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Abstract: The theory of generalized point photogrammetry extends the traditional point-based
photogrammetry to line-based photogrammetry, expanding the application scope of photogrammetry
in engineering. In order to solve the problem of accurate positioning between the square rod and
the square hole in the current project, the position of the square hole should be accurately measured
first. For this purpose, an optimization method of square hole measurement based on generalized
point photogrammetry is proposed. This method first uses the traditional photogrammetric method
to calculate the initial coordinates of the four points of the square hole and extract the four line
segments on the image. The error equation based on generalized photogrammetry is constructed
by the constraint conditions between the four spatial points, and the iterative calculation is carried
out until the error is less than the threshold or the iteration number is reached. The reliability of
the method is verified by numerical simulation experiments and engineering experiments. The
experimental results show that the method can effectively improve the measurement accuracy and
can rapidly converge. The method has high engineering application value.

Keywords: generalized point; photogrammetry; square hole; constraints; location

1. Introduction

In recent years, with the rapid development of artificial intelligence [1], machine
learning [2], cloud computing [3] and other technical fields, photogrammetry has become
more and more widely used in engineering [4]. Engineering problems are usually more
complex than theoretical problems, and more factors are considered. The traditional point-
based photogrammetric method is not enough to solve engineering problems; therefore, the
generalized photogrammetric method based on line features is proposed [5]. Generalized
photogrammetry originated in the 19th century. After decades of development in theoretical
research, it has gradually developed from the classic point-based photogrammetry model
to point-line hybrid photogrammetry and generalized point photogrammetry. With the
development of big data and the arrival of intelligent photogrammetry, photogrammetry
can use more homonymous features to complete the measurement calculation. Intelligent
high-precision measurement is urgently needed in engineering. This measurement method
not only improves the work efficiency and the safety of measurement, but also greatly
reduces the measurement cost. With the performance improvement of computers, sensors,
transmission equipment and other hardware [6], a large number of traditional measurement
methods [7] will be replaced by intelligent high-precision photogrammetry. Intelligent
photogrammetry has many applications in target recognition [8], monitoring [9], unmanned
driving [10], three-dimensional modeling [11], precision measurement [12], emergency
response [13] and other aspects.
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Traditional photogrammetry involves only physical points, such as corners, intersec-
tions between lines, centers and so on. The calculation process of traditional photogramme-
try is also based on the collinearity of points. However, in engineering, point features [14]
are usually ideal features, and it is not easy to extract accurate coordinates of points. There
are a lot of line features in engineering [15]. These features exist in the form of straight
lines or curves, from which it is easy to extract accurate information. Especially when
multiple images are used for calculation in engineering, it is better to use a large number
of line features for adjustment. Line features can be divided into straight line features
and curve features. There are many straight line features in urban planning and housing
surveys [16]. There are many curve features in roads, mountains and rivers [17]. Mathe-
matically, line features and point features can be considered as "points" in a broad sense.
From the collinear equation in photogrammetry [4], the coordinates of space points can be
regarded as the parameter equation of the line, so that the line features meet the collinear
equation. Zheng Shunyi of Wuhan University completed automatic three-dimensional
reconstruction of cylinders using the principle of generalized photogrammetry [18], Zhang
Yongjun of Wuhan University completed three-dimensional reconstruction of circles and
rounded rectangles using the principle of generalized photogrammetry [19], and Kongwei
used the principle of generalized photogrammetry to study space intersection and resec-
tion [20]. In addition, Zhang Yongjun also proposed generalized photogrammetry based
on multi-source remote sensing data of the sky and the ground [21]. The application of
general photogrammetry will be more and more extensive.

