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Abstract: The identification of urban functional zones (UFZs) is crucial for urban planning and
optimizing industrial layout. Fusing remote sensing images and social perception data is an effective
way to identify UFZs. Previous studies on UFZs recognition often ignored band information outside
the red–green–blue (RGB), especially three-dimensional (3D) urban morphology information. In
addition, the probabilistic methods ignore the potential semantic information of Point of Interest
(POI) data. Therefore, we propose an “Image + Text” multimodal data fusion framework for UFZs
recognition. To effectively utilize the information of Gaofen-7(GF-7) stereo images, we designed a
semi-transfer UFZs recognition model. The transferred model uses the pre-trained model to extract
the deep features from RGB images, and a small self-built convolutional network is designed to extract
the features from RGB bands, near-infrared (NIR) band, and normalized digital surface model (nDSM)
generated by GF-7. Latent Dirichlet allocation (LDA) is employed to extract POI semantic features.
The fusion features of the deep features of the GF-7 image and the semantic features of POI are fed
into a classifier to identify UFZs. The experimental results show that: (1) The highest overall accuracy
of 88.17% and the highest kappa coefficient of 83.91% are obtained in the Beijing Fourth Ring District.
(2) nDSM and NIR data improve the overall accuracy of UFZs identification. (3) POI data significantly
enhance the recognition accuracy of UFZs, except for shantytowns. This UFZs identification is simple
and easy to implement, which can provide a reference for related research. However, considering the
availability of POI data distribution, other data with socioeconomic attributes should be considered,
and other multimodal fusion strategies are worth exploring in the future.

Keywords: data fusion; GF-7 image; POI; 3D urban morphology; urban functional zones

1. Introduction

As the basic units of urban, UFZs are the spatial carriers of various social and economic
activities, such as commercial zones, residential zones, and industrial zones [1–3]. With
the rapid expansion of cities, a large number of people and means of production gather in
the cities, resulting in an increasingly complex urban functional structure. Therefore, the
accurate and rapid identification of UFZs holds substantial research and application value.
It aids in understanding the interplay between human spatial activities and socioeconomic
operations [4]. Moreover, the spatial distribution of urban functions can be utilized to guide
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urban planning management, resource allocation, environmental monitoring, population
estimation, and other related activities [5–7].

Traditional methods for identifying UFZs have relied on statistical investigation and
expert judgment. However, these methods often require field investigation and human
judgment, which are highly subjective and time-consuming [8,9]. In recent decades, with
the rapid development of remote sensing technology, remote sensing images have been
widely used in urban research fields, including land cover mapping, environmental pro-
tection, and deformation monitoring [10–12]. These studies provide new ideas for the
identification of UFZs. Based on different image feature extraction methods, UFZs recog-
nition methods can be broadly divided into two categories. The first category is based
on artificially designed features. Some methods employ probabilistic topic mode (PTM)
to classify UFZs or scenes by extracting shallow features from images, such as spectral,
texture, structure, scale-invariant feature transform (SIFT), and other features [13–17].
Other methods involve constructing urban landscape features by obtaining urban land
cover maps through remote sensing images and then using machine learning techniques
to identify UFZs [18–20]. However, this type of method requires researchers to possess
extensive experience and knowledge, to determine the best feature combination through
multiple experiments. Moreover, the optimal feature combination often lacks effective
transferability between different cities, limiting its generalization. The second category
focuses on automatically extracting image features using deep learning methods. With the
wide application of deep learning technology in the field of remote sensing, its advantages
in identifying UFZs have gradually become prominent [21–25]. However, most pre-trained
models only accept RGB images, while high-resolution remote sensing satellites can acquire
RGB + NIR multi-spectral images, and even some satellites provide multi-view and more
band information, which limits the direct use of the “pre-training and fine-tuning” method
for model training on multi-spectral images. To address this challenge, Huang et al. [26]
designed a semi-transferred convolutional neural network for UFZs recognition. However,
their method relied on the AlexNet pre-training model [27], without considering the impact
of other pre-training models on UFZ identification. Additionally, their classification of
UFZs was based solely on remote sensing images, so it needs further improvement.

