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Featured Application: This study provides a simplified approach to the flutter analysis of suspen-
sion bridges having two superposed decks. The George Washington Bridge engineering case is
analyzed, in consideration of its historical relevance and age. The obtained results are compared
with the predictions of simplified formulations available from other sources.

Abstract: We deal with the flutter analysis of the George Washington bridge, in both the single- and
double-deck configurations of 1931 and 1962, respectively. The influence of the additional lower
deck on the aerodynamic behavior is investigated. To overcome the lack of aerodynamic data, a
simplified approach is followed based on Fung’s formulation, in which the flutter derivatives are
expressed in terms of the real and imaginary parts of the Theodorsen function and of the steady-state
aerodynamic coefficients of the deck cross-section. The latter are obtained by Computational Fluid
Dynamics simulations conducted in ANSYS FLUENT, whereas the ANSYS Mechanical APDL finite
element package is used to perform the flutter analyses. Two different methods for the application of
the aeroelastic forces are employed for the double-deck configuration: (i) self-excited forces, based on
flutter derivatives related to the whole cross-section, acting on the upper deck; and (ii) self-excited
forces, based on flutter derivatives related to the single deck, simultaneously applied to the upper
and lower decks. The obtained results are critically compared with theoretical predictions of simple
formulas available from the literature; it is suggested that laboratory tests are needed since no
experimental results seem to be available.

Keywords: aeroelastic flutter; suspension bridge; double-deck; flutter derivatives; aerodynamic
coefficients; computational fluid dynamics; finite element analysis; Fung formulation; stability;
safety assessment

1. Introduction

Old bridges (conventionally, which are more than 50 years old), require special main-
tenance, accurate inspections, and a careful assessment of their safety conditions.

The conflict between economy and structural performance between the 19th and the
20th centuries led the design of long-span bridges to the development of very flexible
and slender structures. The use of the elastic deflection theory allowed for very slender
decks against static loads and shifted the design trend at that time from rigid trusses to
slender edge girders. This evolution ended brutally with the Tacoma Narrows Bridge
disaster due to the wind-induced flutter instability on 7 November 1940. From then on, any
design of a flexible structure must assure the structure itself to be stable under the dynamic
effects of wind loads. In fact, in addition to the already known static divergence due to the
steady-state wind loads, flutter stability has become a governing criterion in the design of
long-span suspension bridges. The objective of a (linear) flutter analysis is to predict the
lowest critical flutter wind velocity and the corresponding flutter frequency.
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A crucial point in flutter analysis is the definition of motion-dependent aerodynamic
loads. The first analytical solutions were developed by Wagner [1] and Theodorsen [2] for
thin airfoil. Theodorsen defined the self-excited forces as the superposition of circulatory
and non-circulatory contributions, the former depending on the oscillation frequency and
accounting for flow unsteady effects, and the latter independent of oscillation frequency
and including inertial effects due to the moving fluid mass. Subsequently, Scanlan and
Tomko exported some features of the Theodorsen’s results extending the formulation to
bluff bodies, as bridge cross-sections. In this formulation, the wind loads induced by sec-
tional harmonic motions are described by means of a linear format based on experimentally
evaluated parameters, called “flutter derivatives”, that supply the lack of closed-form
analytical formulations [3,4]. The relation between Wagner’s approach based on indi-
cial functions, Theodorsen’s theory based on circulatory function and Scanlan’s flutter
derivatives is well detailed in [5].

In the last decades, Scanlan’s formulation has been the most widely adopted, and
the calculation of flutter derivatives has become an important step for any flutter analysis.
Currently, the only method considered reliable for their calculation at the design stage is
that of carrying out experimental tests on scale models in wind tunnels. Some notable
examples are [6,7] for the Great Belt East Bridge and [8] for the Akashi Kaikyo Bridge; more
recently [9] for the Jianghai Channel Bridge and [10] for the Hardanger Bridge.

To overcome costs and difficulties arising from wind tunnel testing, several efforts
were made with the aim of developing some simplified methods for the calculation of
flutter derivatives. Although these methods are not appropriate for the final design stage,
they allow useful and versatile studies in early design phases. Some authors utilized the
derivatives of the thin airfoil, as [11] for the Humber bridge. This simplification leads to
relatively small errors when the bridges are characterized by streamlined cross-sections.
Al-Assaf [12] adopted an alternative approach for open-truss stiffened suspension bridges:
he estimated the aerodynamic derivatives based on the correlation between the thin airfoil
derivatives and those of other bridges having a similar deck configuration. The method
was applied to evaluate the flutter stability of the second Tacoma Narrows Bridge, with
special focus on the effects of the side grates. Another simplified approach is given by
the quasi-steady theory, in which the aerodynamic loads depend on the instantaneous
relative velocity between the flow and the cross-section. In this framework the flow-induced
forces are described by means of non-linear static relationships involving the wind angle
of attack and the displacements of the structure. A linearization of this model allows a
comparison with Scanlan’s semi-empirical approach and furnishes an expression of the
flutter derivatives as functions of the steady-state aerodynamic coefficients of the cross-
section [13]. These simplified expressions of the flutter derivatives are widespread for the
streamlined deck cross-sections. Some works on the validity of this approach are [14–16]
and some applications for the determination of the critical state can be found in [17–19]. In a
recent work [20], a linear superposition of flat plate aerodynamics was adopted to estimate
the flutter derivatives of streamlined multi-box deck sections. In that case, correction
factors were introduced into the proposed analytical formulas to better fit the available
experimental data. In the present paper, a simplified approach is used based on Fung’s
formulation [21], in which the flutter derivatives are expressed in terms of the steady-state
aerodynamic coefficients and of the real and imaginary parts of the Theodorsen function.

