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Abstract: A new approach is introduced to address the subject dependency problem in P300-based
brain-computer interfaces (BCI) by using transfer learning. The occurrence of P300, an event-related
potential, is primarily associated with changes in natural neuron activity and elicited in response to
infrequent stimuli, which can be monitored non-invasively through an electroencephalogram. How-
ever, implementing P300-based BCI in real-time requires many training samples and time-consuming
calibration, making it challenging to use in practical applications. To tackle these challenges, the
proposed approach harnesses the high-level feature extraction capability of a deep neural network,
achieved through fine-tuning. To ensure similar distributions of feature extraction data, the approach
of aligning data in Euclidean space is employed, which is then applied to a discriminatively restricted
Boltzmann machine with a single layer for P300 detection. The performance of the proposed method
on the BCI Competition III dataset II and the BCI competition II dataset II, the state-of-the-art dataset,
was evaluated and compared with previous studies. The results showed that robust performance
could be achieved using a small number of training samples, demonstrating the effectiveness of the
transfer learning approach in P300-based BCI applications.

Keywords: brain-computer interface; P300 event-related potential; convolutional neural network;
data alignment

1. Introduction

Disabled patients who cannot communicate using their muscles benefit from the brain-
computer interfaces (BCI) that control external devices by directly reading the electrical
signals generated by the human brain [1]. For monitoring brain activity, BCIs typically
use magnetoencephalography, electrocorticography, and functional magnetic resonance
imaging, as well as electroencephalogram (EEG) [2], which is widely used due to its low
cost, non-invasiveness, availability, and high temporal resolution [3].

Among the brain activities that can be recorded with EEG [4], P300 is a positive
event-related potential (ERP) that occurs when the brain is stimulated by an unexpected
stimulus [5]. The P300 is characterized by latency, which depends on the duration of the
stimulus evaluation [6,7], and by amplitude, which seems to reflect the amount of informa-
tion transmitted by the stimulus. P300 occurs in the brain approximately 300 milliseconds
after a person is presented with a rare and significant stimulus [6,7]. It is typically elicited in
the parietal and central regions of the brain, with the largest amplitude in the parietal cortex.
P300-based ERP has been extensively researched and is widely considered to be a reliable
and objective method for studying cognitive processes underlying various behaviors. In
the medical sciences, the applications of P300 include the diagnosis of subclinical cogni-
tive disorders. Thus, clinical practice in neurology shows that the latency and amplitude
of P300 significantly degrade in patients with thyroid dysfunction, making this ERP in
association with magnetic resonance spectroscopy suitable for diagnosis [8]. In addition,
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ERP, including P300, can be used to evaluate the influence of stress and emotions on the
evolution of multiple sclerosis [9].

Besides its application in neurology, P300 is often used in BCI research as a signal to
detect the user’s intention or decision-making process. This is completed by presenting
a series of stimuli to the subjects, whose brain activity is monitored, to determine if they
are focusing on a specific stimulus that corresponds to a particular command or action.
Thus, due to the aforementioned reasons and being user-friendly, P300-based tasks are
typically used in BCI that helps people with neuro-motor disabilities. The Matrix Speller
is the first BCI based on the P300, which can transmit 7.8 characters per minute [10,11].
Following its introduction, the performance of P300-based BCI was significantly improved
using different paradigms and powerful algorithms [12,13]. This speller uses a 6 x 6 matrix
of letters that are highlighted in a sequence while the subjects focus their attention on the
letter they want to communicate.

However, ERP signals are subject-specific and vary according to the individual, mean-
ing samples from different subjects will not be similar. Cross-subject variability refers to
the differences observed in the brain activity of different individuals, which can complicate
the use of BCIs. So, each subject typically needs to undergo a personalized calibration
session, which can be a laborious and infeasible process when aiming for real-time BCI
implementation [14,15]. To tackle this problem, the transfer learning (TL) concept has been
introduced, whereby pre-trained models or knowledge from other subjects (known as the
source dataset) are utilized to improve the performance of a new subject (referred to as the
target dataset) [16]. This approach can be helpful when limited data is available for a new
subject (target domain) [17]. Various TL methods have been developed, such as domain
adaptation and subspace learning [14].