Remote sensing images provide information about the natural landscape of cities,
but they lack detailed insight into human economic activities in detail. To overcome this
limitation, previous studies have used social perception data such as social media data,
traffic data, Weibo check-in data, and POI data to identify UFZs. This type of data can
effectively reflect the socioeconomic attributes of urban functional units and finely identify
different types of UFZs [28–32]. Among these data sources, POI data are particularly useful
as they can be freely obtained from Internet maps without infringing on user privacy. It has
been widely used in the identification of UFZs. However, it is important to note that POI
data have limitations due to the uneven distribution and biased categorization of human
activities [1]. Fusing remote sensing images and social perception data is an effective way
to quickly and accurately identify UFZs.

From the perspective of data, most studies on identifying UFZs focus on two-dimensional
(2D) data, overlooking the importance of 3D urban morphology information. However,
certain urban functional units have differences in urban morphology information, such as
office business districts, shopping malls, residential quarters, and shantytowns. Several
previous studies have demonstrated that incorporating 3D urban morphology can enhance
the accuracy of UFZs identification. The generation of 3D urban information typically
relies on building vector data obtained from Internet maps or government departments.
However, due to differences in data collection time or quality, these vector data may not be
entirely consistent with the actual situation and ignore the 3D information of other ground
objects except buildings [33–35]. Some researchers, such as Zhao et al. [36], have utilized the
building height information estimated from building shadows to classify urban building
functions, improving the recognition accuracy of residential buildings. Nonetheless, this
method depends on parameters, such as the sun and satellite altitude, and is not universally
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applicable due to irregularities in shadow shape area, adhesion, and other phenomena.
Airborne Lidar data have been employed to construct 3D urban structure parameters for
UFZs classification and achieved good results [37,38]. However, the collection of airborne
Lidar data collection is costly and its coverage is limited. Huang et al. [39] introduced
ZY-3 multi-view images into the model to describe the 3D urban morphology information,
demonstrating the helpfulness of multi-view images in UFZs identification. Nevertheless,
this method does not directly account for the influence of ground objects’ height on the
UFZs identification. Currently, several high-resolution stereoscopic mapping satellites
have been launched, enabling the rapid acquisition of digital surface model (DSM) [40–42].
GF-7 is one of the most advanced stereo observation satellites in China and generates DSM
data with an elevation Root Mean Square Error (RMSE) within 1m, providing large-scale
and detailed three-dimensional information about urban ground objects [43]. The fusion
of GF-7 multi-spectral images and panchromatic stereoscopic images effectively captures
the 2D and 3D features of urban objects, harnessing the advantages of GF-7 multi-view
images [44,45].

In summary, we proposed a simple and effective “Image + Text” fusion strategy for
UFZs recognition, utilizing GF-7 multi-view and multi-spectral images and POI data. The
main contributions are as follows:

(1) We extract image features using a semi-transfer learning strategy and employ the
LDA topic model to generate POI semantic features. These features are then fused to
improve UFZ recognition.

(2) We incorporate both the 2D and 3D characteristics of the study area.
(3) We investigate the function of DSM generated from GF-7 images, NIR, and POI in

identifying UFZs.

2. Study Area and Data
2.1. Study Area

Beijing is the capital of China and serves as the political, economic, and cultural
center, with a high urbanization rate of approximately 86.5%. For our study, we specifically
selected the area within the Fourth Ring Road of Beijing, as shown in Figure 1, which spans
an approximate area of 300 km2. The study area encompasses significant commercial zones,
residential zones, and numerous administrative agencies in Beijing. The diverse and mixed
functions within this area pose challenges for accurately identifying UFZs.
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2.2. Data

The GF-7 is China’s first civil optical stereo mapping satellite with a sub-meter reso-
lution. It was successfully launched in November 2019 with an orbital altitude of about
506 km and has a return cycle period of fewer than 60 days. It can effectively acquire
20 km wide front-view panchromatic stereoscopic images with a 0.8 m resolution, rear-view
panchromatic stereoscopic images with a 0.65 m resolution, and multi-spectral images with
a 2.6 m resolution. The specific parameters of the GF-7 dual-line array stereo camera are
shown in Table 1.

Table 1. Parameters of bi-linear array stereo camera.

