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Abstract: A brain–computer interface (BCI), as a solution to disabled people’s concerns, has drawn
attention in biomedical engineering over the last decade. However, the most existing brain–computer
interface systems are based on the time or frequency domain of feature extraction, and it is associated
with inaccurate detection of event-related desynchronization (ERD). In this study, a new algorithm
relating to subject-specific regions of interest (ROIs) with intrinsic time-scale decomposition (ITD)
was investigated to achieve satisfactory classification accuracy. ROI-based discrete wavelet transform
(DWT) combined with an artificial neural network was used to validate the ROI-based ITD method.
Experimentally recorded data of motor imagery movement tasks (right hand, left hand, both hands
and both feet) were collected from 15 subjects. The parameters of the subject-specific regions of
interest were investigated and optimized. An optimal condition was observed at a specific region of
interest and the accuracy increased by 12.76 to 15.17% compared to that without ROI estimation. ITD
showed higher classification accuracy, sensitivity, specificity and Kappa coefficient of 9.47%, 8.99%,
9.79% and 12.09%, respectively, for the four classes of motor imagery movements compared to DWT.
The developed ITD model was validated using the dataset from BCI Competition IV. On average,
ITD with ROIs showed 8.56% and 7.32% higher classification accuracy compared to common spatial
patents (CSP) and DWT with ROIs.

Keywords: intrinsic time-scale decomposition; discreet wavelet transform; artificial neural network;
electroencephalography; brain–computer interface; event-related desynchronization (ERD)

1. Introduction

People with motor disorders are unable to meet their needs or live independently.
Thus, the brain–computer interface (BCI) aims to reduce healthcare costs and improve life
quality by means of communication [1]. BCIs translate the acquired brain activity into
a message or command that is then sent to an external device [2–4]. Motor imagery is
detected from human brain signals using electroencephalography (EEG). EEG is a test that
detects the electrical activity of the human brain [5]. Among the different input signals
to the BCI system, EEG is a viable method. This is due to the high temporal resolution
and portability associated with EEG. The decoding of EEG signals has been studied by
global researchers [6,7]. The bio-signal of interest is generated voluntarily and the computer
continuously scans the generated signals and matches them with the known waveforms.

These signals are in the form of event-related desynchronization (ERD)/synchronization
(ERS) and are controlled by motor imagery (MI) movements associated with cortical areas
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known as sensorimotor rhythms (SMR) [8,9]. Although ERD and ERS have been investi-
gated with regard to their modulation effects on SMR [10–12], the dynamics of ERD/ERS
phenomena during motor tasks have not been studied. The ERD can be readily detected
in EEG signals within the band of alpha (8 Hz to 12 Hz) and beta rhythms at frequencies
of 8 Hz to 12 Hz and 14 Hz to 28 Hz, respectively [13]. The data behavior at specific
frequency bands was computed using the coefficient of determination (r2) as a function
of electrode location [14]. The Rolandic beta and mu rhythms in the human brain were
observed in sensorimotor areas with frequency bands between 10 Hz and 20 Hz [15]. These
frequency bands show typical responses associated with the subject’s movement and motor
imagery [16–18]. However, ERD/ERS values have been found to vary between individuals
because of the differences in brain states, structures and physiology. As a result, different
frequency ranges, time periods, and brain regions are activated. Several methods have
been proposed to detect and classify ERD/ERS in BCI. Pfurtscheller et al. [8,19] combined
band power and learning vector quantization (LVQ) for classification. However, inferior
results were reported because the band power requires prior knowledge of frequency
bands and reactive bands. Distinction-sensitive learning vector quantization was used as
an automated approach to select relevant bands in fixed time segments [20].

