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Abstract: In engineering problems, design space approximation using accurate computational models
may require conducting a simulation for each explored working point, which is often not feasible in
computational terms. For problems with numerous parameters and computationally demanding
simulations, the possibility of resorting to multi-fidelity surrogates arises as a means to alleviate the
effort by employing a reduced number of high-fidelity and expensive simulations and predicting
a much cheaper low-fidelity model. A multi-fidelity approach for design space approximation is
therefore proposed, requiring two different designs of experiments to assess the best combination
of surrogate models and an intermediate meta-modeled variable. The strategy is applied to the
prediction of condensation that occurs when two humid air streams are mixed in a three-way junction,
which occurs when using low-pressure exhaust gas recirculation to reduce piston engine emissions.
In this particular case, most of the assessed combinations of surrogate and intermediate variables
provide a good agreement between observed and predicted values, resulting in the lowest normalized
mean absolute error (3.4%) by constructing a polynomial response surface using a multi-fidelity
additive scaling variable that calculates the difference between the low-fidelity and high-fidelity
predictions of the condensation mass flow rate.

Keywords: surrogate modeling; multi-fidelity simulations; design of experiments; design space
exploration; condensation

1. Introduction

Typical engineering problems are based on meaningful simplifications of the behnts to
those avior of complex systems. Ideally, one would like to be able to predict the performance
of the system based on a combination of inputs that define its characteristics and particular
operating conditions. To do so, a set of (training) data is generated using experimental
measurements or numerical simulations, and a so-called surrogate model of the system
is built. Such experiments and simulations are usually expensive [1], so the number of
evaluations should be kept as low as possible. Surrogate models (also known as black-
box models or metamodels), therefore, aim at predicting the outcome of the system with
adequate accuracy at different points from those employed to construct the model. In the
framework of Industry 4.0 and the paradigm shift to the Digital Twin concept [2], surrogate
models are believed to play a vital role [3–5].

Surrogate models can be used for many different purposes [1], including sensitivity
analyses [6–8], optimization [9–11] and design space approximation. The latter term is
applied to cases in which the surrogate is required to represent the global behavior of a com-
plex system over the whole set of potential operating conditions. For instance, surrogates
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can be used to create turbocompressor [12–14] and turbine [15] characteristic maps, which
provide the performance of the devices in terms of pressure ratio and isentropic efficiency.
Heat transfer in heat exchangers [16] and in other applications [17], aero thermoelastic
performance of hypersonic vehicles [18], piston engine volumetric efficiency [19] and mi-
crostructure reconstruction of porous media [20] are problems of design space exploration
that have been addressed using surrogate modeling.

There is a wide variety of surrogate models able to satisfy different objectives.
Yondo et al. [21] conducted a comprehensive review of different surrogate-based methods
regarding aircraft aerodynamic studies. The most common types of surrogates found in
the literature are the Radial Basis Function (RBF) model, the Polynomial Response Surface
(PRS) model, and the Kriging model. Reihani et al. [22] used PRS to assess the sensitivity of
low-pressure exhaust gas recirculation characteristics on turbocharger compressor perfor-
mance. Simpson et al. [23] found that kriging surrogates were more accurate than PRS ones
in the scope of aerospike nozzle design. In contrast, Fang et al. [24] concluded that RBF
models presented a higher quality to predict non-linear effects than PRS models in several
test problems. Nevertheless, the accuracy of surrogate models is case-dependent [25], so
methods that seek to obtain adequate surrogate models for a particular application should
compare between different alternatives [26].

For problems with numerous parameters and computationally or these casdemand-
ing simulations, engineers often cannot succeed in conducting an affordable numerical
campaign to develop an accurate surrogate of a problem design space due to the required
dense sampling. For these cases, the possibility of resorting to the so-called multi-fidelity
surrogates arises to alleviate the computational effort. Multifidelity (MF) surrogate models
integrate information from high-fidelity (HF) and low-fidelity (LF) simulations, obtaining
an adequate trade-off between the high computational requirements of HF models and the
lack of precision of LF- models [1]. The design space approximation allows building the
MF-surrogate model by mapping the HF model’s parameter space through the LF’s space,
despite having different dimensions.

Surrogate models involve some potential drawbacks that should be addressed. First,
their use should be limited to high-fidelity simulations requiring high computational
performance. The use of low-fidelity models usually leads to a reduction in the accuracy
of the analyses, with the sole purpose of reducing computational time. On the other
hand, using surrogate models for multi-objective problems requires specific algorithms and
suitable sampling techniques capable of solving real-world engineering design problems.

Research in developing surrogate models has experienced a remarkable increase in
the last decade, especially for exploring the design space and supporting optimal designs.
Recent research has applied heuristic optimization algorithms to solve the optimization
problems associated with surrogate models [27,28]. In addition, another way of building
surrogate models using metaheuristic algorithms has been proposed [29,30]. In line with
previous limitations of surrogate models, new algorithms focused on Surrogate-Based
Optimization (SBO) have been proposed [21]. Other novel research approaches are oriented
towards evolutionary optimization, including multi-objective approaches.

In this way, the surrogate employs not only the outcome from the expensive high-fidelity
simulations but also involves the prediction of a much cheaper low-fidelity model, which
could even be an analytical approximation [31]. The existing literature reviews [21,32,33]
show that multi-fidelity surrogates have been applied essentially to optimization [10,34,35]
and uncertainty quantification [36,37], with a few works in which there is some degree of
application to design space exploration [38,39]. Unfortunately, useful surrogate methods for
optimization may not be the right choices for design space approximation [25]. Furthermore,
the performance of such surrogates is often assessed using synthetic and benchmark
problems, so it is yet to be determined how to adequately employ multi-fidelity surrogates
for original, authentic scientific, and engineering problems.

The main contribution of this paper is the proposal of a systematic method using multi-
fidelity surrogate models for space design approximation. The proposed methodology
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is applied in a problem of condensation mass flow in internal combustion engines, as an
example of application in a complex engineering environment.

Therefore, an original procedure is developed to assess different multi-fidelity surro-
gate models systematically using well-established error metrics. The developed method
is presented using a step-by-step procedure employing thorough mathematical notation,
so that the interested researchers can obtain a multi-fidelity surrogate model useful for
their problem. Different designs of experiments are employed to obtain multi-purpose
numerical campaigns that only consider the relevant parameters according to the objective
of each campaign. The computational effort of the multi-fidelity strategy proposed in this
work has been reduced. Indeed, the novel introduction of the metamodeled variable in the
scope of space design exploration allows increasing the accuracy of the surrogate at the
same cost. In this way, the method can cope with situations in which it is not affordable
to explore many parameters of a space design using expensive simulations, such as those
conducted using 3D CFD.

The strategy is applied to the prediction of condensation when two humid air streams
are mixed on a three-way junction with a twofold objective: to prove the method’s validity
in a real problem (in contrast with the synthetic examples employed in most of the works
dealing with surrogates) and to set an example of how to apply the method. In this way,
the results obtained from the numerical campaigns described in this work are available in
the web version of this article.