Spectral Band Wavelength (µm) Spatial Resolution (m) Swath Width (km)

Front-view Pan 0.45–0.90 0.8

≥20

Rear-view Pan 0.45–0.90 0.65
Blue 0.45–0.52

2.6
Green 0.52–0.59
Red 0.63–0.69
NIR 0.77–0.89

In this study, two adjacent GF-7 images were selected on 16 October 2020 with less
clouds, a clear texture, and geometric structure, which effectively covered most of the
area within the Beijing Fourth Ring Road. The 0.65 m multi-spectral image underwent
preprocessing steps, such as orthorectification, image sharpening, and mosaicking, using
PCI Geomatica 2021 SP4. Subsequently, the multi-spectral images were resampled to
a resolution of 1.3 m as required. DSM data are generated by utilizing both the GF-7
front-view panchromatic image and rear-view panchromatic image. Initially, the rational
function model was created, and then the ground control point (GCP) and tie point (TP)
were collected to improve the mathematical model and ensure that the stereo pairs were
aligned with each other. Finally, the semi-global matching (SGM) algorithm was used to
derive 1 m DSM data [46]. Meanwhile, we take blocks and some buildings as spatial units,
and a series of filtering algorithms available in PCI Geomatica were carefully filtered the
DSM to obtain Digital Elevation Model (DEM). Then, DSM minus DEM to obtain nDSM,
which is used to describe the relative height of ground objects.

Furthermore, due to water surface clutter and the building being occluded, the nDSM
value of the water surface is wrong and some building height information is missing. We
utilized the surrounding ground object height and building floor data as references to
correct the nDSM data to obtain the finalized nDSM data. Figure 2 shows the finalized
nDSM data.

POI data are a kind of spatial point data, which are an abstract expression of geo-
graphic entities in the real world. Any geographic entity can be represented by POIs, such
as shopping malls, universities, residences, and parks, and typically include attributes,
such as names, categories, and geographic coordinates. In this study, the POI data were
obtained using the Gaode map API, and the data were downloaded on 10 July 2021. The
Gaode map has three levels of classification for POIs, including 23 first-level classifica-
tions, 267 s-level classifications, and 869 third-level classifications. Some POI types in the
first-level classifications contain different functional types, and POI types in the third-level
classifications are too elaborate and not conducive to data processing. Therefore, we opted
to utilize the second-level classification as our standard for classification and removed some
POI categories that are easy to interfere with the identification of UFZs, such as shared
equipment, ATMs, parking lots, and ticket offices. Consequently, a total of 381,905 POIs
were obtained. The acquired POI data were transformed into the WGS84 coordinate system.
The spatial distribution of the POI data is shown in Figure 3.
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OpenStreetMap (OSM) is a collaborative project that creates a free editable map
database of the world, including vector data such as roads, water systems, lakes, green
spaces, and building outlines, which has important reference value for the boundary
division and type interpretation of urban functional units. The OSM road network data are
used to divide urban functional units, downloaded on 24 March 2021.

2.3. UFZs Categories

Referring to relevant Chinese national standards (Code for Classification of Urban
Land-Use and Planning Standards of Development Land GB 50137–2011, China), and
considering the main land use types within the Fourth Ring Road of Beijing, seven types
of UFZs were determined. The detailed categories schemes and descriptions of UFZs are
provided in Table 2.
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Table 2. Descriptions of UFZs categories schemes.

Category Descriptions

Residential zones Regular, well-equipped communities, such as apartments and high-rise residential areas
Commercial zones Commercial retail, restaurants, financial, and media places, such as office buildings and malls

Shantytown Dilapidated, old low-rise communities, such as villages within cities
Public service Administrative, medical, sport, and cultural places, such as government, hospitals, and libraries
Development A place to be developed or under construction

Education Education and research places, such as schools, universities, and institutes
Green land Park and greenspace places, such as parks, greenbelts, and water