Wang and Zheng [21] maximized the scatters between two classes of EEGs using a
common special pattern (CSP) for a motor imagery task. The diagonals of two covariance
matrices were used to compute the spatial filters. However, CSP-based approaches were
found to have some drawbacks. It depends on subject-specific segments and frequency
bands, and the estimations of covariance matrices are affected by noises and outliers [21].
The spatial non-stationary characters of ERS/ERD and the temporal frequencies result in
high inter-subject and intra-subject variability in motor imagery task-based BCIs. However,
the occurrences of ERD and ERS are found to be independent of a time interval; hence,
selecting which segment is active could be a problem.

To overcome the above-mentioned problems, various techniques, such as the time–
frequency domain, have been introduced to transform non-stationary signals into stationary
ones [22,23]. Martis et al. [22] described time–frequency energy representations using the
intrinsic time-scale decomposition (ITD) method. Proper rotation components in the time-
scale domain were provided. Furthermore, the trade-offs between time information and
frequency information were balanced. Ince et al. [24] investigated dyadic time segmenta-
tion and adaptive selection of frequency domain features with equal bandwidth for the
classification of EEG signals corresponding to left or right hand movement imagery for
BCI tasks. However, these methods were found to be complex for online BCI studies.
Jiang et al. [25] used multiple time segments via a band-pass filter on each time segment.
The feature from multiple time segments of each sample was extracted using a CSP spatial
filter and then combined. However, the problem of this study is that different subjects have
different optimal time segments.

According to the literature review, none of these techniques have studied the features
of time–frequency techniques. Moreover, the investigation was conducted for offline
studies, and the accuracy still needs improvement. Furthermore, no studies were found
on signal decomposition techniques to extract subjects’ ERD and ERS based on intrinsic
time-scale decomposition features.

The aim of our paper is to examine the effect of subject-specific regions of interest
on the discrimination of four classes (both feet, both hands, right hand and left hand)
of motor imagery using time–frequency techniques. The parameters of ERD and ERS
were investigated and optimized using the intrinsic time-scale decomposition method.
The intrinsic time-scale decomposition method was validated using the discreet wavelet
transform. Furthermore, comparisons with other existing methods from the literature
were also performed. This study is a continuation of our previous work [26,27], which
successfully studied the discrimination of four classes of simple limb motor imagery
movements for brain–computer interfaces and the comparison of EEG signal decomposition
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using time–frequency methods. Hence, by utilizing a subject-specific region of interest
(ROI), BCI accuracies could be improved.

2. Materials and Methods
2.1. Participant and Sample Size Calculation

There were 15 participants in total, comprising 7 females and 8 males. The mean age
and the standard deviation of the participants were 24.7 years and 4.1 years, respectively.
Experiment approval was obtained from the Ethics Committee of Biomedical Technology
Mission Oriented Research (BMT–MOR), Universiti Teknologi PETRONAS (UTP), Malaysia.
Firstly the sample size was calculated for the infinite population using Equation (1). Sec-
ondly, the sample size was adjusted to the required population using Equation (2).

S = Z2 × P× (1− P)
M2 (1)

Adjust sample size =
S

1 + (S−1)
population

(2)

S = sample size for infinite population
Z = Z score
P = population proportion (assumed as 50% or 0.5)
M = margin of error

Note: The Z score is determined based on the confidence level. A 95% confidence
level was used and the Z score found was 1.960. The margin of error for miscalculation or
change of circumstances was 5%.

2.2. Experimental Setup

A brief on experimental procedures was introduced to each participant and a con-
sent form was signed. Neuroelectrics’s Enobio with eight dry electrodes following the
10–20 international electrode placement system was used [11]. The participants were in-
vited for one session to perform mental tasks and motor imagery, which were guided by
visual cues. During the session, the subject’s screen could either be blank or display an
arrow pointing to the right, left, up or down. The stimulus was displayed for 3000 ms
and the screen remained blank for 1500 ms before the next stimulus appeared. To allow
the subject to blink or stretch, a break time of 1 min was used. During the break time, the
screen was blank. Tasks related to the imagination of closing and opening the right hand,
left hand, both hands and both feet were studied. Altogether, there were 5 runs being
conducted, with each run consisting of 24 trials. Figure 1 shows the experiment’s design.
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2.3. Preprocessing