Determining the condensation mass flow rate generated by mixing two streams of
moist air is relevant for air conditioning [40] and internal combustion engines [41]. Such
condensation can be roughly estimated using low-fidelity models (0D models, as described
in Section 4.2 or more accurately predicted using high-fidelity models (3D CFD simulations,
as described in Section 4.3) following [41,42]. In this work, the former will be used as
a low-fidelity model of condensation mass flow rate and the latter as its high-fidelity
counterpart, showing in this way how to apply a multi-fidelity surrogate strategy to predict
condensation in a three-way junction.

The paper is organized as follows. The proposed method for obtaining multi-fidelity
surrogate models for design space approximation is presented in Section 2. The statisti-
cal methodology is covered in Section 3, describing the selected designs of experiments,
the characteristics of the screening stage, the surrogate models employed, and the error
metrics considered in the framework of the developed strategy for creating accurate multi-
fidelity surrogate models. Section 4 briefly overviews the low and high fidelity models
employed to predict condensation due to mixing streams. The application of the pro-
posed multi-fidelity method to this particular case is presented in Section 5. Finally, some
concluding remarks are provided in Section 6.

2. Proposed Multi-Fidelity Method

Table 1 enumerates all the steps included in the comprehensive method designed in
this work, which provides multi-fidelity surrogate models for design space approximation.
The table distinguishes between the actions required in the HF and MF frameworks.
The mathematical notation featured in Table 1 avoids particularities of the problem used
as an example (condensation in mixing streams) and, thus, allows researchers from other
fields to use the proposed method.

The first stage of Table 1 is the Conceptual modeling, in which one defines the complete
dataset XN =

{
xl

i

}
by identifying the model parameters i and determining the particular

values for each parameter at level l. Section 5.1.1 shows an example of such steps. The concep-
tual modeling ends by selecting a set of intermediate variables (zm) that will be assessed for
their use as surrogates, together with the target variable, which is the one that is required to
be mapped (zt). For the studied application, these variables are defined in Section 5.1.2.

The next section of Table 1 is the Identification of significant parameters, which aims to
reduce the computational effort of the surrogate construction. In this way, a subset of
Xscr points can be determined using a certain design of experiments (a fractional factorial
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design is suggested in this work; see Section 3.1.1) and then run High-Fidelity models YHF
scr

and Low-Fidelity models YLF
scr at these working points to obtain a multi-fidelity evaluation.

After the screening analysis over all metamodeled variables z (using, for instance, ANOVA,
as described in Section 3.2), the non-significant parameters can be removed, leaving only
N′ significant parameters for the subsequent steps.

The last stage of the proposed method (see Table 1) is the Surrogate modeling (for space
design exploration) devoted to the surrogate modeling itself. Firstly, s surrogate candidates
are selected (see Section 3.3), and a set of training points Xtra is determined using another de-
sign of experiments. Here, the Box-Behnken design is employed, as justified in Section 3.1.2.
Next, High-Fidelity

(
gs,t, gHF

s,m
)

and Multi-Fidelity
(

gMF
s,m
)

surrogate models are constructed
using the evaluation of High-Fidelity YHF

tra and Low-Fidelity models YHF
tra at the training

points. These surrogate models are then used to predict values of the target variable at
the verification points Ŷs,t,ver, ŶHF

s,m,ver and ŶMF
s,m,ver. Notice that these works consider the

screening subset Xscr to be used as verification subset Xver to reduce the computational
cost. Since the exact results are already available from stage 2.2 of Table 1, the error metrics
(as defined in Section 3.4) are evaluated, allowing the different combinations of HF or MF
surrogate models with the target or intermediate variables to be classified as adequate or
not in terms of accuracy. Finally, the best couple of surrogate s and variable z is selected to
be used for space design exploration at any working point within the assessed range Xexp.

Table 1. List of method steps and actions to be conducted depending on the fidelity level.

Stage and Included Steps High-Fidelity Model 1 Multi-Fidelity Framework

1. Conceptual modeling
1.1 Definition of N model parameters and l
number of levels XN =

{
xl

i
}

, i = 1, · · · , N; ` = 1, · · · , L -

1.2 Definition of target and
intermediate variables zt = y(x)zm(y, x) : y = fm(zm, x) zMF

m
(
yHF , yLF) : yHF = f MF

m
(
zMF

m , yLF)
2. Identification of significant parameters
2.1 Determination of screening subset Xscr ⊆ XN -
2.2 Running the models at screening points Yscr = y(Xscr) Zm,scr = zm(Yscr , Xscr) YLF

scr = yLF(Xscr) ZMF
m,scr = zMF

m
(
YHF

scr , YLF
scr
)

2.3 Identification of N′ significant
parameters (xj)

∀j, ∃z : FN
(

xj, z
)
> F(L−1),residual

(
xj, z

)
2.4 Removal of N − N′
non-significant parameters XN′ =

{
xl

j

}
, j = 1, · · · , N′; ` = 1, · · · , L N′ 6 N -

3. Surrogate modeling (for space design exploration)
3.1 Selection of surrogate candidates gs : ẑs = gs(x)
3.2 Determination of training subset Xtra ⊆ X′N -
3.3 Running the models at training points Ytra = y(Xtra) Zm,tra = zm(Ytra, Xtra) YLF

tra = yLF(Xtra) ZMF
m,tra = zMF

m
(
YHF

tra , YLF
tra
)

3.4 Construction of surrogate models gs,t : min εs,t
(
Ŷtra, Ytra

)
gs,m : min εs,m

(
Ẑm,tra, Zm,tra

)
gMF

s,m : min εMF
s,m
(
ẐMF

m,tra, ZMF
m,tra

)
3.5 Determination of verification subset Xver ≡ Xscr -
3.6 Prediction of target variable at
verification subset Ŷs,t,ver = gs,t(Xver) Ŷs,m,ver = fm(gs,m(Xver), Xver) ŶMF

s,m,ver = f MF
m
(

gMF
s,m (Xver), yLF(Xver)

)
3.7 Calculation of error metrics and selection
of best surrogate variable and model z, s : min ε

(
Ŷs,z,ver , Yver

)
3.8 Usage of surrogate for space
design exploration Yexp ' gs,t

(
Xexp

)
Yexp ' f HF

m
(

gHF
s,m
(
Xexp

)
, Xver

)
Yexp ' f MF

m
(

gMF
s,m
(
Xexp

)
, yLF(Xexp

))
1 For the sake of simplicity, HF superscript is omitted from the notation in this column, as it affects all variables
and functions.

3. Statistical Methodology
3.1. Design of Experiments

The proposed multi-fidelity method requires several sets of working points for screen-
ing, training, and verification purposes. Different designs of experiments are considered,
depending on the required characteristics of each set of points. In this way, a fractional
factorial design obtains the screening points, and a Box-Behnken design is used to provide
the training points. For the sake of computational effort, the same set of points employed
for screening will also be used to verify the accuracy of the surrogate models.
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3.1.1. Fractional Factorial Design

The proposed method requires a subset of points Xscr to conduct the screening stage.
The full factorial design would be a candidate for this purpose, as it allows exploration
a wide variety of combinations between the parameters at different levels, entailing a
high level of resolution in the estimation effects. However, it may produce a verification
subset with a prohibitive computational cost, depending on the number of parameters
in the model and the cost of each simulation. Furthermore, presenting great accuracy in
estimating high-level interaction terms at the screening stage is unnecessary.

