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Abstract: Image abstraction simplifies complex images, highlights specific features, and preserves
different levels of structures to achieve a desired style. This paper presents a constructive and
adjustable data hiding algorithm to convey various secret messages and resist modern steganalytic
attacks. Our scheme produces an abstracted stego image, while synthesizing an original image
during the image abstraction process. Our algorithm is flexible, applicable to two types of images:
high-dynamic-range images and ordinary color images, aka low-dynamic-range images. Additionally,
we introduce a novel image encryption scheme suitable for the above two types of images, which
incorporates a two-dimensional logistic tent modular map and a bit-level random permutation
technique, thereby further protecting the content of the stego image and the carried secret messages.
Compared with the current state-of-the-art methods, our algorithm provides a 14% to 33% larger
embedding rate, while lowering the distortion of the abstracted stego image. A comprehensive
security analysis confirmed that our algorithm provides high security to resist statistical, differential,
brute force, chosen-plaintext, and chosen key attacks.

Keywords: constructive data hiding; high-dynamic-range image; message embedding; adaptivity;
image abstraction; image encryption; information security

1. Introduction

Image abstraction transforms an input image into a new image with a distinct style
while preserving the contents in the original image. The goal of image abstraction is to
create visually appealing images with specific aesthetics, such as impressionism, cubism,
or surrealism. This technique is useful to make images more visually appealing for social
media or advertising. Winnemöller et al. [1] introduced a framework for automated and
real-time video abstraction which employs Gaussian filters and bilateral filters. Ma et al. [2]
proposed a quadruple-cycle framework to support iterative learning to achieve restorable
arbitrary style transfer. A new quantitative evaluation method was introduced to measure
content preservation and style embedding performance, while solving the content leak
problem from an image restoration perspective. However, these methods consider the
input image as a color image, also known as low-dynamic-range (LDR) image, as the pixel
values are within the fixed range of [0, 1], before scaling up to [0, 255] for storage purpose.
Consequently, these image abstraction algorithms are not applicable to high-dynamic-range
(HDR) images which usually exceed the fixed range.

HDR images [3,4] have become increasingly popular due to their ability to offer a
wider dynamic range. Dynamic range refers to the range of brightness or luminance
values that are present in the image. HDR images offer improved image detail and a
closer approximation to human visual perception compared to traditional LDR images.
RGBE [5], LogLuv including LogLuv24 and LogLuv32 [6], and OpenEXR [7] are three
major established HDR image file formats. In contrast to the integer representation in LDR
images, HDR images are able to precisely represent a broad range of luminance and colors
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by utilizing floating-point numbers to store critical information. This unique capability
positions HDR images as a promising candidate to become the dominant image standard
in the future. In particular, high-dynamic-range imaging [8] represents a technique for
accurately representing a wide range of intensity levels captured in real scenes from an
extensive dynamic range of exposures; it has been intensively investigated with applications
in image processing, computer graphics, and computer vision. In contrast to high-dynamic-
range imaging, only a limited number of HDR image abstraction techniques have been
proposed. Zhou et al. [9] modified the image filtering scheme of [1] to solve the image
abstraction transfer problem and successfully abstracted HDR images. Kumar et al. [10]
introduced an integrated filter-based approach to produce the effect of line drawing from
HDR images; their scheme incorporates the features of anisotropic filter, shock filter with
iterations, and bilateral filter to produce the important shapes in HDR images without
upsetting the human visual effect.

Regarding data hiding for HDR images, several studies proposed an adaptive data
hiding approach to balance image quality and embedding rate. These approaches leverage
the fact that HDR images often have a wide range of luminance and colors, while the human
eye has different sensitivity in different luminance and texture. Cheng and Wang [11]
pioneered these works and pixels in RGBE images are categorized into homogeneous or
heterogeneous areas to carry adjustable secret data. They offered an embedding rate ranging
from 5.13 to 9.69 bits per pixel (bpp); however, the peak signal-to-noise ratios (PSNR) of the
resultant tone-mapped stego images were only slightly greater than 30 dB. By exploiting
the homogeneous representations of RGBE pixels, Yu et al. [12] concealed different numbers
of messages based on the homogeneous representations and achieved data hiding without
distortion in HDR RGBE images, but their scheme has to pay the penalty of providing
a limited embedding rate in the range of 0.127–0.145 bpp. Gao et al. [13] utilized a two-
dimensional prediction-error histogram to decrease the distortion from data hiding and
provide between 1.202 and 2.85 embedding rates in bpp. Lan et al. [14] introduced an
adaptive method to carry secret message in RGBE images, which takes into consideration
of the exponent channel distribution when converting from OpenEXR image format. Their
method keeps the exponent channel intact during the message concealment. Their scheme
supports embedding rates from 7.30 to 9.29 bpp. Lin et al. [15] partitioned the pixels into
three groups according to their luminance, and selected low luminance pixels to conceal a
greater number of messages. Depending on the specific parameters used, their approach
yielded the embedding rates of 2.433 to 20.002 bpp.