In recent years, prefabricated bridges have been rapidly promoted in China [22]. At
present, the construction site mainly relies on workers to use the total station to complete
measurement in the whole process [23]. As a widely used optical instrument, the precision
of the total station can meet the construction requirements, but its efficiency is too low. For
the on-site construction environment, the field of vision of the total station is too small to
measure the coordinates of the points directly. Laser Radar determines the spatial infor-
mation of targets by receiving reflected signals, but its accuracy cannot meet engineering
requirements [24–27]. Laser scanning has high stability and is suitable for extremely large
objects. The generated large point clouds require complex post-processing to complete the
extraction of key information. Laser scanners are suitable for measuring static objects, but
are not suitable for engineering projects that require real-time performance, as they have
low efficiency and high cost. [28,29] Therefore, an efficient and fast measurement method
is needed to complete the field measurement. In the process of completing the assembly
of the segmental beam, it is necessary to lift the segmental beam with the square rod first.
In this process, whether the square rod and the square hole can be accurately aligned is
very important. As shown in Figure 1, there are six square rods on the lifting tool. After
achieving precise alignment of the holes and rods, the control system will insert the six
suspension rods into the square holes, and then the lifting tool can lift the beam. The cross
sections of the rod and the hole are both square. In order to ensure that the square rod can
be placed in the square hole, the side length of the square hole is usually 10 mm longer
than the side length of the square rod.

Before aligning the square hole and the square rods, the accurate position of the
square hole and the square rod should be calculated to ensure that six square rods are
placed in the six square hole simultaneously and then lifted. The above process requires
high accuracy. The traditional alignment method mainly relies on manual operation, and
the operator needs to manually adjust the position of the square rod to ensure accurate
alignment between the hole and the rod. This manual adjustment method has low efficiency
and poor safety. Traditional photogrammetry can calculate the space coordinates of key
points, but the premise is that the image plane coordinates of the point can be accurately
extracted from the image. In engineering environments, the features of points are usually
not obvious, and the error in extracting the image plane coordinates of points is usually
large. Compared to point features [30–32], the extraction of line features [33–36] should
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be more stable. Therefore, this paper proposes an optimization method of square hole
measurement based on generalized point photogrammetry.

Figure 1. Segmental beam.

The structure of this article is arranged as follows. Section 2 introduces the mathemati-
cal principles of generalized point photogrammetry. On the basis of Section 2, Section 3
introduces the Lagrange multiplier method into general photogrammetry and provides
detailed mathematical derivation. On the basis of Section 3, Section 4 has added geometric
constraints for square holes and derived optimization methods. On the theoretical basis
of the previous chapters, experiments are conducted in Section 6. In order to better verify
the robustness and engineering applicability of the algorithm, the experiments are divided
into simulation experiments and engineering experiments. This article has the following
innovative points. A generalized point photogrammetric mathematical model based on the
Lagrange multiplier method is proposed. A square hole optimization method based on
constraint conditions is proposed. This article combines image processing technology with
photogrammetry technology and is used to solve practical engineering problems.

2. Mathematical Model of Generalized Point Photogrammetry

The collinearity equation is the core of photogrammetry, and the collinearity of points
is the basis of photogrammetric solution. As shown in Figure 2, point m and point n
represent the projection point of the space point on the image. The angle between the
straight line segment where point m is located and the x-axis is greater than 45 degrees,
and the angle between the straight line segment where point n is located and the x-axis is
less than 45 degrees. Point m is closer to the y-axis, and point n is closer to the x-axis.

45°

dx

dy

x

y

m

n

o

Figure 2. Included angle of projection.

As shown in Figure 3, S is the projection center, and the projection of spatial points A
and B on the image are a and b. The image coordinates of a and b are calculated through
photogrammetry, and the line l is the projection of the line AB on the image. Due to errors,
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a and b are usually not on the straight line l. The generalized point photogrammetric model
based on straight lines only needs an error equation in one direction. The adjustment
condition is that the distance dx (or dy) from the projection of the space point on the image
to the ideal image point is the smallest.

A

B

a

b

l
dx dx

S

Figure 3. Projection of straight lines.