The mu rhythm at a frequency range of 8 Hz to 25 Hz was used to determine the motor
imagery movement [19,28,29]. In contrast, the electromyogram (EMG) is maximum at a
frequency greater than 30 Hz, whereas the eye movement activity or electrocardiography
(ECG) is maximum at a frequency less than 5 Hz. Thus, basic filtering was performed
to remove the unwanted artifacts from the EEG signal based on an FIR filter. The signal
was first high-pass-filtered with a lower cut-off frequency of 0.1 Hz, followed by low-pass
filtering with a higher cut-off frequency of 50 Hz. This band-pass filtering aided in the
removal of power line noise, electrooculography (EOG), EMG and ECG artifacts.

2.4. Feature Extraction

Intrinsic time-scale decomposition (ITD) has several advantages compared to the
empirical mode decomposition (EMD) technique. This includes better computational
efficiency, more effective information extraction from a given signal and suitability for
online decomposition [22]. A signal operator L was introduced and used to extract the
baseline signal from a given input signal Xt. This makes the residual to be the lower
frequency Lt. The proper rotation components (PRCs) are defined as Hxt = Xt − Lt, which
is then written as Ht. Then, the input signal Xt is decomposed as follows:

Xt = Ht + Lt (3)

From Equation (3), the ITD algorithm is detailed as follows: Considering the function
on the interval [τk, τk+1] between adjacent extrema xk and xk+1, we calculated the baseline
extraction operator as:

LXt = Lt = Lk +

(
Lk+1 − Lk
xk+1 − xk

)
(Xt − xk), t ∈ (τk, τk+1], (4)

Lk+1 = λ

[
xk +

(
τk+1 − τk
τk+2 − τk

)
(xk+2 − xk)

]
+ (1− λ)xk+1 (5)

where 0 < λ < 1 is set during computation with a fixed value of λ = 1/2. The following
defined operator is used to extract the PRC of any signal.

Ht = HXt = Xt − LXt = Xt − Lt (6)

Next, the steps from Equation (4)–(6) are repeated until the baseline becomes a mono-
tonic function, which results in the decomposition of the raw signal into PRCs, and trend.

Xt = HXt + LXt = HXt + (H + L)LXt =
(

H(1 + L) + L2)Xt

=

(
H

p−1
∑

k=0
Lk + Lp

)
Xt

(7)

where HLkXt is the (k − 1)st level proper rotation and LpXt is either the monotonic trend
or the lowest frequency baseline.

2.5. Optimization of Intrinsic Time-Scale Decomposition

The best region of interest (ROI) is estimated by exhaustively searching for the largest
value of F–scores among all regions, as depicted in Figure 2, which is based on an investiga-
tion of subject-specific time–frequency of four classes of motor imagery. A subject-specific
ROI may be used as a guide in selecting ITD features. After ITD decomposition, optimum
feature extraction of PRC should be selected in two ways. The first one depends on extract-
ing features from a fewer number of PRCs, which have higher mutual information of motor
imagery movement’s signal. The second one depends on subject-specific time–frequency,
which is based on ERD/ERS. Because of the complexity of EEG signals, high temporal
and high frequency resolutions are needed. The solution has been implemented in ITD for
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signal analysis to obtain time–frequency. To calculate the instantaneous amplitude, a single
wave-based method was used.

A1(t) = A2(t) =
{

A1, t ∈ [t1, t3)
−A2, t ∈ (t3, t5)

(8)
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Figure 2. Optimum features derived from ROI.

(a) Perform ITD, which decomposes the signal into some PRCs.
(b) Calculate the instantaneous amplitude of each PRC based on the half-wave analysis.
(c) Choose the first two PRCs with instantaneous amplitudes fluctuating around the mu

rhythm for further analysis.
(d) Calculate the ERD of the instantaneous amplitude as follows:

ERD% =
1
N

N

∑
t=1

Aj(t)− Rj(t)
Rj(t)

× 100% (9)

where Aj(t) is the instantaneous amplitude for j PRCs, R is the reference period or average
power in the baseline, and N is the number of trials.