Most of the above-mentioned works embed messages by altering pixels of the cover
image, thereby generating stego pixels with different degrees of distortion, depending
on the number of secret messages injected into the cover images. In this scenario, the
format remains consistent between the cover and stego images. As a result, concealing a
greater message results in a larger image distortion, making it challenging to withstand
steganalytic attacks, which aim to identify any hidden messages in an innocent-looking
image. To address the issue of possible steganalytic vulnerabilities, researchers have
proposed a novel data hiding scheme that conceals confidential messages by creating a
stego image directly, instead of modifying an existing cover image. This method is known
as “constructive data hiding” or “constructive steganography” [16]. Hsieh and Wang [17],
evaluated the EC-MV steganalysis of their WCTCIS algorithm using the BOSSbase2 image
data base containing 10,000 color images. Their algorithm, which uses the constructive
image steganography (CIS) approach, can resist the steganalysis attack. Their experimental
results demonstrate that the detection rate in the receiver operating characteristic (ROC)
curve is linear and the area under the curve (AUC) is around 0.50, which is no better than a
random guess. They also reported that in contrast, the steganographic algorithm by cover
modification (SCM) approach has a high detection rate, resulting in the AUC being as high
as 0.9984. Hsieh and Wang concluded that the stego images produced by the CIS approach
can resist modern power attacks, such as EC-MV steganalysis, RS steganalysis, pixel value
difference (PVD) attacks, and an attack through statistical analysis.
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Similar to data hiding methods, encryption algorithms for HDR images are limited in
the literature. Some techniques have been proposed to encrypt different aspects of HDR
images. Yan et al. [18] applied elementary cellular automata (ECA) to encrypt HDR RGBE
images, while Lin et al. [19] generated pseudo-random numbers by utilizing a logistic map
to encrypt HDR images in the format of LogLUV. Chen and Chang [20] prioritized achieving
good performance by only encrypting the exponent field bits in OpenEXR images. Chen
and Yan [21] presented a scheme for encrypting and authenticating OpenEXR images using
torus automorphism and Vernam cipher. Tsai et al. [22] employed random binary digits
to encrypt images, and Lan et al. [14] proposed an image encryption algorithm utilizing
a 2D sine logistic modulation map (2D-SLMM) and a random permutation technique. In
addition, they introduced a set of metrics to comprehensively evaluate the security of the
encrypted image in six different aspects.

Research in the combination of data hiding and encryption has also received consid-
erable attention, particularly with the rise of cloud computing and privacy-preserving
applications. One such field is reversible data hiding in encrypted images (RDHEI), which
can be divided into two approaches: vacating room after encryption (VRAE) and reserving
room before encryption (RRBE). In the VRAE approach, Puech et al. [23] used the AES
encryption algorithm on 16-pixel image blocks and embedded 1-bit data into a randomly
chosen pixel using a pseudo-random number generator. In contrast, for the RRBE approach,
Ma et al. [24] reserved room by histogram shifting, significantly increasing the payloads.
After two pioneering studies, several improvement schemes have been proposed [25]. For
example, Puteaux and Puech [26,27] utilized error prediction and the LOCO-I algorithm
in the JPEG-LS compression standard to achieve an average embedding rate of 2.46 bpp.
Meanwhile, Wang et al. [28–30] employed a block-level approach for reversible data hiding
in the encrypted domain, achieving a maximum embedding rate of 2.5 bpp. These VRAE
or RRBE algorithms focus on providing large payloads but fail to evaluate the security of
encrypted images.

This paper presents a new adaptive data hiding method which conceals messages
when constructing an HDR abstracted image. To the best of our knowledge, few works
in the extant literature report on data hiding on abstracted HDR images. Our scheme is
suitable to embed secret messages when rendering HDR RGBE and LDR abstracted images.
Furthermore, our algorithm performs adaptive data hiding based on the brightness of
pixels, where more data are concealed in darker pixels without upsetting the human visual
system. Moreover, in order to further protect the image content and the concealed message,
we recommend an image encryption algorithm that utilizes a two-dimensional logistic tent
modular map (2D-LTMM) [31] and a random permutation scheme [32]. This encryption
algorithm is also suitable both for HDR RGBE as well as LDR images. To ensure the security
of our image encryption scheme, we evaluated its security using the metrics suggested by
Lan et al. [14] and conducted a noise addition analysis.