When the angle between the direction of the straight line segment on the image and
the x-axis is greater than 45 degrees, the observation equation in the x-direction is listed.
When the angle between the direction of the straight line segment on the image and the
y axis is less than 45 degrees, the observation equation in the y direction is listed. The
mathematical expression of the observation equation is as follows.

x− x0 = − f
a1(X− Xs) + b1(Y−Ys) + c1(Z− Zs)

a3(X− Xs) + b3(Y−Ys) + c3(Z− Zs)
, |θ| ≥ 45◦ (1)

y− y0 = − f
a2(X− Xs) + b2(Y−Ys) + c2(Z− Zs)

a3(X− Xs) + b3(Y−Ys) + c3(Z− Zs)
, |θ| < 45◦ (2)

where,
a1 = cos ϕ cos κ
a2 = − cos ϕ sin κ
a3 = − sin ϕ
b1 = cos ω sin κ − sin ω sin ϕ cos κ
b2 = cos ω cos κ + sin ω sin ϕ sin κ
b3 = − sin ω cos ϕ
c1 = sin ω sin κ + cos ω sin ϕ cos κ
c2 = sin ω cos κ − cos ω sin ϕ sin κ
c3 = cos ω cos ϕ

(3)

where, x and y are the image plane coordinates of the image point; x0, y0 and f are elements
of interior orientation; XS, YS and ZS are the elements of exterior orientation; X, Y and Z
are the object space coordinates of the object point; ai, bi and ci (i = 1, 2, 3) are the directional
cosines of three angular elements.

For line features in space, when two points (X1, Y1, Z1), (X2, Y2, Z2) on the line are
known, the equation expression is as follows.

X− X1

X2 − X1
=

Y−Y1

Y2 −Y1
=

Z− Z1

Z2 − Z1
= t (4)
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Substitute the above linear equation into collinear equation.

x− x0 = − f

a1((X2 − X1)t + X1 − XS) + b1((Y2 −Y1)t + Y1 −YS)
+c1((Z2 − Z1)t + Z1 − ZS)

a3((X2 − X1)t + X1 − XS) + b3((Y2 −Y1)t + Y1 −YS)
+c3((Z2 − Z1)t + Z1 − ZS)

, |θ| ≥ 45◦ (5)

y− y0 = − f

a2((X2 − X1)t + X1 − XS) + b2((Y2 −Y1)t + Y1 −YS)
+c2((Z2 − Z1)t + Z1 − ZS)

a3((X2 − X1)t + X1 − XS) + b3((Y2 −Y1)t + Y1 −YS)
+c3((Z2 − Z1)t + Z1 − ZS)

, |θ| < 45◦ (6)

To solve each parameter in the linear equation by using the generalized point pho-
togrammetry principle, the initial value of two points on the spatial linear equation must
be known first. Assuming the coordinates of the observation points are (x1, y1), when
the angle between the straight line and the x-axis direction is greater than 45 degrees, the
observation equation in the x-direction is established. The value of parameter t can be
obtained from the collinear equation in the y direction, and the expression is as follows.

t = −

f (a2(X1 − Xs) + b2(Y1 −Ys) + c2(Z1 − Zs))
+y1(a3(X1 − Xs) + b3(Y1 −Ys) + c3(Z1 − Zs))

f (a2(X2 − X1) + b2(Y2 −Y1) + c2(Z2 − Z1))
+y1(a3(X2 − X1) + b3(Y2 −Y1) + c3(Z2 − Z1))

(7)

On the premise of solving t, the error equation of x direction can be listed.

vx = x1 − x0 + f

a1((X2 − X1)t + X1 − Xs) + b1((Y2 −Y1)t + Y1 −Ys)
+c1((Z2 − Z1)t + Z1 − Zs)

a3((X2 − X1)t + X1 − Xs) + b3((Y2 −Y1)t + Y1 −Ys)
+c3((Z2 − Z1)t + Z1 − Zs)

(8)

If the error equation is linearized, the following formula is obtained.

x1 = (x1) +
∂x1

∂X1
dX1 +

∂x1

∂Y1
dY1 +

∂x1

∂Z1
dZ1 +

∂x1

∂X2
dX2 +

∂x1

∂Y2
dY2 +

∂x1

∂Z2
dZ2 (9)

where, (x1) is the approximate value of the result of the previous iteration. The calculation
formulas of each coefficient are as follows.