Domain adaptation is the process of adapting a model trained on a source dataset
to perform well on a target dataset. One common approach to domain adaptation is
fine-tuning, which involves taking a pre-trained model and training it further on a target
dataset [18]. Fine-tuning can be seen as a form of domain adaptation because it allows
the model to adapt to the new dataset by adjusting its weights and biases. Fine tuning in
convolutional neural networks (CNN) refers to the process of taking a pre-trained CNN
and adjusting its parameters to fit a new dataset or task. This is completed by freezing
the early layers of the network, which have learned general features,and training only
the subsequent layers on the new data. In ref. [19] a transfer CNN framework based on
VGG-16 is proposed. A pre-trained VGG-16 CNN model is transferred to a target CNN
model, and front-layer parameters are frozen while later-layer parameters are fine-tuned
with a target MI dataset composed of time-frequency spectrum images of EEG signals. The
proposed framework outperforms traditional methods on the BCI competition IV dataset.
In [20], the authors pre-trained a multi-scale convolutional neural network (MSCNN) on a
large-scale EEG dataset and fine-tuned it on a target dataset. They show the effectiveness
of the proposed MSCNN model on two different EEG P300 datasets.

Fine tuning can be a powerful technique for transfer learning, where knowledge
gained from the source domain can be applied to the target domain. Additionally, it
is useful when we have limited labeled data but want to leverage pre-trained models
for our task [2,21]. However, fine-tuning a pre-trained model can result in the loss of
specialized knowledge when the target domain has different data characteristics than the
source domain, potentially resulting in suboptimal performance [22]. Therefore, subspace
learning based-TL is coming to overcome the fine-tune-based TL limitations.

Subspace alignment is a technique that involves mapping data from one domain
to another by finding a common subspace between the two domains. By aligning the
subspaces, we can transfer knowledge from one domain to another and improve the
performance of our model. One advantage of subspace alignment is that it is a simple and
effective method.

In ref. [23], the authors focused on the issues of cross-session and cross-subject classifi-
cation, which refer to the use of data from past sessions or users to initialize the classifier for
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a calibration-less BCI mode. The study employs spatial covariance matrices of EEG signals,
which use Riemannian geometry to represent data on the manifold of Symmetric Positive
Definite (SPD) matrices. The study proposes an affine transformation of the covariance
matrices for every session/subject to center them with respect to a reference covariance
matrix, making them comparable. But Riemannian alignment (RA) has some limitations in
that the classifier must be Riemannian only, it needs labels for ERP datasets, and it is also
time-consuming. To tackle these limitations, He and Wu [24] proposed an unsupervised
and fast approach that is useful in both domains Euclidean and Romanian. It is called the
Euclidean alignment (EA) technique, which aligns the feature spaces of the source and
target domains to Euclidean space to reduce the distribution shift between the two domains.

In the current study, we propose a new approach based on transfer learning. Due to
the subject dependency problem of P300-based ERP signals, it is a significant challenge
for real-time P300-based brain-computer interface applications. This issue necessitates
extensive calibration and multiple learning training samples, which can be time-consuming.
To tackle this issue, we utilize the fine-tuning ability of CNN for extracting high-level
features and the EA technique for data alignment. To enhance the efficacy of the transfer
learning process, we adopt the fine-tuning technique, which involves retraining the CNN
using the source dataset as the initial starting point. This is completed using one-third
of the target dataset. Following this, the features that have been extracted by the CNN
are implemented in an EA method to enhance similarity between the source and target
feature distributions. Finally, classification is accomplished by utilizing the Discriminative
Restricted Boltzmann Machine (DRBM). The analysis demonstrates that this innovative
hybrid TL method exhibits enhanced performance in comparison to both fine-tuning alone
and conventional training approaches. This work improves the analysis of the TL-based
method over our preliminary research [25] by adding a new dataset and performing more
comparisons with the existing classification methods for the detection of the P300 wave. In
addition, we give more details related to the characteristics of the P300 and the utility of
this wave in applications.