Thus, to save a little computational effort, it was decided to perform a fractional facto-
rial design instead. The objective of the factorial fractions is to identify the characteristic
parameters with the greatest effects on the high and multi-fidelity variables. One-half
fraction designs reduce the number of simulations by half. Still, researchers can further
reduce the number of simulations by selecting a quarter, an eighth, or even a sixteenth
fraction. Increasing the fraction’s denominator reduces the number of simulations required
and the resolution needed to estimate higher-order interaction effects. Factor fractions
of order p for factors with two levels and N characteristic parameters, with the possible
inclusion of an intermediate level for center points, are represented by 2N−p.

The resolution of the fraction design influences the number of high-order interaction
effects that are confounded to estimate main effects and low-order interactions based on a
reduced number of simulations. Since the characteristics of this fraction design meet the
requirements of the screening stage as well as the verification stage, the verification subset
will coincide with the screening subset (Xver ≡ Xscr) so that the effort of this extensive
numerical campaign is exploited twice.

3.1.2. Box-Behnken Design

When fitting a polynomial response surface (PRS) model, quadratic surfaces are esti-
mated to represent the curved shape of continuous factors. Box-Benkhen designs [43] are
incomplete second-order designs based on three levels, making them appropriate for ob-
taining training subsets Xtra to construct surrogates. The number of simulations this design
requires is 2N(N − 1). Center points can be added to this set of simulations to improve the
statistical power of the analysis. This design is more efficient than other response surface
designs, such as composite centers or three-level full factorial designs [44]. In addition,
this design does not include combinations of levels where all characteristic parameters are
simultaneously at high or low levels. Therefore, it only forces the execution of simulations
under extreme conditions that may provide meaningful results in design space exploration.

3.2. Screening Stage

The proposed method (see Table 1) conducts a screening phase to identify the character-
istic parameters that generate significant differences in either high-fidelity or multi-fidelity
variables. In this analysis stage, the focus is on direct and linear effects rather than possible
quadratic or nonlinear effects. Analysis of variance (ANOVA) is a versatile method for this
screening phase as it allows the exclusion of nonlinear terms from the model, thus increasing
its power. Thus, non-significant terms that usually correspond to interaction effects can be
specifically eliminated to improve the significance of the model by including only the main
results. ANOVA proves to be a valuable technique to screen input parameters and thus reduce
the extension of subsequent numerical [45] or experimental campaigns [46] for optimization.

This analysis of variance (ANOVA) is based on multiple comparisons of the means
of the high and multi-fidelity variables at different levels of the characteristic input pa-
rameters. In the ANOVA model, the F-statistic and its corresponding p-value are critical
in identifying the characteristic parameters that cause significant differences in the high-
fidelity and multi-fidelity variables. This F-statistic is calculated for the main effect of each
characteristic parameter as well as for the residual variability of the model. The F-statistic
follows a Fisher-Snedecor distribution, assuming the null hypothesis (H0) that different
levels of the characteristic parameters do not produce significant differences in the high
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and multi-fidelity variables. The F statistic represents a ratio between two measures of
variability weighted by degrees of freedom (mean squares): the variability explained by
each characteristic parameter relative to the residual variability of the model. Thus, the F
statistic represents the variability explained by each characteristic parameter relative to the
variability not explained (residual) by the model.

The variability explained by different levels of characteristic parameters can be calcu-
lated as the Explained Sum of Squares (ESS):

ESS = ∑ ni
(Ȳi − Ȳ)2

l − 1
(1)

where Ȳi represents the sample mean of the high or multi-fidelity variable at each level of
the characteristic parameter, Ȳ represents the overall mean of this variable, and l denotes
the number of levels of the parameter.

The residual (intra-level) variability (Residual Sum of Squares) is calculated as follows:

RSS = ∑
ij

(Yij − Ȳi)
2

N − l
(2)

where Yij represents the j-th simulation at each of the i-th level of the high or multi-fidelity
variable, and Ȳ represents the mean value of that variable at each level of the characteristic
parameter, N represents the total sample size, and l represents the number of levels.

Using both terms, the F statistic of each parameter characteristic can be computed
as the ratio between the variability explained by different levels and the (unexplained)
residual variability, within levels of characteristic parameters.

F =
ESS
RSS

(3)

Along with this F-statistic, p-values can be obtained for identifying significant effects
(p-value<α). These p-values are based on the comparison between calculated F-statistics
and critical values of the Fisher - Snedecor distribution. The degrees of freedom for the
numerator and denominator of this distribution are calculated by combining the number
of levels and the screening sample size. A 95% confidence level is usually considered for
assessing the significance of p-values, although more restrictive approaches (99% confidence
level). In this screening stage, some low-level interactions (double or even triple) may
show significant effects. The retention of these interaction terms is at the discretion of the
researcher, although in most cases it is not interesting for research.

3.3. Surrogate Models

A key stage in the developed method (see Table 1) is the construction of surrogate
models. In this work, three widely employed surrogate models have been considered:
Polynomial Response Surface (PRS), Radial Basis Function (RBF), and Ordinary Kriging.
PRS models are based on classical regression models and analysis of variance to analyze
the relationship between a response variable and a set of predictor variables. RBF models
are based on a collection of functions modeling a measure of distance (usually Euclidean)
between the point to be measured and a fixed point (usually the origin or an established
center), as described in Section 3.3.2. Furthermore, ordinary kriging models are built from
a kernel function considering the deviation between the metamodel variable of interest
and its prediction, as shown in Section 3.3.3. Thus, RBF and Ordinary kriging models
differ from the PRS model in the use of collection functions to approximate the variable
of interest, whereas PRS models apply classical modelization techniques to estimate the
parameters of the model. All of them will be used to obtain metamodels of every variable z
assessed, based on the training subset Xtra. Notice that the MF surrogates developed in
this work are based on scaling functions zMF

m [1].
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3.3.1. Polynomial Response Surface Models (PRS)

Polynomial response surface models (PRS) have been extensively used for data fitting
and regression analysis to examine the relationship between variables and outputs [47–49].
A second-order polynomial surrogate can be written as:

gs = β0 +
N
′

∑
i=1

βixi +
N
′

∑
i=1

N
′

∑
j=1

βijxixj (4)

The calibration of the coefficients β of Equation (4) for the polynomial response surface
has been set using the R software library [50].

3.3.2. Radial Basis Function Models (RBF)

A so-called radial function employs the Euclidean distance between the input parameter
and a fixed point, known as the center. A Radial Basis Function (RBF) model is constructed us-
ing a linear superposition of different radial basis functions, which is presented in Equation (5):

gs =
Ntra

∑
t=1

wtψ(‖x− xt‖) (5)

To use the combination of Ntra radial functions as a RBF surrogate, each point xt
corresponding to the training subset (Xtra = {xt}) is employed as the center, wt are weights
associated with each center xt and ψ is a basis function that acts over the aforementioned
euclidean distance. In this work, the library PySMO developed by the Institute for the
Design of Advanced Energy Systems based on the work of Forrester and Rippa et al. [10,51]
is employed on Python to construct RBF surrogates. Depending on the variable to be
metamodeled, the best function ψ amongst those available in the library (linear, cubic,
thin-plane spline, gaussian, and multi-quadratic) is selected to obtain the greatest fitting.