∂x1
∂X1

= −(1− t)a11, ∂x1
∂Y1

= −(1− t)a12, ∂x1
∂Z1

= −(1− t)a13
∂x1
∂X2

= −ta11, ∂x1
∂Y2

= −ta12, ∂x1
∂Z2

= −ta13
(10)

a11 = 1
Z
[a1 f + a3(x− x0)]

a12 = 1
Z
[b1 f + b3(x− x0)]

a13 = 1
Z
[c1 f + c3(x− x0)]

(11)

where,
Z = a3(X− XS) + b3(Y−YS) + c3(Z− ZS) (12)
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When the angle between the straight line and the x-axis direction is less than 45 degrees,
the observation equation in the y-direction is established. The value of parameter t can be
obtained from the collinear equation in the x direction, and the expression is as follows.

t = −

f (a1(X1 − Xs) + b1(Y1 −Ys) + c1(Z1 − Zs))
+x1(a3(X1 − Xs) + b3(Y1 −Ys) + c3(Z1 − Zs))

f (a1(X2 − X1) + b1(Y2 −Y1) + c1(Z2 − Z1))
+x1(a3(X2 − X1) + b3(Y2 −Y1) + c3(Z2 − Z1))

(13)

On the premise of finding t, the error equation of y direction can be listed.

vy = y1 − y0 + f

a2((X2 − X1)t + X1 − Xs) + b2((Y2 −Y1)t + Y1 −Ys)
+c2((Z2 − Z1)t + Z1 − Zs)

a3((X2 − X1)t + X1 − Xs) + b3((Y2 −Y1)t + Y1 −Ys)
+c3((Z2 − Z1)t + Z1 − Zs)

(14)

The following formula is used to linearize the error equation.

y1 = (y1) +
∂y1

∂X1
dX1 +

∂y1

∂Y1
dY1 +

∂y1

∂Z1
dZ1 +

∂y1

∂X2
dX2 +

∂y1

∂Y2
dY2 +

∂y1

∂Z2
dZ2 (15)

where, (y1) is the approximate value of the result of the previous iteration. The calculation
formulas of each coefficient are as follows.

∂y1
∂X1

= −(1− t)a21, ∂y1
∂Y1

= −(1− t)a22, ∂y1
∂Z1

= −(1− t)a23
∂y1
∂X2

= −ta21, ∂y1
∂Y2

= −ta22, ∂y1
∂Z2

= −ta23
(16)

a21 = 1
Z
[a2 f + a3(y− y0)]

a22 = 1
Z
[b2 f + b3(y− y0)]

a23 = 1
Z
[c2 f + c3(y− y0)]

(17)

The accurate values of the coordinates of two points (X1, Y1, Z1), (X2, Y2, Z2) on the
straight line can be obtained by solving the error equation iteratively.

3. Generalized Point Photogrammetry Based on Lagrange Multiplier Method

When using the principle of photogrammetry to calculate the coordinates of space
points, there are usually redundant observations. When using multiple observations for
adjustment, it is necessary to build an adjustment equation group [37]. The error equation
is shown below.

V = BX− l (18)

where, V is the error, V is also an explicit function of X, B is the coefficient matrix, X is the
correction of unknown number, and l is the difference between the measured value and the
observed value. The constraint equation is as follows.

CX + WX = 0 (19)

where C is coefficient matrix, Wx is a constant. From the above error Equation (18) and
constraint Equation (19), the Lagrange multiplier method can be used to construct the
following equation for solution.

F(X) = VPV + 2λ(CX + WX) (20)

The above Formula (20) has the following formula for the derivative of X.

VT PB + λTC = 0 (21)
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After transposing the above Formula (21), there is the following formula.

BT PV + CTλ = 0 (22)

The following formula can be obtained by substituting Formula (18) into Formula (22).

BT PBX + CTλ− BT Pl = 0 (23)

The following formula can be obtained from the above formula.

NBX + CTλ−W = 0 (24)

where, NB = BT PB, W = BT Pl.
The following formula can be obtained by multiplying CNB

−1 left by Formula (24).
The following formula can be obtained by combining the above Formulas (19) and (24).

CNB
−1CTλ− CNB

−1W + WX = 0 (25)

The following formula can be obtained from the above formula.

λ = CNB
−1CT(CNB

−1W + WX) (26)

The following formula can be obtained by substituting the above formula into (24).