Two-dimensional Computational Fluid Dynamics (CFD) simulations were conducted
in ANSYS FLUENT for the determination of the lift and moment coefficients, varying the
wind attack angle. In recent years, the CFD approach gained importance with respect to
the traditional experimental investigation. Some applications related to the bridge cross-
sections are [22,23]. More recently, Brusiani et al. [24] pointed out that Reynolds-averaged
Navier-Stokes (RANS) approach coupled with the k−ω SST turbulence model, identify the
best compromise between accuracy and computational cost. The CFD framework also pro-
vides different approximate techniques for the direct calculation of flutter derivatives, some
applications are: [25–28]. Nevertheless, the calculation of the steady-state aerodynamic
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coefficients requires simpler simulations compared to those required to compute the flutter
derivatives, especially in terms of computational effort. In addition, the approximations
introduced by a 2D geometrical representation, neglecting several appendages that could
affect the aerodynamic behavior, do not justify the use of more refined methods.

Concerning flutter analyses, several methods can be found in literature [29,30], a
method developed by Hua and Chen [31], which allows the analysis to be carried out with
the FE package ANSYS Mechanical APDL, is adopted in this paper. The software, in fact,
provides specific user-defined elements, through which it is possible to implement the
motion-dependent aeroelastic forces as expressed in Scanlan’s formulation.

The George Washington suspension bridge was chosen as a case study, partly because
of its historical significance. In fact, it was the first bridge whose main span exceeded one
kilometer. The bridge was opened to traffic in 1931. It is characterized by a total length
of 1450 m and a mid-span of 1067 m. Initially it was composed only of the upper level,
whereas the lower deck was constructed from 1958 to 1962 because of the increasing traffic
flow. Both configurations will be analyzed in the following: the original one with the single
deck and the stiffened one with the two decks (Figure 1). The choice is also motivated by
the peculiarity of the current bridge having two superposed decks. A similar configuration
can be detected in the Verrazano-Narrows Bridge (USA), also having a great historical
relevance, and in the Yangsigang Yangtze River bridge (China), which currently has the
third longest span in the world after the Akashi Kaikyo bridge (Japan) and the recent 1915
Çanakkale bridge (Turkey), the current World record.
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Figure 1. George Washington bridge configurations (dimensions in m). (a) Single-deck, 1931; (b) 
Double-deck, 1962. 

Figure 1. George Washington bridge configurations (dimensions in m). (a) Single-deck, 1931;
(b) Double-deck, 1962.

As a matter of fact, several investigations on the aerodynamic performances of trussed
girders have been made, but only a few for double-deck bridges [32]. Due to the lack of
aerodynamic data and studies on the subject, two simplified ways for the application of the
aeroelastic forces are followed in the present study with the aim of obtaining approximate
predictions. The first way considers the self-excited forces, based on the flutter derivatives
related to the whole cross-section, acting on the upper deck. In the second case, the self-
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excited forces, based on the flutter derivatives related to the single deck, are simultaneously
applied to the upper and lower decks. Both approaches produce plausible results, which
can serve as a reference for future comparisons with alternative investigation methods. In
principle, the proposed approach can be used for analyzing other double-deck bridges, and
deserves further attention for proper validation.

2. Motion Related Wind Load

The equation describing the motion of the bridge in the smooth flow can be expressed as:

M
..
X + C

.
X + KX = Fae. (1)

where, in a Finite Element framework, M, K, and C represent the global mass, stiffness,
and damping matrices, respectively;

..
X,

.
X, and X are the nodal acceleration, velocity,

and displacement vectors, respectively; and Fae denotes the vector of nodal self-excited
forces. The three degrees of freedom of the bridge deck cross-section, namely the vertical
displacement h, the torsional rotation α, and the horizontal displacement p, to which
correspond the aeroelastic forces of lift LSE, moment MSE, and drag DSE, are reported in
Figure 2, where U indicates the undisturbed mean wind velocity.
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According to Scanlan’s formulation [33], the self-excited aeroelastic forces per unit deck
length can be expressed as a linear function of the displacement and velocity parameters of
the deck as follows:

LSE =
1
2

ρU2B

[
KH1

.
h

U
+ KH2

B
.
α

U
+ K2H3α + K2H4

h
B
+ KH5

.
p

U
+ K2H6

p
B

]
, (2a)

DSE =
1
2

ρU2B

[
KP1

.
p

U
+ KP2

B
.
α

U
+ K2P3α + K2P4

p
B
+ KP5

.
h

U
+ K2P6

h
B

]
, (2b)

MSE =
1
2

ρU2B2

[
KA1

.
h

U
+ KA2

B
.
α

U
+ K2 A3α + K2 A4

h
B
+ KA5

.
p

U
+ K2 A6

p
B

]
, (2c)

where ρ is the air density, K = ωB
U is the reduced circular frequency, and Hi(K), Pi(K), Ai(K)

are the flutter derivatives. In most practical applications, p,
.
p, and Pi (DSE) can be ignored.