2.6. Feature Classification

The chosen feature representation from the decomposed ITD was fed into a classifier
that distinguishes between the motor imagery tasks (left hand, right hand, both hands
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and both feet). An artificial neural network (ANN) model has been used [30–33] in BCI
systems. The selection of ANN in comparison with the traditional approaches, such as
SVMs and LDA, is supported by the reported advantages of the ANN. An ANN has a
higher ability to handle nonlinear data and to identify the optimal boundaries between
the classes [30]. An NN tool in MATLAB was used to design and train the feed-forward
back-propagation neural network (BP NN). One layer of input, hidden, and output was
utilized. The algorithm learning effect was studied by varying the hidden layer. The initial
hidden unit was 10. Furthermore, the activation functions of Tan sigmoid, pure linear
function and Log sigmoid were investigated with different hidden units of 5, 15, 20, 30, 40,
50, 60 and 80. The input and the output numbers were 72 (feature vector length) and 4 (one
node per class: right hand, left hand, right foot or left foot), respectively.

2.7. Validation of Intrinsic Time-Scale Decomposition Method

The dataset from BCI Competition IV [34] was used to validate the experimental work.
The dataset consisted of two sessions, namely calibration and evaluation sessions. These
included seven subjects: four subjects (named “a”, “b”, “f”, “g”) were healthy, and three
artificially generated subjects (named “c”, “d”, “e”) were tested. The calibration session
consisted of two runs; a total of 200 trials for motor imagery of left hand, right hand or feet
were used. The timeline of each trial is shown in Figure 3. The fixed cross was displayed
for 2 seconds to prompt the participant to prepare. Then, an arrow would appear for four
seconds to prompt the subject to start the motor imagery task. The directions of the arrows
are: left—indicating left imagination task, right—indicating right imagination task, and
down—indicating feet imagination task. Finally, the screen was black for two seconds,
indicating that the trial was over. EEG signals for 59 channels were recorded at a 1000 Hz
sampling rate. These data were then band-pass-filtered within 0.05 Hz to 200 Hz, and
down-sampled to 100 Hz.
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3. Results and Analysis
3.1. Effect of ROI on Intrinsic Time-Scale Decomposition

The effects of ROI on the four classes of motor imagery using ITD are presented in
Figure 4. The ROI was based on the ERD/ERS and the significant features of the recorded
data. It was evaluated using the kappa coefficient (k). Kappa coefficients in the range of
0.70−0.95 were found for all subjects. For ITD with ROI estimation, varied time−frequency
distributions across the subjects were observed. These are clearly seen with higher kappa
coefficients; however, certain subjects, such as 3, 4, 6 and 15, show lower kappa coefficients;
this is due to the distinctions in the physiologies and brain states of the subjects [24]. On
average, the kappa coefficient increased by ~14.20% for ITD with ROI estimation compared
to that without ROI estimation. Thus, it can be concluded that the ITD with ROI estimation
enhances the classification performance.
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To further investigate the effects of ROI on ITD, we used the receiver operating
characteristic (ROC) to evaluate the discrimination of motor imagery movements of both
hands, both feet, right hand and left hand. The ROC curves are shown in Figure 5a,b for
Subject 1. Figure 5a shows the classification evaluation of ITD without ROI estimation.
On average, the classification accuracy, sensitivity, specificity and area under the curve
(AUC) values of ITD without ROI estimation for the right hand, left hand, both hands and
both feet were, respectively: 75.00%, 75.00%, 75.00% and 81.91%; 81.66%, 79.79%, 77.91%
and 87.03%; 79.58%, 80.21%, 80.83% and 88.08%; and 74.16%, 78.12%, 82.08% and 83.87%,
as shown in Figure 5a. The corresponding values of classification accuracy, sensitivity,
specificity and AUC for ITD with ROI estimation were, respectively: 84.58%, 86.25%, 87.91%
and 92.99%; 91.66%, 91.46%, 91.45% and 97.19%; 98.33%, 98.12%, 97.91% and 99.64%; and
90.00%, 91.45%, 92.91% and 97.20%, as shown in Figure 5b. From the results, it is clear
that the ITDs with ROI estimation outperform those ITDs without ROI estimation in all
classification measurements. Thus, it can be stated that ROI features or ERD estimations
greatly improve the classification performance. For Subject 2, similar observations, with
slightly different values of classification accuracy, sensitivity, specificity and AUC, were
observed, as seen in Figure 6 and Table 1. The effectiveness of ROIs in distinguishing
among the four tasks’ motor imagery is supported by the higher AUC, sensitivity and
specificity. The ROCs of ITD for subjects 3 to 14 and the subjects’ performance with and
without ROI estimation are shown in Supplementary Figure S1 and Table S1, respectively.
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Table 1. Subjects’ performance using ITD with and without ROI.