X = (NB
−1 − NB

−1CT NCCNB
−1)W − NB

−1CT NC
−1WX (27)

where, NC = CNB
−1CT .

4. Mathematical Model of Square Hole Measurement Based on Constraint Conditions

As shown in Figure 4, it is a schematic diagram of a space square hole. Under ideal condi-
tions, the four points A, B, C and D are in the same plane and form a plane square. The spatial
coordinates of the four points are (X1, Y1, Z1), (X2, Y2, Z2), (X3, Y3, Z3) and (X4, Y4, Z4). Line
segment L1 is determined by point A and B, line segment L2 is determined by point B and C,
line segment L3 is determined by point C and D, and line segment L4 is determined by point
A and D. S1 and S2 are the projection centers of the two images. Points a1, b1, c1 and d1 are
the projection of the spatial points A, B, C and D on the first image. Points a2, b2, c2 and d2
are the projection of the spatial points on the second image.

Since the four points form a plane square, the following constraints need to be set.

−→
L1⊥
−→
L2−→

L1⊥
−→
L4−→

L2⊥
−→
L3−→

L3⊥
−→
L4−→

|L1|⊥|
−→
L2 | = m

(28)

where, m is the square side length.
The following formula can be obtained from the constraint conditions.

(X2 − X1, Y2 −Y1, Z2 − Z1)(X3 − X2, Y3 −Y2, Z3 − Z2) = 0
(X2 − X1, Y2 −Y1, Z2 − Z1)(X4 − X1, Y4 −Y1, Z4 − Z1) = 0
(X3 − X4, Y3 −Y4, Z3 − Z4)(X3 − X2, Y3 −Y2, Z3 − Z2) = 0
(X3 − X4, Y3 −Y4, Z3 − Z4)(X4 − X1, Y4 −Y1, Z4 − Z1) = 0
(X2 − X1)

2 + (Y2 −Y1)
2 + (Z2 − Z1)

2 −m2 = 0
(X2 − X3)

2 + (Y2 −Y3)
2 + (Z2 − Z3)

2 −m2 = 0

(29)
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D

L1
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L3

L4

a1

b1
c1

d1

a2

b2
c2

d2

s1 s2

Figure 4. Projection of square holes.

For the first constraint, the following equation can be obtained after the formula
is functioned.

FK
1 = F0

1 + ∂F1
X1

dX1 +
∂F1
X2

dX2 +
∂F1
X3

dX3 +
∂F1
X4

dX4

+ ∂F1
Y1

dY1 +
∂F1
Y2

dY2 +
∂F1
Y3

dY3 +
∂F1
Y4

dY4

+ ∂F1
Z1

dZ1 +
∂F1
Z2

dZ2 +
∂F1
Z3

dZ3 +
∂F1
Z4

dZ4

(30)

where,

∂F1
∂X1

= X2 − X3, ∂F1
∂X2

= −2X2 + X3 + X1, ∂F1
∂X3

= X2 − X1, ∂F1
∂X4

= 0
∂F1
∂Y1

= Y2 −Y3, ∂F1
∂Y2

= −2Y2 + Y3 + Y1, ∂F1
∂Y3

= Y2 −Y1, ∂F1
∂Y4

= 0
∂F1
∂Z1

= Z2 − Z3, ∂F1
∂Z2

= −2Z2 + Z3 + Z1, ∂F1
∂Z3

= Z2 − Z1, ∂F1
∂Z4

= 0

(31)

In the same way, linearization formulas for other constraints can be obtained. After
the error equations of all observation points are established, iterative calculation can be
carried out to obtain the precise spatial coordinates of the four points of the square hole.

5. Experiments
5.1. Simulation Experiment

In order to verify the reliability of the square hole measurement method based on con-
straint conditions, the simulation data are used for theoretical verification, and the external
orientation elements are set, as seen in Table 1. The simulation experiment completed sev-
eral groups of experiments with Gaussian error, camera focal length and square hole side
length as variables. The coordinates extracted by image processing are considered as the
true values of coordinates, and the coordinates calculated by traditional photogrammetric
methods are considered as the initial values of the coordinates. The schematic diagram is
shown in Figure 4.
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Table 1. Camera extrinsic parameters.

