈ Rm

for k = 1, 2, 3, . . . do
xi
−i,k+1 = 1

1+τidi

(
xi
−i,k + τi ∑N

j=1 wi,jx
j
−i,k

)
xi,k+1 = argmin

x

(
1
2‖x− xi,k‖2 + αixT AT

i λi,k +
c
2 αidi

∥∥∥x− 1
di

∑N
j=1 wijx

j
i,k+1

∥∥∥2

+αi fi

(
x, xi
−i,k+1

)
+ αigi(x)

)
zi,k+1 = zi,k − τi ∑N

j=1 wij(λi,k − λj,k)

λi,k+1 = proxRm
≥0

(
λi,k + 2γi Aixi,k+1 − γi Aixi,k + 2γi ∑N

j=1 wij(zi,k+1 − zi,k+1)− γibi

)
end for

Retuen: The sequence (xi,k)
∞
k=1 will eventually approximate the optimal solution.
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4.2. Convergence Analysis

In this section, we will prove that Algorithm 1 applying the game (22) converges to the
variational GNE through a rigorous mathematical analysis. We show that any limit point
of Algorithm 1 satisfies 0 ∈ Φ−1A and has certain properties. Moreover, we demonstrate
that every such zero is in the consensus subspace and solves VI(F,X ).

Assumption 5. F is a Lipschitz continuous mapping, which implies that there exists a positive
constant θ such that for any x and y, we have |F(x)− F(y)| ≤ θ|x− y|.

Define the operator:

Fc(x) := RTF̂(x) +RTG(Rx) + cL̂x. (32)

From (26), we know

A

 x
z
λ

 =

 Fc(x̂)
0
b

+

 RT ATλ
Lλ

−ARx̂− Lz

+

 0
0

NRNm
≥0

(λ)

. (33)

Lemma 5. Define cmin = (θ+θ0)
2

4µs2(L) +
θ

s2(L) .

Ψ =

[ µ
N − θ+θ0

2
√

N
− θ+θ0

2
√

N
cs2(L)− θ

]
, µFc = smin(Ψ). (34)

When c > cmin, we have µFc = smin(Ψ) > 0 and A is restricted monotone if Assumptions 1–5
hold.

Proof of Lemma 5. Let v∗ = col(x∗, z∗, λ∗) ∈ zer(A) be any zero of A, which exists by
Lemma 4. From (33), we can decompose A as a sum of three operators, two of which are
monotone. Moreover, for any c > cmin, we have Ψ > 0 for all x ∈ RNn by Lemma 1. Then,

〈x− x∗ | Fc(x)− Fc(x∗)〉 ≥ µFc‖x− x∗‖2. (35)

Hence, for any (v, u) ∈ gra(A), with v = col(x, z, λ), we obtain 〈v− v∗ | u− 0〉 ≥
µFc‖x− x∗‖2 ≥ 0.

Lemma 6. Define B : Rq ⇒ Rq as a restricted monotone in HΦ and JB is firmly quasinonex-
pansive inHΦ, whereHΦ is the Hilbert space induced by the inner product 〈·, ·〉Φ. Then for any
(v, u) ∈ gra(JB), v∗ ∈ zer(B) = fix(JB), it holds that

〈v− u | v− v∗〉Φ − ‖u− v‖2
Φ = 〈v− u | u− v∗〉Φ ≥ 0. (36)

Proof of Lemma 6. We use the definition of resolvent: v∗ ∈ JB(v∗) ⇔ v∗ + Bv∗ 3 v∗ ⇔
0 ∈ B(v∗). Moreover, for any (v, u) ∈ gra(JB), we have v − u ∈ B(u). Therefore, (36)
follows from the restricted monotonicity of B and some simple algebra. Finally, setting
v = v∗ in (36), we obtain that JB is single-valued.

Lemma 7. Let zer(B) 6= ∅ by Lemma 6. For k ∈ N,we assume that βk ∈ [0, 2] and ek ∈ Rq such
that βk

∥∥∥ek
∥∥∥

P
∈ `1. If v0 ∈ Rq,

(∀k ∈ N) vk+1 = vk + βk
(

uk − vk + ek
)

, uk ∈ JB
(

vk
)

. (37)



Appl. Sci. 2023, 13, 6405 11 of 17

Then we obtain Algorithm 1 by applying (13) to the operator Φ−1A, where

Φ =

 cŴ 0 −RT AT

0 0 −L
−AR −L 0

+

 α−1 0 0
0 τ−1 0
0 0 γ−1

 (38)

is called a preconditioning matrix. It ensures that the agents will be able to compute the
resulting iteration in a fully distributed manner.