As mentioned in the Introduction, the most reliable way to calculate flutter derivatives
is based on experimental tests made in the wind tunnel. For the bridge chosen as a
case study, no data regarding flutter derivatives were found in the literature, therefore
a simplified approach was followed for their calculation. It was decided to utilize a
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formulation developed by Fung [21] for the thin airfoil because it allows one to input the
slopes of the steady-state aerodynamic coefficients, and, unlike the quasi-steady approach,
it provides a unique formulation for the determination of the derivatives H2, A2. The
expressions of the flutter derivatives are the following:

KH#
1(K) = −C′l F̃(K), (3a)

KH#
2(K) = C′l

[(
1
4
− a
)

F̃(K) +
G̃(K)

K

]
+

C′l
4

, (3b)

K2H#
3(K) = C′l

[
F̃(K)− KG̃(K)

(
1
4
− a
)]

+ C′l K2 a
4

, (3c)

K2H#
4(K) = C′l KG̃(K) +

C′l K2

4
, (3d)

KA#
1(K) = C′m F̃(K), (3e)

KA#
2(K) = −C′m

[(
1
4
− a
)

F̃(K) +
G̃(K)

K

]
+

C′l
4

(
a− 1

4

)
, (3f)

KA#
3(K) = −C′m

[
F̃(K)− KG̃(K)

(
1
4
− a
)]

+ C′l K2 a
4
+

C′l K2

128
, (3g)

K2 A#
4(K) = C′m KG̃(K)− C′l K2 a

4
, (3h)

where A#
i (K) and H#

i (K) are the flutter derivatives for the thin airfoil as expressed by Fung
(K = ωB/U), F̃(K) and G̃(K) are respectively the real and the imaginary parts of the
Theodorsen function, C′l and C′m are the derivatives of the lift and moment coefficients with
respect to the wind angle of attack and a is the distance between the shear center and the
centroid of the airfoil, normalized with respect to the chord B. For low values of reduced
frequency, F̃(K) tends to one, G̃(K) tends to zero and the Fung formulation tends to the
quasi-steady one.

These formulas were tested for two bridges of which both steady-state aerodynamic
coefficients and flutter derivatives are available: the Great Belt East in Denmark, with
a streamlined deck [6,34], and the Akashi Kaikyo in Japan, with a truss girder [35,36].
The derivatives of the aerodynamic coefficients, expressed in

[
rad−1], are: C′l = −4.37

and C′m = 1.17 for the Great Belt Bridge; and C′l = −1.19 and C′m = 0.3 for the Akashi
Kaikyo Bridge. The curves in Figures 3 and 4 show a comparison between the flutter
derivatives: obtained experimentally (solid crossed line), calculated by the Fung formulas
(solid line), calculated by the quasi-steady formulation (dashed line) [26], and predicted
by the Theodorsen theory for the thin airfoil (dash dotted line). From the comparisons
in Figures 3 and 4, it is possible to notice that the Fung formulation leads generally to a
good alignment with the experimental curves: the average trend is always respected except
for H4, that in some cases can be neglected [12]. A remarkable superposition is obtained
for A1 and A3 of both bridges, and also for H3 in the case of the Great Belt Bridge. Good
predictions are also obtained for A2 derivative.

As expected, for a truss-stiffened girder, Theodorsen formulation for thin airfoil
becomes unable to reliably predict the aerodynamic behavior. Even though the quasi-steady
formulation also shows a good agreement, the Fung formulation was chosen over the quasi-
steady approach because this latter is better suited for low values of reduced frequency and
high values of reduced wind velocities [16]. In fact, the bridge chosen as a case study is
relatively stiff and characterized by high values of torsional and vertical eigenfrequencies,
therefore flutter instability is expected to occur at a relatively low reduced velocity.
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3. Full-Order Flutter Analysis Using ANSYS Mechanical APDL

The main lack of almost all the FE packages commonly used in civil engineering is
the impossibility of including motion-dependent aeroelastic loads into the model and then
of performing a complex eigenvalue analysis. Hua and Chen [31] proposed a method
that allows one to perform a flutter analysis using the commercial finite element package
ANSYS Mechanical APDL. The method is based on the definition of the aeroelastic loads
by means of a particular user-defined element as shortly illustrated below. According to
the method developed by Hua and Chen [31], the motion-dependent effect due to the
wind load is considered for each deck element by the element aeroelastic stiffness and
damping matrices modeled by the user defined MATRIX27 elements. Following Scanlan’s
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formulation, the self-excited forces are expressed as functions of the flutter derivatives, as
recalled in Section 2.