Images ϕ ω κ XS YS ZS

First image 0 0 1813 0 0 0.2
Second image 200 200 1818 0 0 0.1

There are eight groups in the tests, and the parameters set are shown in Table 2.

Table 2. Experimental parameters.

Test Gaussian Error (µ, σ) Focal Lengths Length of Square Hole

1 (0, 1) (20, 20) 100
2 (0, 1) (20, 20) 150
3 (0, 1) (30, 30) 100
4 (0, 1) (30, 30) 150
5 (2, 5) (20, 20) 100
6 (2, 5) (20, 20) 150
7 (2, 5) (30, 30) 100
8 (2, 5) (30, 30) 150

The true coordinates of the eight tests are shown in Table 3.

Table 3. True spatial coordinates.

Test (X1, Y1, Z1) (X2, Y2, Z2) (X3, Y3, Z3) (X4, Y4, Z4)

1 (0, 100, 100) (100, 100, 100) (100, 0, 100) (0, 0, 100)
2 (0, 150, 100) (150, 150, 100) (150, 0, 100) (0, 0, 100)
3 (0, 100, 100) (100, 100, 100) (100, 0, 100) (0, 0, 100)
4 (0, 150, 100) (150, 150, 100) (150, 0, 100) (0, 0, 100)
5 (0, 100, 100) (100, 100, 100) (100, 0, 100) (0, 0, 100)
6 (0, 150, 100) (150, 150, 100) (150, 0, 100) (0, 0, 100)
7 (0, 100, 100) (100, 100, 100) (100, 0, 100) (0, 0, 100)
8 (0, 150, 100) (150, 150, 100) (150, 0, 100) (0, 0, 100)

Corresponding to the Gaussian error in the above table, the initial coordinates of
spatial points of eight experiments are shown as Table 4.

Table 4. Initial Spatial coordinates.

Test (X1, Y1, Z1) (X2, Y2, Z2) (X3, Y3, Z3) (X4, Y4, Z4)

1 (0.54, 100.32, 103.58) (101.83, 98.69, 102.77) (97.74, 0.43, 98.65) (0.86, 0.34, 103.03)
2 (3.62, 151.72, 103.50) (151.86, 155.33, 99.30) (153.60, 5.15, 103.60) (1.54, 5.17, 105.65)
3 (0.54, 100.32, 103.58) (101.83, 98.69, 102.77) (97.74, 0.43, 98.65) (0.86, 0.34, 103.03)
4 (3.62, 151.72, 103.50) (151.86, 155.33, 99.30) (153.60, 5.15, 103.60) (1.54, 5.17, 105.65)
5 (3.62, 101.72, 103.50) (101.86, 105.33, 99.30) (103.60, 5.15, 103.60) (1.54, 5.17, 105.65)
6 (3.62, 151.72, 103.50) (151.86, 155.33, 99.30) (153.60, 5.15, 103.60) (1.54, 5.17, 105.65)
7 (3.62, 101.72, 103.50) (101.86, 105.33, 99.30) (103.60, 5.15, 103.60) (1.54, 5.17, 105.65)
8 (3.62, 151.72, 103.50) (151.86, 155.33, 99.30) (153.60, 5.15, 103.60) (1.54, 5.17, 105.65)

The results of eight experiments are shown in Table 5.
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Table 5. Results of the experiments.

Test Iterations (X1, Y1, Z1) (X2, Y2, Z2) (X3, Y3, Z3) (X4, Y4, Z4)

1 22 (0, 100, 100) (100, 100, 100) (100, 0, 100) (0, 0, 100)
2 23 (0, 150, 100) (150, 150, 100) (150, 0, 100) (0, 0, 100)
3 22 (0, 100, 100) (100, 100, 100) (100, 0, 100) (0, 0, 100)
4 23 (0, 150, 100) (150, 150, 100) (150, 0, 100) (0, 0, 100)
5 23 (0, 100, 100) (100, 100, 100) (100, 0, 100) (0, 0, 100)
6 23 (0, 150, 100) (150, 150, 100) (150, 0, 100) (0, 0, 100)
7 23 (0, 100, 100) (100, 100, 100) (100, 0, 100) (0, 0, 100)
8 23 (0, 150, 100) (150, 150, 100) (150, 0, 100) (0, 0, 100)

It can be seen from Table that when there are different degrees of errors between
the initial value and the true value of coordinates, the eight groups of experiments can
quickly converge to an accurate value with fewer iterative steps. Whether the focal length
is changed or the side length of the square hole is changed, the convergence results are
not affected.