We choose the step sizes α = diag(αi Ini ), τ = diag(τi Im) and γ = diag(γi Im) such

that Φ > 0. This implies that zer
(

Φ−1A
)
= zer

(
A
)

. The next lemma provides sufficient
conditions for Φ > 0 based on Gershgorin’s circle theorem.

Lemma 8. For any agent i ∈ I and any δ > 0, the preconditioning matrix Φ in (38) is positive
definite if

0 < αi ≤
(

max
j∈{1,...,ni}

m

∑
k=1

∣∣∣∣[A>i
]

jk

∣∣∣∣+ δ

)−1

,

0 < τi ≤ (2di + δ)−1,

0 < γi ≤
(

max
j∈{1,...,m}

ni

∑
k=1

∣∣∣[Ai]jk

∣∣∣+ 2di + δ

)−1

.

(39)

Using Lemma 4 and Assumption 4, we can show that JΦ−1A is single-valued by
applying Equation (28) to Φ−1A.

Lemma 9. Let c > cmin, cmin as in Lemma 3. Then Φ−1A is restricted monotone inHΦ.

It means that finding a zero point of A is equivalent to finding a variational GNE for
problem (3). Moreover, since Φ > 0, we have zer(A) = zer(Φ−1A) by Lemma 9. Therefore,
finding a zero point of Φ−1A is also equivalent to finding a variational GNE for problem (3).
This establishes the equivalence between problems (3) and (22) under the condition that
c > cmin, cmin as in Lemma 3.

Theorem 1. Assume that c > cmin, cmin are as defined in Lemma 8 and that the step sizes α, τ, γ

satisfy Lemma 5. Then, Algorithm 1 generates a sequence
(

xk, zk, λk
)

k∈N
that converges to an

equilibrium (x∗, z∗, λ∗).

Proof of Theorem 1. The set of inequalities (29) is equivalent to Equation (37) when βk = 1,
ek = 0 for all k ∈ N. By applying Lemma 9, we deduce that Φ−1A is restricted monotone
onHΦ. Then, we define

uk = JΦ−1A

(
vk
)

. (40)

By Lemma 9, Φ−1A is restricted monotone inHΦ, which implies uk = vk+1.
Let hk := vk + βk

(
uk − vk

)
, so that vk+1 = hk + βkek. For all k ∈ N,

∥∥∥hk − v∗
∥∥∥2

Φ
=
∥∥∥vk − v∗

∥∥∥2

Φ
− 2βk

〈
vk − uk | vk − v∗

〉
Φ
+
(

βk
)2∥∥∥uk − vk

∥∥∥2

Φ
. (41)

Then by Lemma 7, we have∥∥∥hk − v∗
∥∥∥2

Φ
≤
∥∥∥vk − v∗

∥∥∥2

Φ
− γk

(
2− βk

)∥∥∥uk − vk
∥∥∥2

Φ
. (42)
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By the Cauchy–Schwarz inequality, it holds that∥∥∥hk − v∗
∥∥∥

Φ
≤
∥∥∥vk − v∗

∥∥∥
Φ

. (43)

By (43), the sequence
(

vk
)

k∈N
is bounded so that there is at least one cluster point

such as v̄. Define:

A1

 x
z
λ

 =

 Fc(x̂)
0
b

+

 RT ATλ
Lλ

−ARx̂− Lz

. (44)

A1 consists of the sum of the first two equations of A. By (29) and (44), it holds that〈
A1

(
uk
)
+ Φ

(
uk − vk

)∣∣∣v− uk
〉
≥ 0. (45)

Let η := supk∈N

∥∥∥vk − v∗
∥∥∥

Φ
< ∞ and εk := 2η

(
βk
∥∥∥ek
∥∥∥

Φ

)
+
(

βk
∥∥∥ek
∥∥∥

Φ

)2
, for all k ∈ N.

Then,
(

εk
)

k∈N
∈ `1. Moreover, for all k ∈ N we have

∥∥∥vk+1 − v∗
∥∥∥2

Φ

≤
(∥∥∥hk − v∗

∥∥∥
Φ
+ βk

∥∥∥ek
∥∥∥

Φ

)2

≤
∥∥∥vk − v∗

∥∥∥2

Φ
− βk

(
2− βk

)∥∥∥uk − vk
∥∥∥2

Φ
+ εk.