The subsequent sections of this paper are structured as follows: Section 2 provides
the proposed methods, and Section 3 presents the results. Section 4 discusses the practical
implications of the research and includes discussions on the findings. Section 5 explores
the limitations and suggests future work. Finally, the conclusions are given in Section 6.

2. Materials and Methods
2.1. Dataset

For the evaluation of the proposed algorithm, we utilized two state-of-the-art P300-
based datasets. The task used for both datasets is illustrated in Figure 1. The objective for
the user is to convey a specific character by focusing on the matrix cell that contains the
desired character and counting the number of times it intensifies or flashes. Each row and
column of the matrix is intensified in a random sequence, forming an oddball paradigm of
12 intensifications—6 rows and 6 columns.

The rare set consists of the row and column that contain the character to be conveyed
(the target), while the other 10 intensifications form the frequent set (the non-targets). If
the observer is attentive to the stimulus sequence, the target items (i.e., the target row and
column) should elicit a P300 response since each target stimulus intensification constitutes
a rare event in comparison to all other intensifications. All analysis was performed using
MATLAB R2019b.
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Figure 1. Schematic illustration of the oddball paradigm.

2.1.1. BCI Competition III Dataset II

The BCI competition III dataset II, which was described in [12], served as the foun-
dation for this study. EEG signals were gathered from 64 electrodes and filtered with a
band-pass of 0.1–60 Hz while being sampled at a rate of 240 Hz. Two healthy participants
were recruited for this study, and they participated in both offline and online sessions,
which corresponded to the training and testing phases of the speller-based paradigm,
respectively. In the training session, the participants were required to spell 85 characters,
whereas in the testing session, they were instructed to spell 100 characters.

During both sessions, the participants were presented with a 6 × 6 matrix containing
36 characters and asked to concentrate on prearranged letters. The intensification of each
row and column of the matrix occurred randomly for 100 ms, followed by a blanking
period of 75 ms. This sequence was repeated a total of 15 times. The aim of this study
was to identify the P300 coefficients present in the row and column responses and utilize
this information to accurately determine the target characters by locating their intersec-
tion [26]. The offline session, where participants spelled 85 characters, yielded 2550 P300
(85 × 2 × 15) and 12750 non-P300 (85 × 10 × 15) samples. A validation set comprising
10 percent of the training data was reserved.

2.1.2. BCI Competition II Dataset II

This dataset represents a complete record of P300 evoked potentials recorded with
BCI2000 using a paradigm originally described by Farwell and Donchin [27]. The goal of
the experiment was for the user to focus on one of the 36 different characters presented
in the matrix. During each trial, rows and columns of the matrix were successively and
randomly intensified at a rate of 5.7 Hz. Two out of 12 intensifications of rows or columns
contained the desired character, while the rest did not. There are 15 repetitions for each
intensification. The P300 responses evoked by the infrequent stimuli that contained the
desired character were different from those evoked by the stimuli that did not contain the
desired character and were similar to the P300 responses reported in previous studies. The
dataset includes recordings from a single subject “C”, with 64 EEG channels and a sampling
rate of 240 Hz. The objective of the BCI Competition II using this dataset was to predict the
correct characters in one of the two provided sessions. A total of 7560 trials (42 × 12 × 15)
and 5580 trials (31 × 12 × 15) were obtained, as 42 and 31 characters were spelled in the
offline and online sessions, respectively. A validation set comprising 10 percent of the
training data was reserved.

2.2. Preprocessing

Filtering EEG signals is an important step in preparing the data for analysis. Filtering
removes unwanted noise and artifacts from the signal, which can affect the accuracy of
subsequent analyses. The bandpass filter used in this study is designed to allow frequencies
within a specific range to pass through while attenuating frequencies outside of that range.
This is because the frequency components of the EEG signal can provide important infor-
mation about brain activity, and different frequency ranges are associated with different
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brain processes. For both datasets, a band-pass filter with a range of 0.1–30 Hz was utilized
to filter the EEG signals.

The length of the window used for the time dimension in each epoch is an important
consideration when analyzing EEG data. In this study, a window length of 160 was
chosen based on the sampling rate of 240 Hz and the time interval of interest (667 ms after
intensifications). This ensures that the data are sampled at a high enough rate to capture
the essential features of the signal while minimizing the amount of data that needs to
be processed.