3. Methodology

In this study, a multimodal data semi-transfer fusion framework called “Image +
Text” is proposed for identifying UFZs by fusing GF-7 imagery and POI data, as shown
in Figure 4. The framework includes the following three steps: (1) data preprocessing,
including the division of urban functional units, the construction of remote sensing image
datasets, and POI text datasets; (2) multimodal data feature extraction and fusion, includ-
ing extraction and fusion of remote sensing image features and POI semantic features;
(3) identification and mapping of UFZs, including preferred classifiers to identify UFZs
and accuracy evaluation.
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3.1. Urban Functional Unit Division

The urban functional unit division methods include grid method, block method, traffic
analysis zone method, and geoscene segmentation method [47–50]. The block method
is simple and can describe the real boundaries of UFZs and is widely used in UFZs
identification [51]. In this study, we utilize the blocks defined by the OSM road network as
the basic unit for UFZs identification. To ensure precise block boundaries, we preprocess
the OSM road network. First, low-level roads are removed and retain tertiary, secondary,
primary, motorway, and trunk roads. We determine road widths for different levels and
create road buffer zones using Chinese urban road standards and remote sensing images.
The ArcGIS software’s Erase function is then used to remove the road buffer zone polygons
within the Fourth Ring Road to obtain separate urban functional units. We obtain a total of
1971 urban functional units, each assigned a unique ID. To refine the boundaries further,
we consult Baidu maps to determine the functional types of the urban functional units and
make necessary corrections. Figure 5 shows the process of urban functional unit division.
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3.2. Image Dataset Generation

Remote sensing images divided by urban functional units are usually irregular and of
varying sizes, which are not suitable as input for deep learning models. Therefore, we have
designed a central window cropping strategy, selecting the center of the urban functional
unit as the window center and cropping the 1.3 m image with a size of 227 × 227 pixels.
These cropped images are used to generate the dataset. To address the imbalance in the
number of samples for different UFZs, we employ strategies of diagonal offset cropping
and image flipping for data augmentation on UFZs with a small number of samples. As
shown in Figure 6, the red-dotted box represents the new window obtained by diagonally
moving the central window toward the upper left corner and moving 20 pixels in both
horizontal and vertical directions. The yellow-, green-, and blue-dotted boxes indicate the
new windows resulting from translating the central window in the other three diagonal
directions. The detailed composition of the dataset is shown in Table 3, the training data
have 4240 images and the test data have 1006 images. Through image augmentation, the
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number of training samples increases by more than 4 times, and the number of samples in
each category is balanced effectively.
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Table 3. UFZs self-built image dataset.

Residence Commercial Shantytown Public
Service Development Education Green

Land Total

Training set 360 230 90 60 80 100 45 965
Training set 1 720 690 720 600 560 500 450 4240

Test set 417 239 102 56 74 101 17 1006
1 Augmented training set.

3.3. Multimodal Data Feature Extraction and Fusion

The proposed multimodal data fusion framework is shown in Figure 7, including
image feature extraction, POI semantic feature extraction, and feature fusion. Image
features are extracted from remote sensing images using a semi-transfer convolutional
neural network (ST-CNN), semantic features are extracted from the POI data using the
LDA topic model, and two parts of features are fused together.

3.3.1. Image Feature Extraction

For the pre-trained model, the related parameters are initialized by the pre-trained
VGG16. As the pre-trained VGG16 is trained by the images of size 224 × 224 pixels
with RGB bands, the images of size 227 × 227 pixels with RGB bands are resized to
224 × 224 pixels and input the transfer DCNN. In addition, in order to match the number
of POI semantic features and reduce the parameter of the model, we delete the network
structure beyond the first fully connected layer and add a fully connected layer that outputs
64 dimensions.
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For the self-built network, four 3 × 3 convolutional layers with a stride of 2 are used,
followed by two fully connected layers. The output dimensions of the first and second
fully connected layers are set to 1024 and 64, respectively. The self-built network input
RGB + NIR + nDSM images with 227 × 227 pixel size, to avoid the limitations of the
pre-trained VGG16.

Finally, the outputs of the pre-trained model and the self-built CNN are fused into
a single layer. To avoid the instability of the model caused by feature fusion, a Batch
Normalization (BN) layer and a Rectified Linear Unit (Relu) layer are added after the
fusion layer. A fully connected layer with an output dimension of 7 is designed to match
the number of categories of UFZs. After the softmax function, the categories of UFZs are
provided. UFZs samples are fed into the ST-CNN model to train it, resulting in model
parameters specifically optimized for UFZs recognition being obtained. The feature fused
by pre-trained VGG16 and the self-built CNN are regarded as image features, with an
output dimension of 128.