(46)

Followed by recursion, it holds that(
βk
(

2− βk
)∥∥∥uk − vk

∥∥∥2

Φ

)
k∈N
∈ `1. (47)

By (47), uk − vk converges to 0 as k→ ∞. Let lk be a divergent subsequence such that
vlk → v̄. Then, for any v ∈ Ω×Rm ×Rm

≥0, we have
〈
A1(v̄) | v− v̄

〉
≥ 0 by continuity of

A1, which means v̄ ∈ zer(A1) = fix
(

JΦ−1A1

)
. By Lemma 6, any cluster point of vk belongs

to C. Hence, vk converges to an equilibrium of (29).

5. Numerical Studies

In this section, we will explore a network-based Nash–Cournot game [21] that is used
to model the competition between N companies in m markets. This game is of particular
interest because it has been shown to be an effective tool for analyzing competition between
companies. The markets have shared affine constraints or equivalent global coupling affine
constraints, which makes it possible to model the interactions between the companies in a
realistic way. It is important to note that in this game, the agents can only communicate
with their neighbors, and there is no central node with bidirectional communication to all
participants. This makes the game even more challenging, as the agents must rely on their
own resources to make decisions.
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Although this game has been applied in networked Cournot games [15], it is worth
noting that it assumes that the agents’ decision information is global. However, in contrast,
our work considers network structure and partial decision information, which leads to a
more accurate representation of the real-world dynamics of competition between compa-
nies. This means that our research is more relevant to the real world, and can help us gain
a deeper understanding of the complex interactions between the agents. By incorporating
the network structure and partial decision information, we are able to gain a deeper un-
derstanding of the complex interactions between the agents, which can have significant
implications for the overall performance of the companies in the markets. Additionally, our
research can help to inform future policy decisions, as it provides a more accurate picture
of the dynamics of competition between companies in networked markets.

5.1. Cournot Market Competition

Each firm i decides the quantity xi ∈ Rni of the commodity for ni ≤ m markets,
subject to 0ni ≤ xi ≤ Xi. The maximum capacity of each market l = 1, . . . , m is rl .
Hence, we have a shared affine constraint Ax ≤ r, where r = col

(
(rk)l=1,...,m

)
and

A = [A1 . . . AN ]. The matrix Ai ∈ Rm×ni indicates which markets firm i enters. Specifically,
[Ai]l,j = 1 if firm i enters market l, and [Ai]l,j = 0 otherwise, for all j = 1 . . . , ni and
l = 1, . . . , m.The profit function of each firm i is Ji(xi, x−i) = fi(xi, x−i) + gi(xi), where
fi(xi, x−i) = p(Ax)>Aixi and gi(xi) = −x>i Qixi − q>i xi. gi(xi) is the production cost of
firm i, and Qi ∈ Rni×ni ,Qi > 0, qi ∈ Rni are given parameters. The market price for each
market and l = 1, . . . , m is given by [p(x)]l = P̄l − χl [Ax]l , where P̄l , χl > 0 are constants.

In this simulation, we set the total number of participants to 20 and the number of
markets to 7, i.e., N = 20, m = 7. We defined the market structure using Figure 1a, which
does not show the actual spatial relationships and distances among markets and firms. We
also set ni = 1 for all i ∈ I . Then the arrows in Figure 1a represent only the participation of
firms in the markets; therefore, we have x = col((xi))i∈I ∈ Rn.

(a) (b)

Figure 1. (a) Network Nash–Cournot game. (b) Communication graph Gc.

We considered m markets distributed across seven continents. Individual firms could
not communicate with all other firms because of geographical location, communication
technology, or company systems. The firms could communicate only with their neighbors
on the communication graph Gc, shown in Figure 1b. Only connected firms i and j in
the undirected communication graph Gc could exchange their information. We randomly
selected rl ∈ [1, 2], Q with diagonal elements in [1,8], qi ∈ [1, 2], P̄l ∈ [10, 20], χl ∈ [1, 3],
and Xi ∈ [5, 10] for all i ∈ I and l = 1, . . . , m.
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5.2. Numerical Results

The experimental settings described above satisfy all assumptions presented in [21].
We selected the step size in Lemma 8 to fulfill all conditions required by Theorem 1.
To compare the performance of Algorithm 1 and the algorithm in [21], we conducted
experiments using the same random initial condition for both algorithms. As shown in
Figures 2 and 3, Algorithm 1 proposed in this paper converges faster than the algorithm
in [21], which is referred to as Algorithm 2 in the following text.