2.3. Feature Extraction

The proposed feature extraction technique is presented in Figure 2, which provides an
overview of the process. To begin, the source dataset was used to train the CNN1 network.
The starting weights used to train CNN2 (which has the same structure as CNN1) on the
target dataset were obtained from CNN1. After training both networks, each CNN was
utilized to extract high-level features, creating target and source features.

Figure 2. Graphical representation of the suggested method.

The utilization of a TL-based EA method (Euclidean alignment block) facilitated the
alignment of these feature blocks, thereby ensuring that they had similar distributions.
Further details regarding the technique are explained in the following sections.

2.3.1. Convolutional Neural Network

ERPs are characterized by non-stationary activity that varies across different sessions
and individuals. This variability makes it challenging to extract robust and reliable features
for analysis. CNNs have shown great promise in addressing this challenge by leveraging
their ability to learn hierarchical representations of the input data [28,29]. The architecture of
a CNN is typically composed of multiple convolutional layers and a set of fully connected
layers. Feature extraction is completed by applying a series of convolutional filters to
the input image or signal in CNN. These filters are designed to detect specific patterns
or features in the data. The output of each filter is then passed through a non-linear
activation function to introduce non-linearity into the network. This process of convolution
is repeated multiple times in the network to extract increasingly complex features from the
input image. Once the features have been extracted, they are fed into a fully connected layer
that performs classification. Overall, feature extraction is a critical step in CNN that enables
it to learn meaningful representations of images and achieve state-of-the-art performance
on various tasks.
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In this paper, both CNN networks (CNN1 and CNN2) have the same structure as a
two-layer CNN network and were trained to extract features from the EEG signal based
on the details given in the literature [20]. Each convolutional layer applies a set of kernels
to the input data to extract spatial and temporal patterns at different scales, respectively.
The size and number of kernels used in each layer are important design choices that
affect the quality of the extracted features. In our study, we used a kernel size of [64 × 1]
for the first convolutional layers, which has been shown to be effective for capturing
local spatial patterns in EEG data. Then we used a kernel size of [1 × 20] for the second
convolutional layer, which has been shown to be effective for capturing local temporal
patterns in EEG data, and also applied the rectified linear unit (ReLU) activation function
after each convolutional operation. ReLU has been shown to be an effective non-linearity
for deep neural networks, which sets all negative values in the feature map to zero while
passing all positive values unchanged. This helps to create sparse representations that are
easier to learn and generalize, allowing for efficient training and avoiding the vanishing
gradient problem.

Note that the choice of kernel size and number is problem-specific and depends on
the nature of the EEG analysis task. For instance, if the task involves detecting transient
events in the EEG signal, such as P300 responses, larger kernel sizes may be more effective
for capturing the temporal dynamics of the signal. On the other hand, if the task involves
identifying spatial-temporal patterns in the signal, smaller kernel sizes may be more
appropriate for capturing local features. Additionally, the number of kernels used in each
layer can be increased or decreased depending on the complexity of the task and the
amount of available data. A larger number of kernels may result in overfitting if the dataset
is small, while a smaller number of kernels may not capture the full complexity of the
signal if the dataset is large and diverse. The number of kernels for both convolution layers
is set to 16. Finally, the features were extracted from the second layer of the CNN using the
ReLU activation function. These extracted features were then used as inputs for subsequent
processing and analysis.

• CNN train approach

Fine-tuning is the process of taking a pre-trained neural network, such as a CNN,
and training it on a new task or dataset [30]. In the context of CNNs, fine-tuning involves
modifying the weights of the pre-trained network to better adapt it to the new task while
still preserving the knowledge learned from the original task. The fine-tuning ability of a
CNN refers to how easily and effectively it can be adapted to new tasks or datasets through
this process. A CNN with high fine-tuning ability is one that has learned robust and general
features in its pre-training and can therefore be quickly and accurately adapted to new tasks
with a few training examples. In this study, two subjects were considered, one as the source
and the other as the target. As described in Section 2.1.1, datasets consist of 85 training
characters (15,300 samples), and we consider all these samples of the source dataset for the
initial training (pre-training) of the convolutional neural network CNN1. However, based
on this study’s aim, we decided to only use 30 characters from the target dataset to retrain
the model (CNN2). Thus, we used 5400 samples, which represents one-third of the total
training samples. This decision was made to reduce the calibration time by minimizing
the number of training iterations needed. A detailed description of the data utilized for
pre-training, fine-tuning, and testing is provided in Table 1, which includes details on the
specific sources and targets utilized in each dataset, as well as the number of trials and
stimuli presented during the training and testing phases.
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Table 1. Detailed description of the data we used for pre-training, fine-tuning, and testing of our
language model.