3.3.2. Semantic Feature Extraction

POI data provide valuable insights into human economic activities. However, some
previous studies have primarily focused on counting POI frequencies for text modeling,
ignoring the potential semantic features [52–54]. LDA [55] is a three-layer Bayesian proba-
bility model, which can identify the semantic topic information in large-scale document
sets or corpus. It has demonstrated promising results in identifying UFZs [56,57]. The num-
ber of topics is crucial for LDA. An appropriate number of topics can effectively prevent
overfitting and obtain higher accurate results. We use the confusion algorithm to calculate
the number of topics, and the smaller the perplexity, the more appropriate the determined
number of topics is for LDA [55]. We utilize the secondary classification of Gaode POI
to divide the functional categories of each POI data, the POI functional attributes within
the same functional unit are regarded as a document in the LDA model. Figure 8 shows
the perplexity values for 1 to 99 topics. When the topic number is 25, the perplexity is the
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smallest. Combined with the UFZs category, the number of topics is finally determined to
be 22 for LDA modeling; 14 topics correspond to a commercial zone, 4 topics correspond to
public service, 2 topics correspond to a residential zone, 1 topic corresponds to education,
and 1 topic corresponds to green land. Due to the proportion of corresponding topics in
different urban functional units is not balanced, the semantic shrinkage method proposed
by Xing et al. [58] is adopted to process the probability values of different types of topics
in the same urban functional unit. Finally, each urban functional unit corresponds to
the probability of five kinds of urban functions, both residential zone and shantytowns
undertake residential functions and are combined into one topic. There are almost no POIs
in development, and the topic of development is discarded.
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3.3.3. Feature Fusion and UFZs Identification

The image features extracted by ST-CNN and the semantic features extracted by LDA
are concatenated. The image feature dimension (128 dimensions) is about 25 times that of
the POI semantic feature dimension (5 dimensions), and direct concatenating leads to fusion
features that overly emphasize image features, it is necessary to reduce the dimensionality
of image features. PCA is a dimension-reduction technique that linearly transforms the
original space into a new space of smaller dimensions while simultaneously describing
the variability of the data as much as possible [59]. PCA projects along the eigenvectors
of the covariance matrix corresponding to the largest eigenvalues, where the eigenvectors
point in the direction with the highest amount of data variation. In general, the first few
principal components whose cumulative variance contribution exceeds 95% are considered
dimensionality-reduced data and often contain nearly all information from the original data.
In this study, PCA is employed to reduce the dimensionality of image features. The specific
image dimension after dimensionality reduction is determined through experimentation.
After reducing the dimensionality of the image features, they are concatenated with the
semantic features. Following the feature fusion, three classifiers, namely, Support Vector
Machine (SVM), K-Nearest Neighbors (KNN), and Random Forest (RF), are utilized for
identifying UFZs [60–62].
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3.4. Accuracy Evaluation

To quantitatively evaluate the classification performance of different models, the
overall accuracy (OA) and kappa coefficient are utilized as model evaluation indicators.
OA is defined as the ratio of the number of correctly classified data to the total test data. It
provides an intuitive measure to assess the overall classification performance of the test
data. The kappa coefficient is considered to be a more robust measure compared to a simple
percent agreement calculation because it takes into account the possibility of the agreement
occurring by chance.

4. Results and Discussion
4.1. Results
4.1.1. Experimental Setup

The experiments were performed on a Windows Operating System, using CPU (Intel
Core (TM) i5-11400F@2.60GHz), RAM (16 GB), and GPU (NVIDIA GeForce RTX 3060
12 GB). Experimental work for image feature extraction is performed using the Deep
Learning Toolbox in MATLAB 2022b. The training data are randomly divided into training
set and verification set according to the ratio of 4:1, and the test sets are used to verify
the performance of the model. The learning rate of the pre-trained VGG16 in ST-CNN is
3 × 10−5, and the learning rate of other layers is 3 × 10−4. The adaptive moment estimation
(Adam) algorithm is engaged in optimizing the model. The batch size is set as 32. The
network with the pre-training model is trained for 20 batches. The network without the
pre-training model is trained for 80 batches.