It is possible to manipulate Equations (2a)–(2c) in order to obtain the equivalent nodal
forces acting on the ends of the generic deck element, hence a lumped formulation can be
used to derive the element aeroelastic stiffness and damping matrices [30]. Assembling
the element matrices into global aeroelastic stiffness (Kae) and damping (Cae) matrices, the
mathematical model of the system integrated with the effect of aeroelasticity is obtained [31]:

M
..
X + (C− Cae)

.
X + (K− Kae)X = 0 (4)

The global aeroelastic stiffness and damping matrices contain flutter derivatives,
which depend on the reduced wind velocity UR = U

f B ( f = ω
2π , oscillation frequency).

Therefore, the system expressed by Equation (4) is parameterized by wind velocity and
vibration frequency. By Equation (4), a complex eigenvalue analysis can be carried out to
determine the critical wind velocity and vibration frequency. Being the conjugate pairs
of complex eigenvalues λj = σj ± iωj, and the conjugate pairs of complex eigenvectors
φj = pj ± iqj, the system will be dynamically unstable if the real part of any eigenvalue is
positive. Hence, the condition for the onset of flutter instability is stated as follows: at a
certain critical wind velocity U f , the system has only one eigenvalue λ f with zero real part,
and the imaginary part ωj of the complex eigenvalue λ f becomes the flutter frequency. It
is necessary to provide the variation of both wind velocity and vibration frequency in the
complex eigenvalue analysis, so that a mode-by-mode tracking method can be employed
to iteratively search the flutter frequency and the flutter velocity [31].

The motion-dependent effect due to the wind is taken into account for each deck
element by the element aeroelastic stiffness and damping matrices. These matrices should
be properly compiled to implement the aeroelastic motion-dependent load by means of
the flutter derivatives. User defined MATRIX27 element in ANSYS Mechanical APDL can
only model either an aeroelastic stiffness matrix or an aeroelastic damping matrix instead
of both of them simultaneously, so a pair of MATRIX27 elements must be attached to each
node of a generic bridge deck element as illustrated in Figure 5. The MATRIX27 elements
e1 and e3 represent respectively the aeroelastic stiffness and damping of the node i, as the
MATRIX27 elements e2 and e4 represent respectively the aeroelastic stiffness and damping
of the node j.
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4. The George Washington Bridge

As mentioned in the Introduction, the two configurations of the George Washington
bridge were chosen as case studies (Figure 1). The deck cross-sections of both configura-
tions were modeled in ANSYS FLUENT, where the steady-state aerodynamic coefficients
were calculated via CFD analyses. Finally, full bridge models were developed in ANSYS
Mechanical APDL to perform structural and flutter analyses. Flutter derivatives character-
izing the aeroelastic load of full bridge models were calculated by means of Equation (3),
with C′l and C′m resulting from the CFD analyses.
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4.1. Steady-State Aerodynamic Coefficients and Flutter Derivatives

Once the Fung formulation was validated, the steady-state aerodynamic coefficients of
both the George Washington deck cross-sections were calculated in ANSYS FLUENT. For
each section model and different wind attack angles, RANS simulations were performed
modeling the turbulence by the k− ω SST method, following the indications in [24,37].
In order not to interrupt the logical flow of the speech, more information is given in
Appendix A. The resulting steady-state aerodynamic coefficients of lift, Cl , and moment,
Cm, are shown in Figure 6, where dashed lines represent the linear regressions. In the case
of the double deck (Figure 6b), static coefficients deviate from linearity for higher angles
of attack, so the linear regressions are restricted to the intervals [−2◦; 2◦] and [−1◦; 1◦] for
lift and moment coefficients, respectively. The first derivatives of static coefficients at the
origin, calculated as the slopes of linear regressions, are: C′l = −6.291, C′m = 1.902 for the
single-deck and C′l = −11.024, C′+m = 1.954 for the double-deck configurations.

Appl. Sci. 2023, 13, 6389 9 of 21 
 

Mechanical APDL to perform structural and flutter analyses. Flutter derivatives charac-

terizing the aeroelastic load of full bridge models were calculated by means of Equation 

(3), with 𝐶𝑙
′ and 𝐶𝑚

′  resulting from the CFD analyses. 

4.1. Steady-State Aerodynamic Coefficients and Flutter Derivatives 

Once the Fung formulation was validated, the steady-state aerodynamic coefficients 

of both the George Washington deck cross-sections were calculated in ANSYS FLUENT. 

For each section model and different wind attack angles, RANS simulations were per-

formed modeling the turbulence by the 𝑘 − 𝜔 𝑆𝑆𝑇 method, following the indications in 

[24,37]. In order not to interrupt the logical flow of the speech, more information is given 

in Appendix A. The resulting steady-state aerodynamic coefficients of lift, 𝐶𝑙, and mo-

ment, 𝐶𝑚, are shown in Figure 6, where dashed lines represent the linear regressions. In 

the case of the double deck (Figure 6b), static coefficients deviate from linearity for higher 

angles of attack, so the linear regressions are restricted to the intervals [−2°; 2°]  and 

[−1°; 1°] for lift and moment coefficients, respectively. The first derivatives of static coef-

ficients at the origin, calculated as the slopes of linear regressions, are: 𝐶𝑙
′ = −6.291, 𝐶𝑚

′ =

1.902 for the single-deck and 𝐶𝑙
′ = −11.024, 𝐶𝑚

′+ = 1.954 for the double-deck configura-

tions. 