Data Used for Pre-Training Data Used for Fine-Tuning Data Used for Testing

85 Training characters of subject A 42 Training characters of subject C 31 Test characters of subject C
85 Training characters of subject B 30 Training characters of subject A 100 Test characters of subject A
85 Training characters of subject A 30 Training characters of subject B 100 Test characters of subject B

2.3.2. Euclideam Alignment

After extracting features from the second convolutional layer of both CNN1 and CNN2,
a data alignment technique was applied to make the two feature matrices more similar and
enhance the efficiency of the transfer learning approach. Subspace alignment in transfer
learning is an important aspect that needs to be considered while transferring knowledge
from one domain to another. Since the model is trained on a source domain and fine-tuned
on a target domain, inconsistent data distributions between the two domains may lead to a
decline in model performance. To address this issue, data alignment techniques are used to
align the data distributions of the source and target domains.

The alignment process involves finding a transformation that maps the source and
target features in a new space to make the distributions more similar. This approach is
particularly useful when the source and target datasets have different feature distributions
or when the target dataset is small and insufficient for training a deep neural network [14].
In [24], a novel unsupervised technique was introduced that utilized covariance to calculate
the reference matrix for a subject with N trials data ( X) and k dimensions, as indicated by:

Rk =
1
N

N

∑
n=1

Xn
k (Xn

k )
T (1)

Then, the reference matrices for each dataset were then aligned by:

Xk = Rk
− 1

2 Xn
k (2)

This approach is cost-effective, label-free, and aims to improve distribution similarity.
Finally, aligned features were concatenated to feed the classifier.

2.4. Classification

Due to the subject-dependent nature of P300-based ERP signals, a robust classification
technique such as Discriminative Restricted Boltzmann Machine (DRBM) is necessary to
differentiate P300 signals from non-P300 signals [31,32]. DRBM belongs to the category
of generative stochastic neural networks that model the joint distribution of inputs and
target classes. In addition, DRBM has a multi-layer architecture, which includes visible and
hidden layers. The visible layer represents the input data, while the hidden layers capture
the relevant features for classification. In this study, we used a DRBM architecture with a
hidden layer containing 10 neurons to classify the input data. To determine the selected
character, which involves choosing a row and column from an oddball six-by-six character
matrix, the P300 scores corresponding to each character need to be averaged across all
repetitions. The character with the highest average score over m repetitions is then selected
as the target character [31]. This process is carried out for each of the j characters and m
repetitions, and the score S is calculated using Equation (3). The target character is then
identified using Equation (4).

C(j) =
m

∑
k=1

Sj(k) (3)

Target character = arg max1≤j≤JC(j) (4)
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3. Results

Initially, to demonstrate the effects of our suggested technique and represent the
data distributions, we employed t-Stochastic Neighbor Embedding (t-SNE) as a method
to transform the high dimension data into a lower dimension space [33]. In Figure 3a,
we plotted the filtered EEG signal of the source and target subjects, which consisted of
85 characters from subject B and 30 characters from subject A, respectively. Blue and
red dots represented each trial in the target and source data, respectively. On the other
hand, Figure 3b highlights the success of our proposed hybrid transfer learning method by
presenting the distribution of features extracted from the data. The blue and red dots in the
plot indicated the target and source trials, respectively. This visualization exemplified the
ability of our suggested transfer learning technique to align the data distributions between
target and source subjects, which is crucial for successful transfer learning. It is apparent
that the source and target distributions are similar to each other after EA.