3.3.3. Ordinary Kriging Model

A surrogate model combining a known function f (x) (regression) with a function
Z(x) as Equation (6) shows:

gs =
Ntra

∑
t=1

βt f (x) + Z(x) (6)

is referred to as a Kriging model due to its first use in the field of geostatistics [52]. The so-
called kernel Z(x) considers the deviation between the metamodeled variable and the
prediction of the deterministic function f (x) (here considered a constant) using a stochastic
Gaussian process, so Kriging models are also known as Gaussian process regressions.
In Equation (6), βt are the regression coefficients, Ntra the number of training points,
and Z(x) presents zero mean and a co-variance of σ2ψ, where the correlation function ψ
employed in this work is the squared exponential (see [53,54]).

For this work, Kriging surrogates have been built using a Toolbox on Python environ-
ment developed by Bouhlel et al. [53]. According to Xiao et al. [55], Kriging models better
describe the local features of the data to be metamodeled than PRS. Comparing Equation (6)
with Equation (5), the functions ψ play a similar role as either radial basis functions in the
RBF model or kernels in the Kriging model [56]. In this way, Chandrashekarappa and Duvi-
gneau [57] noted that the normal distribution considered in the Kriging kernel functions is
more adequate for experimental measurements than for computational simulations, which
is the application example considered in this work (Sections 4 and 5).

3.4. Error Metrics

Several steps of the proposed strategy to develop multi-fidelity surrogates (see Section 2)
require a quantitative assessment of the obtained models, to evaluate and compare their
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performance to select the best combination of metamodeled variables and surrogate types.
Generally, these metrics check the error committed between the observed values and the
predicted values, but the roles of the observed and predicted data at the corresponding
stage will determine which is the error indicator best suited for the task.

The first indicator employed in this work is the coefficient of determination R2. It
quantifies the proportion of the total variability of the data that the model can explain.
To do so, this error metric employs the co-variance of the predicted and observed cases as
well as the variance of each case, as can be seen in Equation (7):

R2 =
σ2

zẑ
σ2

z σ2
ẑ
=

(
∑n

i=1(zi−z̄)(ẑi− ¯̂z)
n

)2

∑n
i=1(zi−z̄)2

n
∑n

i=1(ẑi− ¯̂z)2

n

(7)

Notice that R2 in this work is only employed to assess the fitting capability of each
model outcome (yi) to the training data (xi). Indeed, the coefficient is known to be inade-
quate when attempting to evaluate the predicting capability of the models in the verification
stage [58]. For the latter purpose, the Mean Absolute Error (MAE) is preferred [58,59]. MAE
directly calculates the average magnitude of the error between the values predicted by a
surrogate (ŷi) and the values observed at the verification stage (yi), as Equation (8) shows.

MAE =
∑n

i=1|yi − ŷi|
n

(8)

Following the work performed by Roy et al. [60], MAE can be applied as a means
of qualitative assessment to determine whether a surrogate model can be considered to
provide a good prediction or not. To do so, the 5% of data with the highest residual values
is first removed, and then MAE is normalized considering the training dataset range Rtra
and the dispersion of the errors. This elimination of a small part (5%) of the values with
the highest residuals in the test set is performed to attenuate the influence of possible
outliers that increase prediction errors. This procedure aims to evaluate the quality of the
prediction using 95% of the data present in the test set, thus increasing the robustness of the
estimate. Equations (9) and (10) show the conditions required to grant a good evaluation to
the surrogate. When the two conditions are fulfilled at the same time, a good agreement
is obtained. If only one of these conditions is satisfied, a moderate agreement is set. If no
condition is met, a bad agreement is therefore considered.

M̃AE =
MAE(95%)

Rtra
≤ 0.1 (9)

M̃AEσ =
MAE(95%) + 3 · σ

Rtra
≤ 0.2 (10)

4. Description of the Application Problem and Employed Multi-Fidelity Models
4.1. Background of Volume Condensation Due to Mixing

The application of this method is devoted to characterizing a problem that appears
in the automotive sector when a vehicle features an internal combustion engine such as
the one depicted in Figure 1. For such turbocharged engines, the use of the so-called Low-
Pressure Exhaust Gas Recirculation (LP-EGR) is being widely researched to reduce CO2,
NOx, and particulate matter emissions [61,62]. EGR consists of mixing a fraction of exhaust
gases (with high humidity content) with fresh air coming from the ambient. As Figure 1
shows, LP-EGR performs this mixture upstream of the compressor, so condensation can
happen at certain cold conditions, either at the LP-EGR cooler [63,64] or at the three-way
junction [65,66]. This possibility of generating condensation upstream of the compressor
constitutes one of the main drawbacks of LP-EGR. Indeed, water droplets reaching the
impeller will erode its blades and thus reduce its lifetime and performance [41,67]. In this
way, the ability to predict the condensation mass flow rate for the whole engine map would
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allow automotive engineers to maximize the LP-EGR rate for each working point (and
thus minimize CO2, NOx and particulate matter emissions) without exceeding the damage
threshold of the impeller, to keep its durability.

Figure 1. Engine layout, highlighting EGR systems and main condensation locations.

Focusing on the mixing process at three-way junctions, the explanation of how two sub
saturated streams can produce condensates is given by the psychrometric diagram displayed
in Figure 2. Following the LP-EGR junction highlighted in Figure 1, a humid, warm stream of
EGR can be blended with a flow of cold ambient air. In these cases, Figure 2 confirms that
their mixture can be located in the supersaturation region so that the excess of water until the
point “mix” lies within the saturation line should be condensed into the form of liquid water.

Figure 2. Psychrometric diagram showing the process of humid streams mixed in a three-way
junction as considered by the 0D model.

4.2. Low Fidelity: 0D (Perfect Mixing) Condensation Model

In this work, a 0D mixing condensation model is considered a low-fidelity model.
Figure 3 shows the parameters of this model. It can be regarded as an evolution of the one
developed by Serrano et al. [41], in which a total (perfect) mixing between the inlet streams
(air and EGR) is considered in an isobaric and isenthalpic way, as depicted in Figure 2.
After calculating the mixing condensation, the 0D model employed in this work also
evaluates the temperature decrease due to the area reduction (labeled “nozzle” in Figure 3)
usually existing in LP-EGR junctions as a potential source of additional condensation. More



Appl. Sci. 2023, 13, 6361 10 of 23

details about the psychrometric calculations to obtain the condensation considering perfect
mixing can be found in the work of Serrano et al. [41].

In the perfect mixing process, both streams are completely mixed in a homogeneous
flow, obtaining the maximum amount of water condensed in perfect conditions.

Figure 3. Scheme of the input parameters on the perfect mixing model.

4.3. High Fidelity: 3D CFD Condensation Model

This work employs a 3D CFD model of the three-way junction embedded with a con-
densation subroutine as a high-fidelity model. The approach used is the one described by
Galindo et al. [68] and has been validated in several ways using a series of different exper-
imental techniques: secondary flows measured with laser particle image velocimetry [68],
qualitative condensation distributions observed using planar laser-induced visualization [68],
temperature fields [69] and condensation mass fluxes [69]. Indeed, this numerical tool has
been able to predict which junction configuration provides the least amount of condensation
mass flow rate, which in turn provides the lowest impeller wear in agreement with the level
observed in experimental durability tests [70].