Figure 2. Relative error ‖xk − x∗‖/‖x∗‖ plot generated by Algorithm 1 and Algorithm 2 (the algo-
rithm in [21]).

Figure 2 compares the convergence of the two algorithms under the partial decision
setting by plotting the relative error of their decisions. The results show that Algorithm 1
has smaller relative errors than Algorithm 2 (the algorithm in [21]) for the same number of
iterations, indicating a faster convergence rate for Algorithm 1.

Figure 3. The total cost of all agents generated by Algorithm 1 and Algorithm 2 (the algorithm in [21]).

Figure 3 illustrates the trajectory of the total cost of all agents in the market correspond-
ing to Algorithm 1 and Algorithm 2 (the algorithm in [21]), where the total cost is generated

by
N
∑

i=1
Ji(xi, x−i). The trajectory eventually converges to the same minimum value, indi-
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cating the correctness and accuracy of Algorithm 1. Furthermore, the convergence of the
trajectory represents the effectiveness of the algorithm in terms of optimizing the total cost
of all agents in the market.

In Figure 4, we can observe the trajectory of each agent’s decision in the Cournot
market game, which has been solved by Algorithm 1. As we can see from the graph,
the decision trajectories of all agents converge, which is a strong indication that the GNE
obtained by executing Algorithm 1 can effectively minimize the cost incurred by each agent.
It is worth noting that the convergence of decision trajectories is a critical aspect of the
game theory that is often used to evaluate the effectiveness of a given algorithm. Therefore,
the observed convergence in Figure 4 is an encouraging sign that Algorithm 1 can be a
viable approach for solving similar problems in the future.

Figure 4. Trajectories of every agent’s decision xi,k generated by Algorithm 1.

During the iterative process of Algorithm 1, the estimated value of each agent’s deci-

sion for all other agents is first obtained according to the formula xi
−i,k+1 = 1

1+τidi

(
xi
−i,k +

τi ∑N
j=1 wi,jx

j
−i,k

)
. This formula is used to compute the value of xi

−i,k+1. Subsequently, the

estimated decision value is used for the iteration of (x, z, λ), which is a mathematical nota-
tion used to represent the values of the decision variables. When the algorithm converges,
i.e., when the GNE is obtained, the estimated decision value of each agent for xi is equal to
the actual decision value of xi, i.e., xj

i = xi
i for j = 1, . . . , N. Figure 5a shows the trajectory of

the standard deviation of each agent’s estimated decision set for xi with increasing iteration

times, which is generated by

√√√√ 1
N

N
∑

j=1
(xj

i −
N
∑

j=1
xj

i)
2

for j = 1, . . . , N. It can be seen that the

standard deviation of the estimated decision set for each agent eventually converges to 0.
This indicates that the results satisfy the condition that the estimated value of each agent’s
decision for xi is equal to the actual decision value of xi. As shown in Figure 5b, taking
agent 3 as an example, the trajectory plot of all agents’ estimated decision values for agent 3
is displayed, where x3

3 represents the actual value of agent 3’s decision. The trajectory plot
eventually converges to the same value, visually confirming the accuracy of Algorithm 1.



Appl. Sci. 2023, 13, 6405 16 of 17

(a) (b)

Figure 5. (a) Trajectories of the standard deviation of agents’ estimations of xi,k generated by
Algorithm 1. (b) Trajectories of agents’ estimations of x3,k generated by Algorithm 1.

6. Conclusions

In this paper, we propose a distributed algorithm for games with shared coupling
constraints based on the preconditioned proximal-point algorithm under partial decision
information, which can converge with a fixed step size on arbitrarily connected graphs and
is successfully applied to the GNE computation of the Cournot Market competition under
partial decision information with a relatively fast convergence rate. A possible direction for
future work is to study partial decision information sets and their impact on the memory
efficiency of the algorithm. We will also explore how to predict only a subset of agents’
decisions rather than all agents’ decisions and study the convergence properties of the
algorithm. Future work will further investigate this direction.
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