POI semantic information extraction, PCA dimension reduction, and RF, KNN, and
SVM classifiers are all based on the Scikit-Learn library, and the programming language
uses Python 3.7.

4.1.2. UFZs Identification Results

The identification results of UFZs are shown in Figure 9, and the quantitative evalua-
tion results are summarized in Table 4. Qualitative results show no significant difference
in the performance of the different classifiers. Quantitative indicators OA and kappa
coefficient are not much different. Among them, SVM outperforms the others with the
highest OA and kappa coefficient, has obvious advantages in identifying public services
and shantytowns. KNN follows with the second-best performance, particularly excelling in
identifying green land and education. RF obtains the lowest OA and kappa coefficient, but
it has obvious advantages in identifying commercial zones and development. For different
categories of UFZs, the accuracy of identifying public services and education is relatively
low, and the identification accuracy is mostly less than 70%. The accuracy of identifying
residential zones, green land, and development surpasses 90%.

Table 4. Overall classification results and per category results. The bold values represent the best
performance of each indicator.

SVM (%) KNN (%) RF (%)

Residential zone 94.00 94.72 91.61
Commercial zone 83.68 85.36 87.45

Shantytown 92.16 87.25 90.20
Public service 55.41 47.30 47.30
Development 96.43 94.64 98.21

Education 64.71 70.59 47.06
Green land 94.06 96.04 95.05

OA 88.17 87.97 87.18
Kappa coefficient 83.91 83.60 82.65
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4.2. Discussion
4.2.1. Comparison of Different Pre-Training Models

To compare the performance of different pre-trained models in identifying UFZs,
ST-CNN selected AlexNet, VGG16, ResNet50, and MobileNet-V2 as pre-training models,
respectively [27,63–65]. The classifier is softmax. In order to integrate with the self-built
network, we delete the network structure behind the first fully connected layer of the
pre-trained model and add a fully connected layer that outputs 64 dimensions. Further-
more, two training patterns were employed for the pre-trained model: training with all full
parameter layer and training with only the full connection layer. A comparison was made
between these two patterns. As shown in Figure 10, the training pattern that involved
all parameter layers yielded superior results compared to training with only full connec-
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tion layers. Specifically, when using pre-trained VGG16, the OA and kappa coefficient
increased by 5.77% and 7.23%, respectively. In the model of all parameter layer training,
the OA of the pre-trained VGG16 increased by 7.56%, 2.79%, and 5.37% compared with
pre-trained AlexNet, ResNet50, and MobileNet-V2, respectively, and the kappa coefficient
increased by 9.96%, 3.60%, and 6.85%, respectively. Therefore, ST-CNN can obtain the
optimal classification results of UFZs by using the pre-trained VGG16 and all parameter
layer training.
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Compared to AlexNet, VGG16 utilizes a series of continuous 3 × 3 Convs instead of
7 × 7 Convs. Due to the small parameter number of 3 × 3 Convs, VGG16 has a deeper and
wider structure, which can extract more features and fit the network effectively. In addition,
ResNet50 and MobileNet-V2 do not show obvious advantages. On the one hand, gradient
dispersion may occur in deep networks, making it difficult to optimize the model. On the
other hand, there are more parameters in the deeper network, and the number of images in
the dataset in this paper is small, so the whole network cannot be trained effectively.