Our work has the following contributions:

• Our algorithm conceals messages during the image abstraction process which be-
longs to the constructive image steganography (CIS) approach rather than the SCM
approach; it is suitable for both HDR RGBE and LDR images. Our scheme effec-
tively eliminates the vulnerability associated with the SCM approach because the
CIS approach offers a significant benefit of producing no cover image. It is difficult
for a steganalytic tool to take any advantage to fully train models to distinguish the
difference between cover and stego images. Consequently, our scheme can resist
training-based steganalysis attack.

• Our adaptive approach conceals a greater number of confidential data in darker and
lower luminance pixels, while embedding fewer messages into brighter and higher
luminance pixels. This adaptive technique is consistent with the human visual system:
dark pixels are less sensitive to the human eye, and minor changes in brighter regions
are more apparent. Our algorithm delivers higher embedding rates, ranging from
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14% to 33% compared to the current state-of-the-art techniques, while maintaining the
quality of a stego image.

• We propose an encryption algorithm that is suitable for both RGBE-based HDR images
and LDR images. By utilizing a 2D-LTMM, this scheme produces pseudo-random
sequences with improved hyperchaotic characteristics. In addition, exploring a simple
yet efficient random permutation scheme enables our scheme to perform not only
the bit-level permutation, but also the byte-level diffusion. As a result, our scheme
encrypts all bits in all channels in RGBE and LDR images.

• Our encryption algorithm was thoroughly assessed through seven metrics. The
outcomes demonstrate that our encryption scheme offers robust security against
statistical, differential, brute force, chosen-plaintext, and chosen-key attacks.

The remaining sections of this paper are structured as follows: In Section 2, we elabo-
rate on our proposed methods, which consist of image abstraction, adaptive data embed-
ding, data extraction, image encryption, and image decryption. In Section 3, we outline the
experiment results and compare them against other relevant schemes. Lastly, in Section 4,
we present our concluding remarks and propose potential avenues for future research.

2. Our Proposed Methods

We describe our scheme in this section. Figure 1 illustrates the flowchart of our
algorithm and the output images at each step. Our adaptive data hiding scheme utilizes
image abstraction to embed secret messages, thereby constructing an abstracted stego
image. The encryption algorithm utilizes a two-dimensional logistic tent modular map and
a random permutation scheme to perform bit-level permutation and byte-level diffusion.
In Figure 1a, the original input image I undergoes the abstraction process to produce
an abstraction result and a quantization result. An image composition process combines
edges produced from difference of Gaussian (DoG) filter [9] to produce an intermediate
abstracted image, IA. Moving on to Figure 1b, we utilize IA as an input for our adaptive
data embedding process to construct the abstracted stego image IS. Next, to ensure the
security of the image content and the concealed secret messages, we encrypted IS using
our proposed image encryption algorithm, thereby producing the encrypted image IE. At
the recipient’s end, as shown in Figure 1c, stego images are decrypted before extracting
secret messages. These processes are detailed as below.

2.1. Image Abstraction

The process of image abstraction involves taking the original image I as input, and
transforming it into a new image with a different style while preserving the original content.
However, rather than outputting the converting result as an image, we use the intermediate
abstracted image IA as the input for the succeeding steps.

Figure 1a depicts the flowchart of our image abstraction algorithm. The algorithm
comprises five distinct steps. The first step is image luminance scaling and leveling (ILSL).
This process can appropriately scale the luminance of HDR images for reducing the infor-
mation of HDR images. After abstracting an image, the luminance of the abstracted image
will be reconstructed near the magnitude of the original HDR images. In addition, this
process can also be used for LDR images because they have fixed luminance range, which
can be considered as a special case of an HDR image.

The second step is image information reduction (IIR). In this phase, we present a new
trilateral edge-preserving filter based on the bilateral filter. This new filter can reduce the
redundant information within an image and effectively maintain edge information within
an image than the existent bilateral and trilateral filters. Through this step, the filtered
result can present better gradations between objects. Note that, in an image abstraction
algorithm, the effect of the filter will influence the final abstracted results.
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scheme due to the constructive data embedding approach; instead, we exhibit it here to clarify the
subsequent stages. (c) The image decryption and data extraction process.

The third step of image abstraction is image luminance quantization (ILQ). In general,
cartoonists have long employed the various color blocks to represent different lighting
distributions. To accomplish such an effect, we modify the video abstraction model, encour-
aging our algorithm to represent the lighting distributions of an image more effectively,
making the output image more similar to that of the original image. It also provides an
alternative choice for end users to refine their work. Further, differing from [1], our method
is capable of automatically determining the suitable luminance level, depending on the
luminance distribution appearance in an image.