The geometry of the study is an LP-EGR thee-way junction where fresh inlet air and
EGR are mixed before the compressor. As shown in Figure 4, there are two inlet branches
(a 50 mm diameter duct for air and a 22.4 mm diameter pipe for EGR) and one outlet duct,
whose diameter is 34 mm. The nozzle section after the EGR insertion represents the tapered
inlet of the compressor. To reduce the impact of boundary locations on the region of interest,
both inlet ducts are extruded three additional diameters upstream, and the outlet pipe is
extended two diameters downstream.

Figure 4. LP-EGR three-way junction with a cross-section of the mesh employed.

The mesh depicted by Figure 4 comprises polyhedral cells with a base size of 1.5 mm
and eight prism layers next to the walls to improve the boundary layer resolution. A mesh
independence study has selected this grid of 3M cells. Employing a coarser grid of 300 thou-
sand cells results in a difference of 10.4% in condensation at the outlet section. Refining the
mesh instead until it features 11M cells provides a difference in condensation of only 3%.
Considering the computational effort of the numerical campaign (more than 180 simula-
tions), the mesh of 3M cells was therefore selected, which achieves y+ to be below 1.5 for
99% of the wall cells.
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The segregated solver of Simcenter STAR-CCM+ is selected for the simulations. Re-
garding the turbulence formulation, Reynolds-Average Navier-Stokes (RANS) was selected
with the SST k-ω turbulence model [71]. The cases are initially run steadily, and their
condensation mass flow rate is monitored. For those working points with an oscillation in
this variable above 2%, the temporal treatment was switched to unsteady RANS (URANS),
employing a second-order implicit transient solver with a time-step size of ∆t = 10−4 s.
As boundary condition types, the mass flow rate, specific humidity, stagnation temperature,
and turbulence intensity are specified at both inlets, whereas the static pressure is set at
the outlet. The particular values for the numerical campaign are indicated in Section 5.1.1,
which correspond to representative conditions for a C-segment passenger car engine.

A condensation subroutine [42] is embedded into the 3D CFD model. This con-
densation submodel reads the psychrometric state of each cell and compares it to the
corresponding saturated equilibrium state. When supersaturation is detected, the model
instantaneously condenses the required amount of water, interacting with the transport
equations solved by the 3D CFD code using the corresponding source terms. For more
details, please refer to Serrano et al. [42].

4.4. Comparison between Low-Fidelity (LF) and High-Fidelity (HF) Condensation Prediction

To assess the difference in performance between the 0D model (LF) and the 3D CFD
model (HF), two cases are selected from the numerical campaign that will be described
in Section 5.2.1: one delivering low condensation (Figure 5) and another providing more
significant condensation (Figure 6). The results predicted by these models are included in
Table 2.

Figure 5. Low condensation case

Figure 6. High condensation case

Table 2. Condensation mass flow rates predicted by the LF (0D) and HF (3D) model for two work-
ing points.

Working Point ṁ0D [kg/h] ṁ3D [kg/h]

A (Low condensation) 1.182 0.2406
B (High condensation) 2.673 1.651

The working points of Table 2 present the same air mass flow rate, but point B features
a much greater EGR (humid stream) mass flow rate than point A, which is the main reason
for the increase in the 0D condensation mass flow rate by 130%. The high-fidelity model also
predicts an increase in condensation mass flow rate when shifting from case A to case B, but a
much greater one (590%; see Table 2). Whereas the LF 0D model only considers the global
psychrometric information, the HF 3D CFD model also considers the local flow features.
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The different predictions of the LF and HF models can therefore be explained based on
the flow patterns depicted in Figures 5 and 6. Figure 5 presents a low EGR mass flow rate,
which results in a wall-jet flow configuration (see Kimura et al. [72]), while Figure 6, with
a greater EGR rate, displays a flow pattern in the threshold between a deflecting-jet and
an impinging-jet [72]. The 0D model provides an upper bound for the condensation mass
flow rate, as it considers a perfect mixture between the streams. The different deviation
between the 3D and the 0D models depends on the flow mixing, as the 3D CFD model
predicted, as condensation is strongly correlated with mixing [66]. The mixing intensity
(and thus condensation) is much greater for the high condensation case (Figure 6) due
to the high penetration of the EGR stream than for the low condensation case (Figure 5).
In the framework of multi-fidelity modeling [73], the 0D case could be useful to provide
the psychrometric information of the operating conditions, being a LF model with little
computational effort. However, a comprehensive set of expensive 3D CFD simulations will
still be required. The examples analyzed in this section show how the deviation between
the LF and HF models can differ when shifting the working point.

5. Application of the Proposed Method to the Problem of Volume Condensation Due
to Mixing: Results and Discussion
5.1. Conceptual Modeling
5.1.1. Operating Conditions: Definition of Model Parameters and Their Range

The developed method starts the conceptual modeling stage by identifying the model
parameters, as stated in Table 1. In this case, one only needs to identify the boundary
conditions employed in the 3D CFD model (xHF), as described in Section 4.3, and the inputs of
the 0D model (xLF), as depicted by Figure 3. By doing so, Table 3 is obtained, providing N = 9
parameters. Notice that NLF = 7, as the parameters for the LF model are the same as the HF
one save for the turbulent intensities at both inlet and EGR ducts. Furthermore, three levels are
selected for each parameter, with values covering a typical range of working points in a piston
engine featuring LP-EGR that may produce condensation. The rightmost column of Table 3
includes the matrix of eligible parameter values x`i that will be employed for conducting the
different designs of experiments. Notice that, in this case, the geometry of the junction has
been kept constant so that the exploration is performed in terms of operating conditions.

Table 3. HF model parameters and levels considered for the different designs of experiments.

Parameters Variables Units Low, Medium and High Values

Inlet air mass flow ṁair [kg/h] 50, 175, 300
Inlet temperature Tair [◦C] −10, 0, 10
Inlet relative humidity RHair [%] 50, 75, 100
Inlet turbulent intensity Iair [%] 1, 5.5, 10
EGR temperature Tegr [◦C] 40, 50, 60
EGR rate EGRrate [%] 10, 25, 40
EGR specific humidity wEGR [g/kg] 30, 50, 70
EGR turbulent intensity IEGR [%] 1, 5.5, 10
Outlet pressure Pout [bar] 0.8, 0.9, 1

5.1.2. Definition of Target and Intermediate Variables

The method developed in this work is applied to obtain a surrogate for the condensa-
tion mass flow rate that 3D CFD simulations (HF model) would predict. Therefore, this is
the target variable zt sought:

zt = ṁcond.,3D (11)

Furthermore, the method suggests (see Table 1) that additional intermediate variables
could be modeled through surrogates. The underlying idea is that the distribution of
such variables across the design space could be more adequate to build surrogate models
than that of the target variable. Table 4 presents the target and intermediate variables
metamodeled in this work.
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Table 4. Target and intermediate variables studied.

Name Variable Type

3D condensation ṁcond.,3D HF Target var.
Condensation humidity wcond.,3D HF Intermediate var.
Condensation ratio ϕ MF Multiplicative scaling var.
Condensation difference ∆ MF Additive scaling var.
Junction efficiency η MF Hybrid scaling var.