4.2.2. Advantages of Semi-Transfer Structure

To demonstrate the advantages of the semi-transfer structure, we design four models
as shown in Table 5. The classifier used in all models is softmax. M1 represents a model
whose input is RGB images and the network structure is the pre-trained VGG16. M2
indicates that the input is RGB + NIR + nDSM images and the network structure is the
self-built CNN. M3 indicates that the input is RGB images, the network structure is ST-
CNN, and the input of both pre-trained VGG16 and self-built CNN is RGB images. M4
represents a model whose input is RGB + NIR + nDSM images and the network structure
is ST-CNN, the input of pre-trained VGG16 is RGB images and the input of self-built CNN
is RGB + NIR + nDSM images. From Table 4, M3 and M4 with ST-CNN network structure
have higher OA and kappa coefficients than M1 and M2. M4 obtained the highest OA and
kappa coefficient. Figure 10 shows the training curves of different models. From Figure 11,
M4 can effectively combine the self-built CNN with the pre-trained VGG16 network. Speed
up model training while avoiding overfitting caused by small amounts of data. Compared
with M1, the OA and kappa coefficient of M3 increased by 0.3% and 0.38%, respectively.
This is due to ST-CNN using parallel network designs of different depths, which can extract
different depths of image features and improve recognition accuracy.

Table 5. Accuracy of different models for identifying UFZs.

Model Network Input OA (%) Kappa Coefficient

M1 Pre-trained VGG16 RGB 81.71 75.56
M2 Self-built CNN RGB + NIR + nDSM 75.84 67.92
M3 ST-CNN RGB 82.01 75.94
M4 ST-CNN RGB + NIR + nDSM 84.00 78.41
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4.2.3. Contribution of Different Modality Data

We propose a multimodal data fusion framework for UFZs identification. To analyze
the impact of RGB, NIR, nDSM, and POI data on identifying UFZs, we designed five
different inputs. The network structure is ST-CNN, and the classifier is SVM. Table 6
presents the recognition results of UFZs with different inputs.

Table 6. Comparison of UFZs recognition results with different inputs (N: NIR, D: nDSM, P: POIs).

RGB RGB + N RGB + D RGB + N + D RGB + N + D + P

Residential zones 86.81 89.69 89.93 90.41 94.00
Commercial zones 78.66 79.50 80.75 79.92 83.68

Shantytown 90.20 88.24 91.18 92.16 92.16
Public service 40.54 31.08 29.73 37.84 55.41
Development 91.07 94.64 91.07 94.64 96.43

Education 35.29 41.18 47.06 47.06 64.71
Green land 95.05 95.05 92.08 93.07 94.06

OA 82.01 82.80 83.00 84.00 88.17
Kappa coefficient 75.94 76.82 77.03 78.41 83.91

Table 6 shows the effectiveness of incorporating multimodal data in improving the
recognition accuracy of UFZs. When comparing the RGB to the additional NIR data, there
is an increase of 0.79% in OA and 0.88% in kappa coefficient. The recognition accuracy
of residential zones, commercial zones, development, and education has improved, with
enhancements ranging from 0.84% to 5.89%. The inclusion of the nDSM data leads to
0.99% in OA and 1.09% in kappa coefficient. The recognition accuracy of residential
zones, commercial zones, education, and shantytown increased, ranging from 0.98% to
11.77%. When adding NIR + nDSM data, the OA and kappa coefficient increased by
1.99% and 2.47%, respectively. The recognition accuracy increases for residential zones,
commercial zones, development, education, and shantytown ranging from 1.26% to 11.77%.
Compared with the input of RGB + NIR + nDSM, when POIs are added, the OA and
kappa coefficient have been greatly improved, increasing by 4.17% and 5.50%, respectively.
With the exception of shantytowns, the recognition accuracy for other UFZ categories
experiences improvements ranging from 0.99% to 17.65%.

After adding NIR and nDSM data, the OA and kappa coefficient of UFZs improve.
However, the recognition accuracy varies across different categories of UFZs, which may
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be attributed to the different urban landscapes associated with each category. For instance,
nDSM data enhance the recognition accuracy of residential zones, commercial zones, ed-
ucation, and shantytown with dense buildings. POI data showcase high-level semantic
information tightly related to human economic activities, which can improve the recog-
nition accuracy of UFZs, especially for public services and education. Therefore, social
perception data such as POIs are important for UFZs identification. However, it should
be noted that even with the inclusion of nDSM and POIs, the accuracy of identifying
public services and education remains relatively low. For public services, the diversity of
POI types associated with public services reduces the effectiveness of the extracted POI
semantic characteristics. Additionally, some buildings within the public service are similar
to commercial buildings in the image, resulting in similar image features. For education,
the low accuracy can be attributed to the small number of original training samples, which
may limit the model’s generalization ability. Furthermore, educational buildings often
exhibit similarities with residential buildings, such as dormitory buildings.