5.2. Engineering Experiment
5.2.1. Engineering Experiment Process

As shown in Figure 5, iRAYPLE’s industrial camera is used to build a visual measure-
ment model in the experiment. Both cameras can move on the slide or adjust the angle
on the slide. The slide and tripod are connected by ball joints, and the angle can also be
adjusted. The tripod can be adjusted in height by telescoping. The camera is connected to
the computer through a control cable, and the camera is controlled to take photos through
the computer.

Figure 5. Photographic equipment.

As shown in Figure 6, in order to meet the needs of engineering experiments, a physical
model of the hole and rod was constructed by simulating the alignment between the rod
and the hole. The cross-section of the upper part of the rod is a square with a side length of
120 mm. Below the rod is a square hole with a side length of 130 mm.
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First image. Second image.

Figure 6. Images of the model.

The experimental process is shown in Figure 7. After completing camera calibration,
traditional photogrammetric methods are used to calculate the initial coordinates of the four
corner points of the hole, and then the initial coordinates are substituted into the generalized
point iterative adjustment mathematical model to obtain the accurate coordinates of four
corner points.

Fit lines based on edges

Extracting the edge of holes on 

images using image processing

Extract the coordinates of the four 

corner points of a hole based on 

corner feature extraction

Building an experimental platform

Calculate the initial value of the 

spatial coordinates of the hole

Matching homonymous points 

using epipolar constraints

Substitute the space coordinates of 

holes into the adjustment 

mathematical model

Is the correction less than the threshold or the 

iteration steps reaching the threshold?

Using the principle of least squares to 

calculate the correction

Output accurate spatial coordinates of 

the hole

Completing camera calibration

Initial value 

calculation

Generalized point iterative 

calculation of accurate values

Y

N

Figure 7. Experimental process.

5.2.2. Results and Analysis of Engineering Experiments

The camera resolution is 4096 × 3000, with a pixel size of 3.45 µm. The camera’s
intrinsic parameters are shown in Table 6. f represents the focal length, ∆x and ∆y represent
the offset of the image principal point, and k1 and k2 are the radial distortion parameters.
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Table 6. Camera intrinsic parameters.

f (mm) ∆x (mm) ∆y (mm) k1 k2

Camera 1 34.58 −0.1833 0.0761 −0.0785 1.5814
Camera 2 34.45 −0.0187 −0.1622 −0.0058 0.2803

The extrinsic parameters of the cameras are shown in Table 7.

Table 7. Exterior orientation elements of two images.

ϕ (rad) ω (rad) κ (rad) XS (mm) YS (mm) ZS (mm)

First image 232.3033 −221.4771 105.0735 1.3910 2.6595 2.6192
Second image −5.6175 −8.4404 109.0247 3.1404 0.0154 3.2693

The image plane coordinates of the four corner points of the square hole are shown
in Table 8.

Table 8. Image plane coordinates of the four corner points.

Points First Image Second Image

Corner 1 (−7.1382, 22.1317) (−20.8293, 399.0914)
Corner 2 (−18.0413, 39.2535) (−324.7541, 410.0443)
Corner 3 (−12.3197, 32.7147) (−289.9472, 85.0483)
Corner 4 (−1.3404, 14.8592) (−50.1016, 43.9029)

The initial spatial coordinates of the four corner points of the square hole calculated
through traditional photogrammetry are shown in Table 9.

Table 9. Initial spatial coordinates of the four corner points.

Points X (mm) Y (mm) Z (mm)

Corner 1 1.5321 133.2612 105.0325
Corner 2 134.5622 135.6421 103.5761
Corner 3 132.5415 3.5725 102.0712
Corner 4 3.0754 −1.7523 102.1672

The results of straight line fitting at the edge of the square hole are shown in Figure 8.