  

(a) (b) 

Figure 6. Steady-state aerodynamic coefficients of lift and moment for the George Washington 

Bridge. (a) Upper deck; (b) Double-deck. 

Flutter derivatives, calculated accordingly by means of Equations (3a)–(3h), are 

shown in Figures 7 and 8. These were used to calculate the aerodynamic lift and moment 

actions to be applied to the bridge section. 

 

Figure 7. Flutter derivatives of the George Washington Bridge’s upper deck according to Equations 

(3a)–(3h). 

Figure 6. Steady-state aerodynamic coefficients of lift and moment for the George Washington Bridge.
(a) Upper deck; (b) Double-deck.

Flutter derivatives, calculated accordingly by means of Equations (3a)–(3h), are shown
in Figures 7 and 8. These were used to calculate the aerodynamic lift and moment actions
to be applied to the bridge section.

For the double-deck section, the lift and moment actions, based on static coefficients
of the whole section, are applied to the top deck only, as sketched in Figure 9a. In addition,
a second alternative method was adopted, which allows avoiding the use of data in
Figure 6b and provides an additional model for comparison and validation of results.
This latter method permits the same aeroelastic forces calculated for the single deck to
be simultaneously applied to both upper and lower decks, as illustrated in Figure 9b.
This procedure assumes that there is no aerodynamic interference between the two decks,
whereas the mechanical interference is correctly modeled by the elements composing the
truss. Furthermore, the pressure coefficients of the lower deck are assumed to be equal to
those of the upper one and the aerodynamic influence of the secondary truss elements is
also neglected. Despite the previous simplifications, the advantage of this procedure lies in
the greater reliability of the results of CFD analysis for the single deck. Moreover, it can be
conjectured that the simplified formulation previously introduced for the calculation of
flutter derivatives (see Equations (3a)–(3h)), being based on the aerodynamics of the thin
airfoil, is more suitable for the description of the behavior of a single deck rather than of a
double deck.
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Figure 9. Sketch of the alternative methods adopted for the definition and application of aeroelastic
loads to the double-deck cross-section. (a) Lift and moment actions, based on static coefficients of the
whole section, applied to the top deck only; (b) Lift and moment actions, based on static coefficients
of the single-deck section, applied to both upper and lower decks.
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4.2. Finite Element Models

The ANSYS Mechanical APDL numerical models were realized with the geometrical
properties found in literature [38–40]. The suspension cables were modeled as beam
elements (BEAM188), with a circular cross-section of radius 0.573 m. An equivalent elastic
modulus of 1.07 × 1011 Pa was adopted in order to take in to account the influence of
the side spans. The hangers were modeled using LINK180 elements, that transmit only
tensile forces between the deck and the main cables. The floor system was modeled by
means of equivalent beams having the properties listed in Table 1, wherein the V-shaped
up-winds and the lower elements refer to the double-deck configuration. The following
material properties were assigned to each element except the suspension cables: Young’s
modulus = 2.1 × 1011 Pa, Poisson’s ratio = 0.3 and mass density = 7860 kg/m3. Point mass
elements (MASS21) were attached to the upper chords and to the equivalent longitudinal
beams, both lower and upper, in order to model the inertial contribution of the sidewalk
slabs, roadway slabs and other secondary elements. According to Dana et al. [39], a total
dead load of 417 kN/m and 569 kN/m were obtained for the single-deck and the double-
deck configurations, respectively. Lastly, the MATRIX27 elements were attached to each
node of the equivalent longitudinal beams to model the aeroelastic forces in terms of
aeroelastic stiffness and damping.

Table 1. Geometrical properties of the truss girder of the double-deck George Washington Bridge.

Elements Area [m2]
Bending Moments of Inertia [m4]

Horizontal Axis Vertical Axis

Equivalent longitudinal upper beam 0.4465 Iy = 0.1867 Iz = 38.6601
Upper chord 0.0549 Iy = 0.0049 Iz = 0.0060

Equivalent transversal upper beam 0.237 Ix = 0.9498 Iz = 3.8102
V-shaped up-winds 0.0374 I1 = 0.0016 I2 = 0.0006

Equivalent longitudinal lower beam 0.3439 Iy = 0.1108 Iz = 29.3241
Lower chord 0.0484 Iy = 0.0029 Iz = 0.0051

Equivalent transversal lower beam 0.0816 Ix = 0.1559 Iz = 1.3645

According to the two different methods introduced in the previous section for the
double-deck configuration, two different models were realized. In the first model, the pairs
of MATRIX27 elements, compiled with the flutter derivatives in Figure 8, were attached
only to the upper deck. Whereas, according to the second method, MATRIX27 elements,
compiled with the flutter derivatives plotted in Figure 7, were attached to both upper and
lower decks. The finite element models are shown in Figure 10.
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5. Flutter Analyses