Subject Left Hand Right Hand Both Hands Both Feet

Subject 1

ITD
with ROI

Accuracy % 86.25% 91.46% 98.12% 91.45%
Sensitivity % 84.58% 91.66% 98.33% 90.00%
Specificity % 87.91% 91.45% 97.91% 92.91%

AUC % 92.99% 97.19% 99.64% 97.20%

ITD without
ROI

Accuracy % 75.00% 79.79% 80.21% 78.12%
Sensitivity % 75.00% 81.66% 79.58% 74.16%
Specificity % 75.00% 77.91% 80.83% 82.08%

AUC % 81.91% 87.03% 88.08% 83.87%

Subject 2

ITD with ROI

Accuracy % 96.66% 87.29% 90.83% 90.00%
Sensitivity % 96.66% 90.41% 91.66% 91.66%
Specificity % 96.66% 84.16% 90.00% 88.33%

AUC % 99.16% 94.01% 96.80% 96.02%

ITD without
ROI

Accuracy % 78.75% 73.33% 72.50% 71.66%
Sensitivity % 79.58% 73.33% 71.25% 71.66%
Specificity % 77.91% 73.33% 73.75% 71.66%

AUC % 87.53% 79.29% 80.37% 80.63%

3.2. Neurophysiological Properties of Motor Imagery Movements

The neurophysiological properties of EEG for Subject 3 are shown in Figure 7. The
topographic map was used to evaluate the physiologically plausible results of the recorded
EEG and the dissimilarity at different frequencies: alpha of 8 Hz to 12 Hz, and beta of 14 Hz
to 28 Hz. The data behavior at specific frequency bands was computed using the coefficient
of determination (color coded r2) as a function of electrode location, as in [14]. Figure 7a
shows the r2 topography map for the specific frequency component of the right-hand motor
imagery compared to the rest state, correlated with the right side of the sensorimotor cortex
(C3). Figure 7b displays the topographical distribution of the motor imagery tasks for the
left hand; the expected spatial response for the left-hand motor imagery movement agrees
with the spatial distribution for all subjects. In Figure 7c, a high r2 value indicates a region
in a specific frequency band that was activated differentially between the imaginations
of both hands and the rest state for both hands. Figure 7d displays the r2 topography for
both feet motor imagery compared to the rest condition; additionally, the high r2 value
correlated with a specific frequency in feet area (Cz). It was found that the topographies of
r2 significantly discriminate between the two motor imagery conditions and were clearly
restricted to the sensorimotor cortical areas involved. The Rolandic beta and mu rhythms
in the human brain were observed in sensorimotor areas with frequency bands between
10 Hz and 20 Hz [15]. These frequency bands show typical responses associated with
the subject’s movement and motor imagery [16–18]. The topography of the frequencies