4.2.4. Impact of PCA Dimensionality Reduction on Identifying UFZs

We utilize the PCA algorithm to reduce the dimensionality of the 128-dimensional
image features extracted by ST-CNN and combine them with POI semantic features. To
determine the optimal dimension after PCA dimension reduction, we conducted a com-
parative analysis by reducing the image features to 1–127 dimensions and compared them
with the original 128-dimensional features, as shown in Figure 12. From Figure 12, the
cumulative variance contribution rate of the top five image features has exceeded 80%. As
the image dimension increases, the OA and kappa coefficient of UFZs identification initially
show a rapid increase followed by a slower decrease. Notably, when reducing the image
features to 15 dimensions, UFZs recognition achieves the highest OA of 88.17%, and the
kappa coefficient is 83.91%. When the image features are reduced to eight dimensions, the
kappa coefficient of UFZs recognition is the highest, reaching 83.96%, and the OA is 88.07%.
Considering that the difference in OA is greater than the difference in kappa coefficient, we
choose 15 dimensions as the best dimension for dimensionality reduction.
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4.2.5. Compare with Other Methods

To further validate the feasibility of the proposed method, a comparison was made
with previous studies on UFZs identification in Beijing, as shown in Table 7. Most of
these studies fuse remote sensing images and data that can reflect human activities to
identify UFZs. In cities with complex functions, such fusion approaches generally exhibit
higher accuracy compared to using remote sensing images. However, it is worth noting
that while medium-resolution remote sensing images are more readily available for large-
scale UFZs identification, their recognition accuracy tends to be lower than that achieved
with high-resolution images due to the lack of detailed ground object information. In
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addition, our method demonstrates slightly lower accuracy than the second and fourth
methods. This is primarily due to the lower identification accuracy in the categories of
public service and education, which limits the OA of UFZs identification. However, when
compared to the first and the third methods, our method achieves 4.2% and 7.2% higher
OA, respectively. Overall, although our method does not attain optimal classification
accuracy, it still possesses certain advantages, particularly in terms of its simplicity and
ease of model training.

Table 7. Comparisons of the existing methods for UFZs identification.

Method Data Source Study Area Spatial OA

Integrating bottom-up
classification and

top-down feedback [66]
WorldView-II image Beijing, China

(67.1 km2)
Residential, commercial, shantytown,

industrial, campuses, park 84%

Hierarchical semantic
cognition [67]

QuickBird image;
POIs

Beijing, China
(67.1 km2)

Residential, commercial, shantytown,
industrial, campuses, park 90.8%

Similarity measures and
threshold [68]

Landsat8 image;
POIs

Beijing, China
(16,808 km2)

Level I classes: agriculture, green
space, waterbody, undeveloped,

residential, commercial,
industrial, institutional

81.0%

Integrating high spatial
resolution nighttime light
and daytime multi-view

imagery based on B-OVW
model [69]

Ziyuan3 (ZY3-01)
im-age

Jilin1-07 (JL1-07)
im-age

Beijing, China
(300 km2)

Residential, commercial, shantytown,
industrial, campuses,
park, and green space

89.6%

Our method GF-7 image; POIs Beijing, China
(300 km2)

Residential, commercial, shantytown,
public service, development,

education, green land
88.2%

5. Conclusions

In this paper, we proposed a novel “Image + Text” framework for UFZs recognition
by integrating GF-7 multi-spectral images, urban 3D information, and POI social percep-
tion data. The framework utilizes ST-CNN for extracting image features and LDA for
extracting semantic features. ST-CNN benefits from a pre-trained model and requires
only a small number of samples, while effectively incorporating the multi-spectral and
multi-dimensional features of NIR and nDSM images. The experimental results showed
that the proposed framework enhances the accuracy of UFZs identification and accelerates
the model training process. The inclusion of NIR, nDSM, and POI data can improve the
identification accuracy of UFZs. In the future, we will explore automatic segmentation
methods of urban functional units [70], introduce social perception data such as nighttime
light images and street view images [39,71], and explore more effective multimodal data
fusion strategies.
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