Before introducing the aeroelastic nodal forces by MATRIX27 elements, a modal anal-
ysis with no wind was performed: the results are summarized in Figures 11 and 12, where
the labels V, T, L stand for vertical, torsional and lateral, respectively; and the labels A
and S stand for antisymmetric and symmetric, respectively. Since it is well known that
flutter instability usually involves mainly the first modes at lower frequencies [31], only the
first six modes were extracted for both configurations. The geometric nonlinearity of the
structure was taken into account running the modal analysis in a preloaded configuration
accounting for the gravity loads. Once eigenfrequencies and eigenmodes have been evalu-
ated, the flutter analysis was performed by the method described in [31]. The aeroelastic
loads were modeled as nodal forces affecting the stiffness and damping matrices of the
element to which the nodes belong, so MATRIX27 elements were incorporated into the
structural model to perform the damped eigenvalue analyses.
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Finally, the iterative procedure for the determination of flutter speed and frequency
was carried out. The previous computational steps were followed for the eigenmodes
collected in Figures 11 and 12. The damped complex eigenvalue analyses were conducted
for the model under different wind velocities. The step increment of wind velocity was set
variable, from a maximum value of 10 m/s in the ranges far from the flutter instability to a
minimum of 1 m/s close to the instability value. Accordingly, the resulting flutter wind
velocity has the accuracy of one m/s. The variation of the complex eigenvalues vs. wind
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velocity is plotted in Figures 13–15, where the labels within parentheses refer to the mode
shapes under wind action: for instance, the label VT indicates a mode characterized by
both vertical and torsional components, in which the vertical component is predominant.
The real and imaginary parts of the eigenvalues represent the logarithm decay rates and
damped vibration frequencies of these modes, respectively. As stated above, the flutter
condition occurs when the real part of any eigenvalue becomes positive. The results
obtained for the 1962 configuration refer to the two methods previously introduced and
recalled hereafter:

1. The first method consists of the application of the aeroelastic forces to the upper
deck, where the latter are expressed via the flutter derivatives evaluated using the
steady-state aerodynamic coefficients obtained for the whole two-deck cross-section
(see Figures 6b, 8 and 9a).

2. The second method consists of the application of the aeroelastic forces to both decks,
where the latter are expressed via the flutter derivatives evaluated using the steady-
state aerodynamic coefficients obtained for the upper deck (see Figures 6a, 7 and 9b).
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The analyses furnished a critical flutter speed of 40 m/s (144 km/h) and a critical
flutter frequency of 0.130 Hz for the single-deck configuration. As regards the double-
deck configuration, flutter speeds of 107 m/s (385.2 km/h) and 79 m/s (284.4 km/h), and
flutter frequencies of 0.203 Hz and 0.195 Hz, were provided by the first and the second
method, respectively.

As already said, the variations of the imaginary part of the complex eigenvalues in
Figures 13–15 describe the change in the oscillation frequencies with the increasing wind
speed, whereas the variations of the real part tell us about stability of each single vibration
mode, and thus of the bridge deck. Accordingly, the first torsional-vertical anti-symmetric
mode (TVA) is responsible for flutter instability in all the analyzed cases. For higher wind
speeds, a second flutter mode is attained in the torsional-vertical symmetric mode (TVS); see
Figures 13–15. For the double-deck configuration, the first and the second flutter velocities
are rather close, being close also the corresponding eigenfrequencies; see Figures 14 and 15.
In relation to that, we can say that interaction between modes having similar frequencies
could be a triggering factor for instability, thus lowering the critical wind speed.

The two different methods adopted for the double-deck configuration furnish a dif-
ference of about 26% and 4% in the estimated critical wind speed and flutter frequency,
respectively. Moreover, they provide similar frequency trends as wind speed increases and
the same prediction of the flutter mode. Both introduce simplifications from the aerody-
namic standpoint: in addition to the approximate evaluation of the flutter derivatives, the
former method imposes the torsion rotation axis of the cross-section to coincide with the
upper deck axis; the latter assumes that there is no aerodynamic interference between the
two decks and neglects the influence of secondary truss-elements. Lastly, it should be noted
that the use of flutter derivatives itself represents a strong simplification of the complex
aerodynamic behavior of bluff bodies, as bridge decks.

Simplified Formulations and Comparisons

Given the absence of reference data for a direct validation, different simplified formulas
available in the literature for predicting the flutter wind velocity were employed for a
comparison. The results are collected in Table 2. The simplified formulas adopted are
in Equations (5a)–(5f). The first one is based on the reduction of the divergence wind
velocity (Ud) and is the only one involving the aerodynamics of the deck by means of the
derivative of the moment coefficient (C′m). Equations (5b)–(5d) are empirical formulas fitted
for thin airfoils, while Equations (5e) and (5f) contain a coefficient fitted for suspension
bridge decks.
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Table 2. Flutter velocity according to different simplified formulations.