Appl. Sci. 2023, 13, 6364 9 of 16

associated with maximum control in the mu and beta bands were found. The locations
line up with the expected sites of the peri-rolandic sensorimotor cortex. Thus, a clear and
locally restricted spectrum of the channels for which participants had maximum control
(i.e., the largest values of the correlation between channel location and the EEG feature)
was observed. The results of this work support the notion that hand/foot motor imagery
activates neural networks in the cortical hand/foot areas, which were displayed here as the
blocking of mu and beta rhythms in the contralateral hand/foot areas; previous studies
in [16,17] also showed similar findings. Topography maps for subjects 3 to 13 are shown in
Supplementary Figure S2.
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3.3. Confusion Matrix

The confusion matrices with and without ROI’s estimation for four classes of motor
imagery using ITD are presented in Tables 2 and 3, respectively. Different classification be-
haviors of the motor images were observed. For ITD with ROI estimation, the classification
accuracy was 95.08% for both feet, 94.40% for the right hand, 91.70% for the left hand and
89.63% for both hands; whereas for ITD without ROI estimation, these values were 80.08%,
82.94%, 79.01% and 76.03%, respectively. Thus, ITD with ROI estimation showed 12.76 to
15.17% higher classification accuracy compared to ITD without ROI estimation.

Table 2. Confusion matrix of ITD with ROI.

True class

Predicted Class

Right Hand Left Hand Both Hands Both Feet

Right hand 94.40% 4.03% 0.75% 0.82%
Left hand 6.43% 91.70% 1.54% 0.33%

Both hands 6.03% 3.93% 89.63% 0.41%
Both feet 3.01% 1.07% 0.84% 95.08%
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Table 3. Confusion matrix of ITD without ROI.

True class

Predicted Class

Right Hand Left Hand Both Hands Both Feet

Right hand 82.94% 7.53% 5.71% 3.82%
Left hand 13.65% 79.01% 4.82% 2.53%

Both hands 11.53% 9.83% 76.03% 2.61%
Both feet 10.01% 5.07% 4.84% 80.08%

3.4. Comparison of ITD Technique with DWT without ROI Estimation

During motor imagery tasks, changes in the state of the brain lead to changes in EEG
frequency and amplitude. Thus, for a clearer understanding of a nonlinear model of ITD to
better map the signals into one of the four classes, the ITD approach was compared and
validated using discrete wavelet transform (DWT). The comparative classification results
of ITD and DWT without ROI are illustrated in Figure 8. On average, for the 15 subjects,
the mean classification accuracy obtained was 78.39% for DWT and 86.80% for ITD. From
Figure 8, it is clearly seen that the ITD increased the average classification accuracy not only
for the 15 subjects but also for the individual subject, as evidenced by the smaller error in
the boxplot. The percentage increase in classification accuracy for ITD was 9.68% compared
to that of DWT. This change was found to be significant at a level of p < 0.001. The ITD
method drastically improves the accuracy of the system, as well as the capabilities of this
method to separate among the four classes of motor imagery movements compared to the
equivalent decomposition method of DWT without ROI. In summary, the improvements
brought upon by ITD are mainly due to better handling of critical cases [35].
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Figure 9 shows the boxplot of the mean classification results for sensitivity. The average
classification sensitivity for ITD and DWT was 86.14% and 78.39%, respectively. The ITD
sensitivity improved by 8.99% compared to that of DWT. This change was significant at
p < 0.001.
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Figure 9. The sensitivity of ITD and DWT for 15 subjects.