First image. Second image.

Figure 8. Line fitting.

The accurate spatial coordinates of the four corner points of the hole calculated through
the generalized point adjustment mathematical model are shown in Table 10.
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Table 10. Accurate spatial coordinates of the four corner points.

Points X (mm) Y (mm) Z (mm)

Corner 1 −0.1005 128.3468 100.4601
Corner 2 129.8687 130.9947 101.4496
Corner 3 132.5376 1.05278 98.6249
Corner 4 2.5683 −1.5951 97.6354

For engineering experiments, the experimental effect will be evaluated from three
aspects: the distance between two points, the perpendicularity of the square hole edge, and
the flatness of the fitting plane.

As shown in Table 11, the measurement results of the side length of the square
hole using the traditional method (TM) and the proposed method (PM) in this article
are presented.

Table 11. Length measurement results.

Results L1 L2 L3 L4

TM 133.0594 132.0936 129.5756 135.0527
PM 130.0000 130.0000 130.0000 130.0000

As shown in Table 12, the measurement results of the perpendicularity between the
adjacent sides of the square hole using the traditional method and the method proposed in
this article are presented. The result is represented by vector cosine.

Table 12. Comparison of perpendicularity.

Results (L1, L2) (L2, L3) (L3, L4) (L1, L4)

TM 3.0593 2.0936 −0.4244 5.0527
PM 0.0000 0.0000 0.0000 0.0000

From Table 11, it can be seen that the maximum length error measured by traditional
methods exceeds five millimeters. The length error measured by the proposed method for
square holes is very small, and it is close to the true value of the hole after retaining four
decimal places. From Table 12, it can be seen that the maximum cosine value of the angle
between adjacent sides measured by traditional methods reaches 5.0527. The cosine error
of the angle calculated by the measurement method proposed in this article is very small,
approaching zero after retaining four decimal places.

Using square hole coordinates to fit a plane, the sum of the distances from the two
points farthest from the plane on both sides to the plane is the flatness. As shown in
Figure 9, it is a schematic diagram for calculating flatness. The gray area represents the
fitted plane, the red points are located above the plane, and the blue points are located
below the plane. The farthest distance from the point above the plane is d1, and the farthest
distance from the point below the plane is d2. The flatness is the sum of d1 and d2.

The traditional method calculates the flatness as 0.6532, while the flatness calculated
by the method proposed in this article is 0.0000 after retaining four decimal places. There-
fore, the spatial points measured by the method proposed in this article are closer to the
fitting plane.

From the above data, it can be seen that from the evaluation results of three aspects,
the error of the proposed method in this article is significantly smaller than that of tradi-
tional methods.
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d1

d2

Plane

Figure 9. Flatness.

6. Conclusions

In order to solve the problem of accurate alignment of square rods with square holes in
engineering, a measurement optimization method for square holes based on the basic theory
of generalized photogrammetry is proposed in this article. This method takes the spatial
coordinates of points calculated by traditional photogrammetric methods as the initial
value, and takes the straight line segment extracted from the image as the measurement
standard of projection error. This method combines the Lagrange multiplier method to
construct the parametric equation of the straight line segment, and brings the parametric
equation of the straight line segment into the collinear equation. By using the constraints of
the square hole, the precise calculation of the square hole coordinates is completed through
repeated iterations. Many sets of simulation experiments can converge to the exact value.
In order to further verify the stability and practicality of the method, this article conducted
engineering experiments on the established experimental platform, and compared the two
methods from three aspects. The proposed methods achieved better experimental results.
Therefore, the proposed method has certain engineering application value.

The simulation experiment in this article only used two images to complete the
experiment. In the subsequent experimental process, it can be considered to simulate
the experimental results of more images. The method proposed in this article is not only
applicable to the square holes of segmental beam assembly, but also to other square holes.
It can even be further improved to expand the application scope to more types of square
holes. In future research, we will further integrate generalized photogrammetry theory
into high-precision engineering surveying to meet the needs of engineering.
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