Bridge
Configuration

Flutter Velocity [m/s]

Frandsen [41] Selberg [42] Rocard [42] Matsumoto [43] Van der Put [44] Fu and Wang [45] Present
Work

Single-deck 39.56 36.08 36.21 36.09 38.70 46.45 40
Double-deck 121 113.86 114.44 113.87 89.23 97.76 107–79

Frandsen [41]:

U f =

(
Bωt

√
2I

ρB4C′m

)√
1−

(
ωv

ωt

)2
(5a)

Selberg [42]:

U f = 2.623 ftB

√(
1− 1

γ2
ω

)
rαµ1. (5b)

Rocard [42]:

U f = 6.282 ftB

√(
1− 1

γ2
ω

)
r2

αµ1

1 + 8r2
α

. (5c)

Matsumoto [43]:

U f = 3.71B ft

√√√√√Im
ρB3

[
1−

(
fv

ft

)2
]

. (5d)

Van der Put [44]

U f = η

[
1 +

(
ωt

ωv
− 0.5

)√
2r
B

0.72µ2

]
B
2

ωv. (5e)

Fu and Wang [45]:

U f = η

(
2.5

√
2r
B

µ2

)
B ft. (5f)

where γω = ωt
ωv

, rα =
√

I
mB2 , µ1 = 2m

ρB2 , µ2 = 4m
πρB2 , r =

√
I
m . I is the polar mass moment

of inertia per unit span length, m is the mass per unit span length, ωv, ωt are the angular
frequencies of the first vertical mode and the first torsional mode, fv, ft are the respective
frequencies and η is an empirical coefficient representing the difference between the flat
plate and a generic profile (equal to 0.7 for suspension bridges [44]). Other simplified
formulations based on flutter derivatives can be found in [46].

Results provided by the different formulations for the single-deck configuration are similar
to the ones obtained in the present work within the range [−10%; 15%]. Larger variations are
found for the double-deck configuration. In particular, formulas fitted for the thin airfoil provide
a considerable overestimation of the critical speed with respect to the formulas fitted for the
suspension bridges. The flutter limit provided by the first method is close to the prediction
obtained by Equations (5b)–(5d), whereas the flutter velocity provided by the second method is
closer to the predictions of Equations (5e) and (5f), and is the most conservative prediction.

Hence, although for a single-deck configuration having the aerodynamic coefficients simi-
lar to those of the airfoil it is possible to obtain reasonable results using simplified formulations,
for a double-deck configuration it is necessary to perform more detailed analyses.

6. Discussion

The flutter stability of the George Washington bridge was investigated for the two
different configurations, i.e., the original single-deck and the current double-deck. Due to
the lack of literature data on the aerodynamic parameters for the bridge under consideration,
two simplifications were introduced for the description of the motion-related wind loads:
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one for the calculation of flutter derivatives and the other for the application of aerodynamic
loads on the two decks of the current configuration.

The method adopted for the calculation of flutter derivatives allows them to be ob-
tained by analytical formulations based on the steady-state aerodynamic coefficients. The
latter parameters were calculated by CFD simulations using the finite element software
ANSYS FLUENT. The application of the method provided good results on the bridges
chosen for validation, namely the Great Belt and the Akashi Kaykio. The main advantage
lies in the relative simplicity of the calculation of the steady-state aerodynamic coefficients,
on which the formulation is based. In fact, the computational cost required is much lower
than that which characterizes the CFD analyses necessary for a direct numerical calculation
of flutter derivatives. Of course, this approach furnishes approximate predictions. To
further validate the method, comparisons should be extended to several bridge decks for
which both steady-state aerodynamic coefficients and flutter derivatives are available. Once
the flutter derivatives were defined, the flutter analysis was performed by a finite element
ANSYS Mechanical APDL model endowed with MATRIX27 elements [31].

With regards to the double-deck configuration, two alternative methods were adopted
for the definition and application of aeroelastic loads: a first one where lift and moment
actions, based on static coefficients of the whole section, are applied to the top deck
only; and a second one where lift and moment actions, based on static coefficients of the
single-deck section, are applied to both upper and lower decks. Both methods introduce
simplifications from the aerodynamic viewpoint. The former provides predictions similar
to those of the simplified formulas calibrated for the airfoil. The latter is more aligned
with the results provided by simplified formulations accounting for the difference between
airfoil and deck cross-sections. With respect to the modal frequencies, the two methods
provide similar trends for increasing wind speed, a 4% difference in the critical frequency
estimation, and the same prediction of the flutter mode. According to the results of this
study, the presence of the lower deck has raised the flutter wind velocity by more than 200%.

Although a definitive validation of the numerical results was not possible, due to the
lack of experimental data, the authors believe that the results obtained here can be used for
future comparisons with others obtained by different methods. In addition, the proposed
approach provides an approximate way for estimating the flutter velocity of double-deck
long-span bridges in the absence of more detailed analyses.