Figure 10 shows the boxplot of the specificity for ITD and DWT. The mean classification
specificity for ITD and DWT was 87.73% and 79.05%, respectively. Compared to the
specificity of DWT, the ITD specificity increased by 9.89%; this change was significant at
p < 0.001.
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Figure 11 shows the boxplot of the kappa coefficient classification for ITD and DWT.
The average kappa coefficients for ITD and DWT were 0.8011 and 0.7042, respectively.
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The comparative results of ROCs between ITD and DWT are shown in Figure 12.
The green line shows the results of the ITD method, while the red line shows the results
of the DWT method. The classification accuracy of ITD was 86.80%, with a sensitivity
of 84.14% and a specificity of 87.73%. The classification accuracy for DWT was 78.58%,
the sensitivity was 78.39% and the specificity was 79%. A comparison between the ITD
and DWT decomposition methods showed that the ITD algorithm outperformed DWT
by showing a higher accuracy of feature classifications for different motor imagery tasks.
The DWT algorithm is sensitive to wavelet function and wavelet level. DWT has more
difficulties in treating both hands’ classes. On the other hand, the effect of this problem on
the ITD approach does not seem to be too significant. This is mainly due to better handling
of critical cases, resulting in a 9.47% improvement in classification accuracy of both hands’
classes. DWT lacks fast algorithms; it takes up to 12.83 times longer compared to ITD.
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3.5. Comparison of ITD Technique and DWT with ROI Estimation

The ROC results between ITD and DWT with ROI are shown in Figure 13 using the
stated dataset. The classification accuracy of ITD was 96.875%, with a sensitivity of 0.9625
and a specificity of 0.975. The classification accuracy for DWT was 89.765%, the sensitivity
was 0.8925 and the specificity was 0.89125.
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3.6. Validation and Comparison with the Existing Methods from the Literature

With reference to Table 4 below, the result from ITD based region of interest using the
BCI Competition IV dataset indicated an accuracy of 96.87% compared to that utilizing
our own collected data, which generated 92.70% accuracy; this resulted in 4.30% more
accuracy. On average, with the Competition IV dataset, ITD showed 8.56% and 7.32%
higher classification accuracy compared to CSP and DWT, respectively.

Table 4. Comparison results of feature extraction methods.

Reference and Year Method Accuracy (%)

Jiang et al. [26] CSP 88.58

This study

DWT with ROI
BCI Competition IV dataset 89.77

ITD with ROI
BCI Competition IV dataset 96.87

ITD with ROI Own recorded dataset 92.70

4. Discussion

From the results, it is clear that the ITDs with ROI estimation outperform those without
ROI estimation in all classification measurements. Class reparability was observed with the
selected features, which accommodate outliers and obtain better generalization properties.
Thus, it is plausible to say that the classifier results of this paper are in agreement with the
results reported by Yang et al. [7]. A comparison between the ITD and DWT with ROIs
showed that the ITD with ROIs outperformed DWT with ROIs, by producing a higher
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accuracy of feature classifications for different motor imagery tasks. The kappa coefficient
of ITD increased by 0.0969 than that of DWT, on average; this was significant at p < 0.001.
The improvements in the classification accuracy achieved in this study are also consistent
with the existing ITD studies by Martis et al. [22]. These findings further verify the potential
of the proposed ITD method in facilitating an automated technique for developing effective
framework assessment strategies. The investigated ITD method was found to outperform
those introduced by Tanaka et al. [3], Jiang et al. [25] and Galan et al. [4] by 5.3% to 14.8%.
In their work, these authors used fewer subjects (the maximum being 6 subjects) and fewer
classes (the maximum having 3 classes).

5. Conclusions

In this study, subject-specific regions of interest (ROIs) based on optimal ERD patterns
were proposed for motor imagery BCI systems. Higher mutual information of time–
frequency was obtained from each motor imagery sample. The features were extracted
using ITD or DWT from each time–frequency segment and combined with the neural
network classification to evaluate the effectiveness of the proposed ITD with ROI and
DWT with ROI techniques. The own recorded data was validated with a dataset from BCI
Competition IV; here, the ROI-based ITD achieved the highest accuracy of 92.70%, whereas
for the ROI-based ITD using the Competition IV data, the accuracy was 96.87%. Compared
to DWT with ROI and CSP, ITD with ROI estimation showed a higher classification accuracy
of 7.32% and 8.56%, respectively. Thus, the proposed algorithm employing subject-specific
regions of interest is promising for practical applications in motor imagery-based brain–
computer interface systems.
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