To assess the efficacy of our proposed method in line with reducing calibration time,
we conducted several testing sessions using a widely recognized dataset. We evaluated the
performance of the proposed approach for various repetitions, including 1, 5, 10, and 15.
The results of these sessions are presented in Table 2, which compares the performance of
three different training approaches for two subjects.

Table 2. Character recognition accuracy (%) for subjects “A” and “B” from BCI competition III dataset
II using different approach in four repetitions.

Subjects A B Average

Methods
Repetitions Repetitions Repetitions

1 5 10 15 1 5 10 15 1 5 10 15

App − 1 20 62 84 95 38 80 92 95 29.0 71.0 88.0 95.0
App − 2 19 62 84 97 40 79 93 96 29.5 70.5 88.5 96.5
App − 3 23 66 86 98 44 81 95 97 33.5 73.5 90.5 97.5

The study employed three distinct approaches to investigate the efficacy of transfer
learning techniques for character recognition. The first approach, App − 1, followed
a conventional method and did not integrate transfer learning. This approach relied on
30 target training characters and 100 test characters. The second approach, App− 2, utilized
a transfer learning technique based on fine-tuning in a CNN but did not incorporate the EA
technique. App − 2 employed 30 target training characters, 85 source characters, and 100
test characters. Finally, in App − 3, the study employed a fine-tuning approach in a CNN
and incorporated the EA technique. This approach also used 30 target training characters,
85 source characters, and 100 test characters. The findings indicate that the approach
of App − 3 outperforms other methods in character recognition accuracy. Additionally,
this approach achieves high accuracy using fewer samples, making it well-suited for real-
time implementation. By utilizing only 30 out of the 85 available training characters for
target subjects, we have managed to save about 29 min (55 × 180 × 0.175 = 1732.5 s) in
calibration time.

In order to highlight the effectiveness of our suggested approach (App − 3), we have
conducted a comparative analysis of the character recognition outcomes with respect to
prior research utilizing the most advanced dataset, as presented in Table 3. Our scheme
demonstrates that achieving a strong performance while using fewer training samples
requires a balance between accuracy and trade-offs compared with other methodologies.

Information transfer rate ( ITR) is frequently used to assess the efficiency of a brain-
computer interface system. This metric gauges the speed at which data can be transmitted
between the brain and an external device, such as a computer. Measured in bits per second,
ITR is a critical indicator of the BCI system’s performance. A higher ITR can significantly
enhance the speed and accuracy of communication between the brain and external devices,
making it a crucial factor in determining the system’s effectiveness.
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The ITR formula measures how efficiently a user can communicate with a computer
using their brain signals, considering both speed and accuracy. This metric is typically
expressed in bits per minute (bpm). The definition of ITR is as follows:

ITR = ((log2 N + P log2 P + (1 − P) log2
1 − P
N − 1

)× 60)/T (5)

where N is the number of characters present in the BCI paradigm. In the present investi-
gation, N has been determined to be 36. Additionally, the variable P represents character
recognition accuracy, while the time taken for character recognition (T) has been explicitly
defined as:

T = 2.5 + ((0.100s + 0.075s)× 12)× Nr, 1 ≤ Nr ≤ 15 (6)

where Nr is the number of repetitions, which has been assigned values of 1, 5, 10, and 15 for
this investigation. In Figure 4, a comparison is made between the Information Transfer Rate
achieved by the proposed method and those reported in earlier studies. The results indicate
that the proposed approach yields a higher ITR than the other techniques. Specifically, the
proposed method exhibits the highest ITR at all repetitions, as evidenced by the values
of 10.9 bpm, 13.7 bpm, 10.7 bpm, and 8.6 bpm for 1, 5, 10, and 15 repetitions, respectively.
These findings suggest that the system’s speed and character recognition accuracy are
optimized across all repetitions.

Figure 3. It presents a t-SNE visualization showcasing the distribution of targets (30 characters of
subject A) and sources (85 characters of subject B) from BCI competition III dataset II, both before
and after transfer learning (TL) has been applied. The figure is split into two parts: (a) illustrates the
distribution before TL, while (b) presents the distribution after TL.

To utilize the proposed method on the BCI competition II dataset II, this study incor-
porated 42 training characters from subject C and 85 training characters from subject A to
refine and optimize the model.