7. Concluding Remarks

Two simplified methods were adopted to achieve a preliminary flutter stability assess-
ment of the double-deck George Washington Bridge. Both methods provided a realistic
outcome, the second one seeming the most reliable and being the most conservative. The
predicted critical flutter wind velocity is about 79 m/s (284 km/h). According to [47], for the
bridge site, the wind speed corresponding to approximately a 1.6% probability of exceedance
in 50 years is 129 mph (about 57.7 m/s). Given the lack of experimental data, it is suggested
that wind tunnel tests are needed to obtain the flutter derivatives of the bridge deck.
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Appendix A. RANS Simulations

The finite element package ANSYS FLUENT was chosen both for meshing and sim-
ulating the fluid flow around the rigid body, with the aim of integrating the pressure
distribution and finally obtain the steady-state aerodynamic coefficients. For each deck
cross-section model, a 2D RANS simulation was performed. The k− ω SST turbulence
model, developed by [48], was adopted. This method consists in a sort of combination of
the two simpler, widely used k− ε and k−ω models, whose weighting is controlled by the
wall distance. Both are two-equation models, whose differences can be summarized as fol-
lows: the k− ε model does not allow for a direct integration of the field equations through
the boundary layer because the ε parameter tends to zero close to the wall. Conversely, the
k−ω model allows for directly integrating through the boundary layer, thus permitting to
improve the goodness of the wall boundary layer unsteady-state solution, as demonstrated
in [49]. As a drawback, the k−ω model has proved to be highly sensitive to inlet turbu-
lence boundary conditions: this can sensibly affect the solution even in large computational
domains [48]. To overcome this drawback, the k−ω SST model can conveniently be used.
It preserves the main advantages of the classical k−ω model, but it has proved to be less
sensitive to the inlet conditions.

After several tests regarding the turbulence model, the mesh sizing, the extension
of the computational domain, and the boundary conditions, the following settings were
adopted. Reference was made to [24,37] as a guide. For what concerns the computational
domain, the outer rectangle in Figure A1 delimits the fluid region, the left and right sides
representing the velocity inlet and the pressure outlet, respectively. The dimensions of the
computational domain were set following the indication in [24]: around 12B (360 m) in the
along-wind direction and 5.5B (180 m) in the transverse one. The cross-section centroid is
located at a horizontal distance of 120 m from the velocity inlet. The domain is subdivided
into different regions as shown in Figure A1. The circle and the inner rectangle were created
as auxiliary geometric entities so to allow for a differentiated meshing of the region closer
to the obstacle and of the wind wake. The circle and the inner rectangle have radius and
height equal to 35 m for the single deck model and 40 m for the double-deck. Being the
dimensions of the two models rather similar, the same mesh size was set for both the single-
and the double-deck versions. As for the mesh, in the inner regions, the mesh dimension
ranges from an edge size of 1 cm (order B × 10−3) to a maximum size of 25 cm (order
B × 10−2), with a growth ratio equal to 1.1 [24]. In the fluid region between the outer
boundary and the inner parts, a maximum size of 3 m (order B × 10−1) and a growth ratio
of 1.2 were set. A quadrilateral mesh was chosen for each model to favor convergence and,
thus, reduce the computational time. Figure A2 shows an example of meshed model of the
double-deck George Washington Bridge, with different zoom levels.
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appendages.

Regarding the boundary conditions, the inlet was given a velocity of 30 m/s, a turbu-
lent intensity of 0.5%, according to standard wind tunnel conditions for laminar flow, and
a turbulent viscosity ratio equal to 2. The outlet was given a null pressure and the same
turbulent intensity and viscosity as the inlet. The bridge deck edges were selected for the
integration of the pressure distribution. The model parameters as the wind velocity, the
chord length, and the air density were set so that dimensionless pressure coefficients were
directly given by the program. Moment coefficients are referred to the upper deck centroid.
To investigate different angles of attacks, several analyses were performed by rotating the
bridge cross-section while keeping the boundary conditions and the computational domain
unaltered. Results are summarized in Table A1. As an example, Figures A3 and A4 show
the distribution of velocity magnitude and pressure in the case of horizontal flow, with
U = 30 m/s, for the single-deck and the double-deck configurations of the George Wash-
ington Bridge, respectively. The simulations were run in a machine having the following
main features: Intel® Core™ i9-12900K (30 MB cache memory, 8 P-core + 8 E-core, from
3.2 GHz to 5.2 GHz, 125 W); RAM 32 GB DDR5 memory, up to 4400 MHz; video card
Nvidia RTX A4000, 16 GB, 4 DP; 64 bit operating system. The computational time required
for meshing of each model was approximatively 40 min, while the computational time for
RANS simulation was comprised between 5 and 10 min.

Table A1. Resulting steady aerodynamic coefficients for different wind angles of attack.

Angle of Attack (◦)
Single-Deck Double-Deck

Cl Cm Cl Cm

−3 0.123 −0.09 0.107 −0.035
−2.5 0.030 −0.075 0.128 −0.038
−2 −0.028 −0.058 0.112 −0.045
−1.5 −0.042 −0.041 0.064 −0.050
−1 −0.159 −0.021 −0.043 −0.047
−0.5 −0.163 −0.007 −0.120 −0.038

0 −0.252 0.013 −0.287 −0.023
0.5 −0.274 0.026 −0.357 −0.004
1 −0.334 0.047 −0.516 0.018

1.5 −0.427 0.061 −0.529 0.035
2 −0.441 0.075 −0.730 0.074

2.5 −0.522 0.097 −0.712 0.074
3 −0.538 0.103 −0.762 0.090
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