An intermediate variable can be defined within the domain of the HF model (zm),
as long as it involves the target variable and other input parameters. This is the case of the
condensation humidity, which normalizes the target condensation mass flow rate by the
inlet mass flow rate of ambient dry air:(

zm=wcond.,3D

)
: wcond.,3D =

ṁcond.,3D · (1 + wair)

ṁair
· 1000 (12)(

fm=wcond.,3D

)
: ṁcond.,3D =

ṁair
1 + wair

·
wcond.,3D

1000
(13)

Notice that the equation for the function fm is also included before, as it will be
required to obtain later ṁcond.,3D on the basis of the surrogate model for wcond.,3D and the
parameters wair and ṁair corresponding to the working point studied.

But aside from the HF intermediate variables, this work aims to show how to build and
assess multi-fidelity surrogate models for space design exploration. In this way, Jiang et al. [1]
identified three types of variables for MF models based on scaling functions: multiplicative,
additive, and hybrid variables. For instance, a multiplicative variable can be defined as just
the ratio between the HF and LF predictions for condensation mass flow rate:

(zMF
m=ϕ) : ϕ =

ṁcond.,3D

ṁcond.,0D
(14)

( f MF
m=ϕ) : ṁcond.,3D = ṁcond.,0D · ϕ (15)

An MF additive variable is also built by calculating the difference between the con-
densation mass flow rates obtained by the 0D (LF) and 3D CFD (HF) models:

(zMF
m=∆) : ∆ = ṁcond.,0D − ṁcond.,3D (16)

( f MF
m=∆) : ṁcond.,3D = ṁcond.,0D − ∆ (17)

Finally, a hybrid variable may combine multiplications and additions of the LF and
HF variables in its definition. In this work, a so-called junction efficiency η is defined:

(zMF
m=η) : η =

ṁcond.,0D − ṁcond.,3D

ṁcond.,0D
· 100 (18)

( f MF
m=η) : ṁcond.,3D = ṁcond.,0D · (1− η/100), (19)

So that it is useful not only as an MF intermediate variable for design space exploration
but also as a figure of merit to assess the junction design [74,75]. Indeed, since ṁcond.,0D is an
upper bound for ṁcond.,3D, the junction efficiency defined in 18 ranges from 0% (maximum
condensation) to 100% (avoids all condensation).

To conclude this section, the working points already discussed in Section 4.4 are again
applied to obtain the values of the intermediate variables stated in Table 4, based on the LF
and HF results featured in Table 2. In this way, Table 5 shows an example of the values that
these different variables may take. For instance, the lower condensation case compared
with the high condensation case (see Figures 5 and 6) results in a greater junction efficiency
in terms of avoiding condensation (79.65% vs. 38.24%), following Table 5.
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Table 5. Values of target and intermediate variables for two working points.

Working Point ṁcond.,3D [kg/h] wcond.,3D [g/kg] η [%] ∆ [kg/h] ϕ [-]

A (Low condensation) 0.2406 0.8023 79.65 0.9417 0.2035
B (High condensation) 1.651 5.505 38.24 1.022 0.6176

5.2. Determination of Significant Parameters
5.2.1. Selection of Screening Points and Results of the HF and LF

The objective of the screening stage is to identify the input parameters whose variation
generates significant effects on the variable of interest. To achieve this goal, it is advisable
to work with 2N−p factorial fractions, where k represents the number of factors (k = 9
in this paper) and p the number of partitions (p = 2 in this paper) to the total set of
simulations using the full factorial design (2N = 29 = 512). The results obtained from a
set of simulations designed by fractional factorial design always have a lower resolution
than those obtained from a full factorial design. When the number of factors is high,
the decrease in resolution is usually compensated by a remarkable reduction in the number
of simulations. Using this method, 128 simulations obtained as a quarter of the full
factorial design (29−2) were generated. Simulations were executed for the 3D Model and
the 0D Model. Target and intermediate variables were computed on the basis of these
simulated values. See the Supplementary Materials.

High and low levels of characteristic parameters were complemented with several center
points to improve the accuracy of the standard error of estimation. When condensation phe-
nomena were not physically feasible due to the influence of local irregular flows or negligible
amounts of condensed water, values of condensation mass flow were considered missing. Some
other experiments were slightly modified to ensure condensation was produced for a more
profitable data analysis. Based on this screening design, the variability in the five metamodeled
variables was assessed for different combinations in the initial set of characteristic parameters.

5.2.2. Anova and Removal of Non-Significant Parameters

The analysis of variance described in Section 3.2 compares the variability of each
metamodeled variable z regarding the main effects produced by each model parameter.
Table 6 presents these values in terms of the F-statistic defined in Equation (3).

Comparing the results shown in Table 6 with the corresponding critical value, three
non-significant parameters (inlet turbulent intensity, EGR turbulent intensity, and outlet
pressure) were identified and excluded from subsequent analysis. It is worth noting the
model parameters that were deemed significant (usually with the highest confidence level
of 99%) for every variable z, namely, inlet mass flow, EGR temperature, EGR humidity,
and EGR rate. The remaining parameters (inlet temperature and relative humidity are
significant or not depending on the variable considered, so they will not be dismissed,
as the best variable to construct a surrogate is not known yet.

Table 6. Identification of significant main effects according to ANOVA F-statistics for different HF
model parameters and metamodeled variables.

Parameter F
(
ṁcond.,3D

)
F
(
wcond.,3D

)
F(ϕ) F(∆) F(η)

Inlet air mass flow 59.6 ** 31.1 ** 38.8 ** 87.9 ** 38.7 **
Inlet temperature 4.4 * 16.1 ** 35.8 ** 0.2 52.5 **
Inlet relative humidity 0.5 0.9 27.2 ** 0.5 15.4 **
Inlet turbulent intensity 0.1 0.0 0.0 0.1 0.0
EGR temperature 11.8 ** 27.1 ** 24.7 ** 18.7 ** 25.2 **
EGR rate 53.4 ** 103.1 ** 143.1 ** 22.0 ** 128.9 **
EGR specific humidity 38.8 ** 85.8 ** 61.3 ** 53.0 ** 77.7 **
EGR turbulent intensity 0.2 0.4 0.0 0.3 0.1
Outlet pressure 0.03 0.3 1.00 0.6 1.8

Significant effects with 99.0% (**) or 95.0% (*) confidence level.
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5.3. Surrogate Modeling for Space Design Exploration
5.3.1. Selection of Surrogate Candidates

All surrogate models defined in Section 3.3 are assessed for this problem, so s = PRS,
RBF, Krig.

5.3.2. Selection of Training Points and Subsequent Obtention of HF and LF Results

To calibrate the surrogate models corresponding to each of the five metamodeled vari-
ables, a numerical campaign of 54 simulations was produced using a Box–Behnken design
(see Section 3.1.2), considering the remaining six significant parameters. Two replicates of
this design were added with center points to deal with some missing data (certain combina-
tions of operating conditions do not produce condensation, as Figure 2 shows) and also to
improve the accuracy of the standard error of estimation. These replicates were obtained by
including random modifications to previously discarded (non-significant) factors. Thanks to
these enhancements, the percentage of missing data was reduced to 13% due to the sample
size increase. The collection of previous HF and LF simulations (54 working points) was
subsequently used as the training data set to obtain the surrogate models.