On the 4th repetition, the proposed technique accomplished a remarkable 100% accu-
racy rate on the BCI competition II dataset II. The character recognition accuracy for each
epoch repetition is presented in Table 4 for reference. For this subject, we showed the effect
of transfer learning on improving performance in a situation where all the training data
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were used. While the reduction in calibration time was not directly proportional to the
decrease in the number of training characters, our study has demonstrated higher character
recognition accuracy compared with other state-of-the-art methods, as shown in Table 4.

Figure 4. Information transfer rate comparisons between proposed method and other methods
reported in Table 3 based on the average accuracy of two subjects A and B from BCI competition III
dataset II.

Table 3. Character recognition accuracy (%) for subject “A” and “B” from BCI competition III dataset
II using different previous studies and our proposed method in four repetitions.

Subjects A B Average

Methods
Repetitions Repetitions Repetitions

1 5 10 15 1 5 10 15 1 5 10 15

Proposed method 23 66 86 98 44 81 95 97 33.5 73.5 90.5 97.5
CNN-1 [34] 16 61 86 97 35 79 91 92 25.5 70.0 88.5 94.5
MCNN-1 [34] 18 61 82 97 39 77 92 94 28.5 69.0 87 95.5
MCNN-3 [34] 17 63 85 97 34 74 90 92 25.5 68.5 87.5 94.5
MsCNN-TL-ESVM [20] 24 60 86 96 40 79 97 96 32.0 69.5 91.5 96.0
MsCNN-ESVM [20] 16 46 81 89 37 74 94 96 26.5 60.0 87.5 92.5
PCA-EWSVM [20] 20 52 82 95 35 72 88 94 27.5 62.0 85.0 94.5
SSAE-ESVM [20] 17 63 81 96 39 77 93 95 28.0 70.0 87.0 95.5
CM-CW-CNN-ESVM [20] 18 52 80 90 36 73 92 95 27.0 62.5 86.0 92.5
ESVM [35] 16 72 83 97 35 75 91 96 25.5 73.5 87.0 96.5
DRBM [36] 15 62 84 99 35 76 92 93 25.0 69.0 88.0 96.0

The proposed method exhibited a commendable 77.4% accuracy in character recogni-
tion after the second repetition, indicating its viability for real-time BCI spelling.
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Table 4. Character recognition accuracy (%) for subject “C” from BCI competition II dataset II using
different previous studies and our proposed method in four repetitions.The evaluation involved
using different methods from previous studies and our proposed technique.

Subjects C

Methods
Repetitions

1 2 3 4 5 10 15

Proposed method 58.1 77.4 90.3 100 100 100 100
SVM [37] 64.5 71.0 83.9 96.8 100 100 100
LDA [31] 54.8 35.4 61.2 80.6 87.1 100 100
LSDA + LDA [31] 61.3 41.9 64.5 87.1 90.3 100 100
MMC + LDA [31] 58.0 45.1 67.7 77.4 90.3 100 100
sBLDA [38] - - - - 90.3 100 100
gsBLDA [38] - - - - 93.5 100 100
LASSO [38] - - - - 96.7 100 100
gLASSO [38] - - - - 100 100 100

4. Discussions

The approach used in this study aims to strike a balance between reducing the cali-
bration time and maintaining high classification accuracy, which is directly linked to the
size of the training sample used to train the model. To achieve this goal, we propose a
novel transfer learning approach. To evaluate the effectiveness of our method, we utilize
two state-of-the-art P300 speller-based datasets. This is because P300-based event-related
potentials are subject-dependent [39,40] and are commonly used in neuromuscular patient
studies [6,41,42]. Therefore, reducing calibration time is a crucial factor in these cases, and
our approach offers practical implications for the development and application of P300
speller-based BCI systems.