5.3.3. Construction of Surrogate Models and Prediction of Target Variable at
Verification Points

This work has selected three surrogate models: Polynomial Response Surface (PRS),
Radial Basis Function (RBF), and Kriging model. These have already been described in
Section 3.3. These three different surrogate models s were constructed for each of the
variables defined in Section 5.1.2, seeking to minimize the error between the metamodeled
variable Ẑm,tra = gs,m(Xtra) and the actual values Zm,tra at the training dataset Xtra.

An example is presented applying the surrogate Polynomial Response Surface model
(s = PRS) for the multi-fidelity intermediate variable “condensation difference” (m = ∆)
This model determines the coefficients β of Equation (4) that minimize the error of com-
paring ∆̂ (the metamodel of ∆) against ∆ itself at the set of training points. A ∆̂ value of
0.89 kg/h is predicted for case 24 among the training data when applying the surrogate
model. Comparing this value with the actual ∆ for such a working point (0.96 kg/h),
an error of 7% appears between the observed and predicted values.

5.3.4. Calculation of Error Metrics and Assessment of Surrogate Models

The error metrics described in Section 3.4 were finally calculated for the 15 combinations
of surrogated models and variables above, as shown in Table 7. Coefficients of determination
R2 (see Equation (7)) were obtained to assess the fitting of each surrogate model to the corre-
sponding variable in the training dataset. This adjustment is also evaluated for intermediate
variables when the corresponding surrogate represents the target variable zt.

Generally speaking, good values in terms of R2 were obtained for most combinations,
as Table 7 displays. The analysis showed perfect goodness of fit for the estimations em-
ploying radial basis function models and kriging models. However, when such surrogates
employ the ratio of condensations ϕ between HF and LF models, their fitting to the training
dataset deteriorates when the results are translated into values of HF condensation mass
flow rate ṁcond.,3D, which is the target variable. Polynomial Response Surface models also
provide excellent (but not perfect) calibrations, except for the ratio of condensations ϕ.

The ultimate test for the surrogate models is their ability to predict results at points
not used for their training, i.e., the verification stage. To do so, several metrics based on the
Mean Square Error (MAE) of Equation (8) were identified in Section 3.4, such as the MAE

retaining 95% of data with the smallest residuals and the normalized M̃AE (Equation (9))

and M̃AEσ (Equation (10)). Finally, Table 7 includes a qualitative assessment of the predic-
tive capability of each metamodel based on the last two indicators, in accordance with the
work of Roy et al. [60].

Table 7 shows that 12 combinations of surrogate models and variables provide good
predictive capability; 2 obtain a moderate only one presents a lousy performance. The
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kriging model is the only surrogate that provides evaluation deemed as “good” for all
metamodeled variables. Interestingly, at least one MF variable performs better than the
target variable for each surrogate model. Still, not all MF variables necessarily provide
better agreement than the HF target variable (such as ϕ for PRS and ∆ and η for Kriging
model). This idea was already noted by Fernández-Godino et al. [76], who identify that MF
models “may be less accurate than a surrogate built using only HF training data points”.

Table 7. Evaluation of the surrogate models to predict water condensation for different metamodeled
variables.

Surrogate Models Training Verification
EvaluationR2(zm) R2(zt) MAE MAE 95% M̃AE M̃AEσ

PRS

ṁcond.,3D 0.94 0.1596 0.139 0.0601 0.1851 Good
wcond.,3D 0.95 0.98 0.1376 0.096 0.0415 0.1425 Good
ϕ 0.56 0.39 0.4587 0.2428 0.1044 0.4605 Bad
∆ 0.95 0.98 0.0969 0.0793 0.0341 0.1001 Good
η 0.97 1.0 0.1274 0.0829 0.0356 0.1726 Good

RBF

ṁcond.,3D (Gauss.) * 1.0 0.1824 0.1553 0.0688 0.1988 Good
wcond.,3D (Gauss.) * 1.0 1.0 0.1078 0.0826 0.0355 0.1252 Good
ϕ (Multi-quad.) * 1.0 0.74 0.1413 0.1061 0.0457 0.1867 Good
∆ (Cubic) * 1.0 1.0 0.2348 0.2052 0.0883 0.2566 Moderate
η (Multi-quad.) * 1.0 1.0 0.1601 0.0925 0.0398 0.2313 Moderate

Kriging

ṁcond.,3D 1.0 0.2391 0.2176 0.0936 0.1964 Good
wcond.,3D 1.0 1.0 0.1409 0.1128 0.0473 0.1603 Good
ϕ 1.0 0.85 0.1467 0.1066 0.0459 0.1916 Good
∆ 1.0 1.0 0.1616 0.1409 0.0606 0.1486 Good
η 1.0 1.0 0.1171 0.0681 0.0293 0.1767 Good

* On each case is selected the best transformation type to obtain the greatest R2 evaluating the study variable.

The results included in Table 7 support the current work of assessing not only MF but
also HF intermediate variables. Indeed, the HF intermediate variable wcond.,3D performs
better than the HF target variable ṁcond.,3D for all surrogate models when applied to
the problem of volume condensation due to mixing. Furthermore, wcond.,3D is the best
intermediate variable to be surrogated using a Radial Basis Function since it presents the

lowest M̃AE and M̃AEσ amongst all assessed variables, including the MF ones. For the

Kriging model, there is not an MF variable that presents lower values of both M̃AE and

M̃AEσ than those of wcond.,3D, so the best intermediate variable to be metamodeled using
a Kriging model will depend on the weighting of such error metrics. Finally, the best
overall combination of surrogate and variable is the Polynomial Response Surface of the

MF variable ∆, by the values of M̃AE and M̃AEσ shown in Table 7.
To visualize the results underlying Table 7 and exemplify the implications of the multi-

fidelity proposal, an analysis of the surrogate model based on a polynomial response surface
acting over condensation difference (Equation (16)) is conducted since this combination
is the one providing the lowest error, as aforementioned. Figure 7 shows the calibration
plots for the observed and predicted (metamodeled) values of the intermediate variable
∆, and the equivalent plot in terms of the target variable ṁcond.,3D. This latter calibration
plot has been obtained on the basis of the surrogate of ∆ and the LF model ṁcond.,0D by
means of Equation (17). Considering the training dataset (green triangles), the surrogate is
constructed for the intermediate variable (see Figure 7) with a R2(zm)=0.95, increasing the
correlation up to R2(zt)=0.98 when representing the target variable. For the verification
dataset (blue circles), the error for the difference is much greater than that of the target
variable, in which a few points lie outside the depicted 10% dispersion band. A close-up of
Figure 7 shows that the performance of the surrogate is less adequate close to the origin.
However, this region corresponds to low mass flow rates, so their contribution to the

absolute error is low (notice that the normalized M̃AE for this combination is below 3.5%).
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Indeed, when applying this MF surrogate model, it is worth reminding that greater impeller
damage is produced with greater condensation mass flow rates [70].

Figure 7. Assessment of the metamodeled variable ∆ and the target variable obtained by means of ∆.