Table 3 is a critical component of our study as it demonstrates our achievements. Con-
ventional techniques such as CNN-1, MCNN-1, MCNN-3 [34], ESVM [35], and DRBM [36]
are used for comparison purposes. Note that their results were obtained using all 85 train-
ing characters, yet they exhibit lower character recognition accuracy than our proposed
method. The MsCNN-TL-ESVM, PCA-EWSVM, PCA-EWSVM, PCA-EWSVM, and CM-
CW-CNN-ESVM [20] methods, which are demonstrated in Table 3, employ 45 training
characters out of 85 available characters for model training. However, their performance
is hindered by a limited training dataset, which often leads to overfitting of the model.
To mitigate this issue, the TL technique involves training a pre-existing model on many
training datasets, which helps avoid over-fitting, followed by fine-tuning with a smaller
training dataset. While MsCNN-TL-ESVM uses the fine-tuning-based TL approach in their
analysis, our proposed TL method achieves higher performance with a smaller number of
training samples (30 training characters) due to the effectiveness of EA in the TL approach.

To further evaluate, we performed a statistical significance comparison based on
a t-test between the character recognition performances of our proposed method and
the MsCNN-TL-ESVM technique (results on 15 repetitions) for two subjects. The results
reveal that our method achieves significantly improved performance compared with the
MsCNN-TL-ESVM technique (p < 0.001). This suggests that our proposed TL method
can be more effective in character recognition tasks, even with a limited training dataset.
Furthermore, our proposed method achieves the highest ITR for the BCI competition III
dataset II at the first and fifth epochs compared with other methods as demonstrated in
Figure 4, whereas the MsCNN-TL-ESVM method demonstrates a comparable ITR at the
tenth and fifteenth epochs. This indicates that our proposed method attains a higher speed
than MsCNN-TL-ESVM with fewer epochs.

5. Limitations and Future Work

Although our proposed transfer learning method effectively reduces calibration time,
a major limitation of our approach is that it requires a small number of training samples
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from target subjects to train the model. This limitation can restrict the applicability of our
approach in real-world settings, where it is often challenging to obtain a sufficient number
of training samples from target subjects. In this direction, future work could investigate
alternative methods, such as developing a zero-training transfer learning approach that
can reduce or eliminate the reliance on target subject data to train the model.

Another potential area for future research is the use of synthetic data generation
techniques to enhance the training dataset. These techniques could be used to augment
the existing target data or to simulate new data that can improve the model’s performance.
Such an approach could help overcome the limitation of the small number of target subject
data samples.

It is also essential to note that not all source samples may be suitable for the target
data, which can lead to negative transfer. Therefore, future research should focus on
developing effective methods for selecting appropriate source samples for the transfer
learning algorithm. An efficient source sample selection strategy can significantly improve
the performance of transfer learning and is an important research area to explore.

Overall, the proposed research has highlighted some significant limitations and po-
tential areas for future research in transfer learning for BCI systems. Addressing these
limitations can help improve the effectiveness and applicability of transfer learning ap-
proaches in P300-based BCI systems, ultimately improving the quality of life for people
with disabilities.

6. Conclusions

After conducting our study, we can confidently conclude that our proposed method of
using transfer learning in conjunction with fine-tuning the CNN and Euclidean alignment
can efficiently reduce calibration time while maintaining high accuracy. Our approach
achieved higher accuracy rates with fewer training samples, indicating that it is suitable for
real-time implementation in P300 speller-based BCI systems. The results’ findings have
important implications for the development of efficient and accurate character recognition
systems, particularly in situations where calibration time is a critical factor. Furthermore,
the findings of our study suggest that transfer learning can be a useful tool for improving
the accuracy and efficiency of character recognition systems. This is particularly relevant
in scenarios where large amounts of data are not readily available or when the data
has high inter-subject variability. We believe our findings will be useful for researchers
and practitioners working in computer vision and machine learning and that they will
contribute to the development of more efficient and accurate character recognition systems.
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8. Waliszewska Prosół, M.; Bladowska, J.; Budrewicz, S.; Sąsiadek, M.; Dziadkowiak, E.; Ejma, M. The evaluation of Hashimoto’s
thyroiditis with event related potentials and magnetic resonance spectroscopy and its relation to cognitive function. Sci. Rep.
2021, 11, 2480. [CrossRef]

9. Waliszewska-Prosół, M.; Nowakowska-Kotas, M.; Kotas, R.; Bańkowski, T.; Pokryszko-Dragan, A.; Podemski, R. The relationship
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