Finally, a graphical representation of the relation between the MF variables and the
six significant input parameters regarded by ANOVA (see Section 5.2.2) is provided.
Figures 8–10 show such 3D plots by considering pairs of parameters and leaving the
omitted ones at their medium level (see Table 3). These figures represent low-fidelity,
intermediate-variable, and high-fidelity features. Due to the negligible computational effort
of the LF model employed in this work (see Section 4.2), the surface representation of 0D
representations is obtained using an ad-hoc 100 × 100 simulation campaign followed by
linear interpolation. Intermediate figures showing differences are the graphical depictions
of the corresponding polynomial response surface. Furthermore, Equation (17) allows us
to obtain the metamodel of ṁcond.,3D using the proposed MF strategy, represented in the
predicted condensation. To further assess the method, the actual condensation mass flow
rate calculated by the HF 3D CFD simulation is depicted as a small blue sphere in the
rightmost subplots of Figures 8–10. Comparing this value with the one predicted using the
MF PRS surrogate based on ∆, a relative error of 0.23% is obtained for this specific point.

Considering these figures, the similarities between the LF prediction and the prediction
of the target variable are likely to be one of the root causes of this combination providing
the overall best goodness-of-fit. Indeed, Fernández-Godino et al. [76] considered that a
strong correlation between LF and HF data indicates a good performance of the subsequent
MF surrogate model. In this case, the metamodeled MF intermediate variable ∆ moderates
this relationship by correcting the differences in magnitude.

Figure 8. Surface plot of ṁcond.,0D calculations (left), PRS surrogate of ∆ (center) and subsequent
ṁcond.,3D MF surrogate (right) with varying inlet air mass flow and EGR rate, considering the
remaining parameters at their medium values (see Table 3).
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Figure 9. Surface plot of ṁcond.,0D calculations (left), PRS surrogate of ∆ (center) and subsequent
ṁcond.,3D MF surrogate (right) with varying inlet relative humidity and inlet temperature, considering
the remaining parameters at their medium values (see Table 3).

Figure 10. Surface plot of ṁcond.,0D calculations (left), PRS surrogate of ∆ (center) and subsequent
ṁcond.,3D MF surrogate (right) with varying EGR temperature and EGR specific humidity, considering
the remaining parameters at their medium values (see Table 3).

6. Concluding Remarks

The present work provides a methodological proposal for obtaining and assessing
surrogate models for design space approximation. Apart from specific metamodels of the
target variable, the usage of intermediate HF variables and MF scaling functions to provide
surrogates is addressed systematically and quantitatively for the first time, to the author’s
knowledge. Considering the steadily increasing production of new metamodels in digital
twins and machine learning frameworks, the proposed method could be useful to discern
which combinations of surrogate models and intermediate variables should provide the best
results for design space exploration. The developed method is founded upon a screening,
training, and verification strategy, reusing the screening dataset for the verification stage to
reduce the computational effort. After describing the comprehensive method, it is applied
to the complex engineering problem of condensation prediction at three-way junctions. This
original example validates the proposed methodology for the case of “real-life” problems
compared with the synthetic and benchmark problems often found in the literature.

In this case study, the best reduction of the normalized MAEs has been found by
constructing a polynomial response surface of a multi-fidelity additive scaling variable that
computes the difference between the low-fidelity and high-fidelity predictions of condensa-
tion mass flow rate. These results confirm the utility of low-fidelity models in combination
with selected campaigns of HF simulations to evaluate the performance of systems with
otherwise highly computationally demanding models. Despite the overall performance
of a PRS combination, the radial-basis function, and Kriging models obtained the best
agreement for the training datasets, with the latter model providing “good” surrogates
for all variables assessed in terms of normalized MAEs. Furthermore, HF intermediate
variables (derived from the combination of target variables and model parameters) improve
the accuracy of the surrogates built directly from the target variable, which is a benefit
without resorting to MF models.
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However, these findings are case-specific and cannot be generalized for application
to other problems. Indeed, this work proposes a strategy to explore all combinations of
surrogate models and intermediate variables (both HF and MF), evaluating them regarding
the metamodeling error after the verification stage. For instance, in this work, there are
two explored variables ( η

100 and ϕ) whose summation yields one, yet they behave in a very
different way. Therefore, we recommend assessing this double-entry matrix for each studied
problem, as the computational effort of conducting simulation campaigns for complex
engineering problems is much greater than that of constructing and evaluating surrogates.
In future research, the specific algorithms to build the surrogates for intermediate variables
in the training datasets could be modified to minimize not only the error of this intermediate
variable but also the error in terms of the target variable, which may further improve their
results in the verification stage.

Regarding the application of the developed method to the characterization of con-
densation produced in an LP-EGR junction, the proposed strategy has provided different
findings. Both inlet and EGR turbulence intensities as well as outlet pressure were found
to have a non-significant effect on condensation for all metamodeled variables assessed.
Considering the best combination of surrogate (PRS) and multi-fidelity variable (conden-
sation difference) found in this work, there are even less significant parameters (effect of
inlet temperature and relative humidity can be neglected). Therefore, the campaign of
54 HF simulations required to build the surrogate and thus characterize the condensation
produced by a certain junction geometry could be further reduced. With such affordable
computational effort, several challenges could now be addressed in the framework of
internal combustion engine cold start, such as determining the adequate moment to switch
between HP and LP EGR modes [62,77] or introducing devices to limit the production or
the impact of condensation, which could be a cooler bypass [78] and a water separator [79].
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Abbreviations
The following abbreviations are used in this manuscript:

List of Symbols

A Area m2

EGR Exhaust gas re-circulation %
fm Equation for target variable involving an intermediate variable zm −
g surrogate model equation −
I turbulent intensity %
L number of levels −
ṁ mass flow rate kg/h
N, N′ number of parameters before and after the screening −
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P Pressure barF
RH Relative humidity %
R Training set range −
T Temperature K
w Specific humidity g/kg
x Parameter value for each points −
y Target variable (3D CFD condensation mass flow rate) kg/h
z Metamodeled variable −
σ standard deviation of the absolute error kg/h
ε Generic error −
η T-junction efficiency %
∆ Difference between high and low fidelity condensation kg/h
ϕ ratio between high and low fidelity condensation −

Sub- and Superscripts

air Intake air branch conditions
cond. Condensation conditions
egr EGR flow branch conditions
exp Exploration dataset
i, j Index for model parameters before and after the screening
m Intermediate variable
out Outlet branch conditions
rate Ratio between air mass flow and EGR mass flow
s Surrogate model
scr Screening dataset
t Target variable
tra Training dataset
ver Verification dataset
0D Low fidelity simulation
3D High fidelity simulation

List of Abbreviations
ANOVA Analysis of variance
CFD Computer fluid dynamics
CO2 Carbon dioxide
Cubic Cubic function
EGR Exhaust gas recirculation
Gauss Gaussian function
HF High fidelity
Krig Kriging
LF Low fidelity
LP-EGR Low pressure exhaust gas recirculation
MAE Mean Square Error

M̃AE Normalized Mean Square Error

M̃AEσ Standard deviation of normalized MAE
MF Multi-fidelity
multi-quad Multi-quadratic function
PRS Polynomial Response surface
R2 Coefficient of determination
RANS Reynolds-Average Navier stokes
RBF Radial basis function
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