The next step of image abstraction is image edge detection (IED). Cartoon-based
images usually employ some obvious edges to simply exhibit the contour of an object.
To simulate this characteristic, we first employ the Difference of Gaussian (DoG) filter to
determine the edge information of a target object. We then combine the edge information
with the abstracted result, making the abstracted image demonstrate a more visually
pleasant appearance.
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The final step is fuzzy-relationship-based image composition (FIC). In this step, we
balance the influences of both abstracted image and quantized images by computing their
fuzzy relationship. The output of these five steps are abstracted images with black contour
highlighting the objects ready for data concealment.

2.2. Adaptive Data Embedding

Adaptive data embedding strategies consider local image properties such as texture or
luminance. To take advantage of the fact that the human eye is less sensitive to variations
in darker pixels, we propose an adaptive message embedding algorithm based on the
luminance of pixels for both RGBE and LDR images. The input of this process is the
intermediate abstracted image, IA, and the output is the abstracted stego image IS, with
concealed messages.

Our adaptive data embedding algorithm first determines the adjustable embedding
bases. The larger the embedding base, the more messages that can be concealed. We
propose a six-level adaptive base approach for HDR images encoded by the RGBE for-
mat. For an RGBE pixel P = (PR, PG, PB, PE), we apply Equation (1) to determine the
corresponding embedding base. During the image abstraction process, contour edges
are detected and produced, resulting in a small exponent value close to PE = 0 and a
scene-referred color channel of approximately 2−128. Regardless of their PR, PG, and PB
values, these pixels are indistinguishable to the human eyes. We leverage this fact and
assign the maximum base (bR, bG, bB) = (255, 255, 255) to these pixels with PE = 0. The
remaining pixels are divided into T groups based on their PE values, where Emin and Emax
represent the minimum and maximum non-zero PE values, respectively. The group with
the smallest PE is assigned the embedding base HD1, while the group with the highest
PE values is assigned embedding base HDT . In this study, we adopt the parameters of
embedding base in descending order associated to their PE values, where we set T = 5 and
(HD1, HD2, HD3, HD4, HD5) = (11, 9, 7, 5, 3).

(bR, bG, bB) =

{
(255, 255, 255), if PE = 0
(HD i, HDi, HDi), if EL,i ≤ PE ≤ ER,i, where 1 ≤ i ≤ T

EL,i = Emin +
(i−1)

T (Emax − Emin) and ER,i = Emin +
i
T (Emax − Emin)

(1)

For LDR images, we utilize a two-level base approach to segment pixels. Firstly, we
calculate the mean values for each channel of the image and denote them as (µR, µG, µB).
These values are used as a boundary to conceal different secret messages. They also serve
as part of a secret key when extracting the secret message; thus, they are delivering to
the receiver from a secure channel. Next, for the i-th pixel, P = (PR, PG, PB), we apply
Equation (2) to determine the embedding base (bR, bG, bB) for each channel of the pixel.
If the absence of the index i does not result in any ambiguity in the expression, we will
not include it. In this study, we adopt the parameters (LD1, LD2, LD3, LD4) = (5, 7, 9, 11).
Nevertheless, end user can change these parameters, depending on the request of the
embedding capacity. The larger the parameters, the higher the embedding capacity our
scheme can offer:

bR =

{
LD1, for PR > µR

LD2, for PR ≤ µR
, bG =

{
LD2, for PG > µG
LD3, for PG ≤ µG

, bB =

{
LD3, for PB > µB

LD4, for PB ≤ µB
(2)

Using the determined embedding bases, we decompose the embedding digits from
the message stream and inject them into the corresponding channels of the pixels. In the
HDR image, a stego pixel is represented as P′ = (PR′ , PG′ , PB′ , PE), where the E channel
does not carry any secret message due to its sensitivity to a minor change; while in the LDR
image, a stego pixel is represented as P′ = (PR′ , PG′ , PB′).
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The secret data concealment is based on the modulus operation, as demonstrated in
Equation (3), where kR, kG, kB ∈ {−1, 0, 1}:

PR′ = dR + PR − (PR mod bR) + kR × bR, where kR = arg min|PR′ − PR|
PG′ = dG + PG − (PG mod bG) + kG × bG, where kG = arg min|PG′ − PG|
PB′ = dB + PB − (PB mod bB) + kB × bB, where kB = arg min|PB′ − PB|

(3)

where (dR, dG, dB) represent the hidden secret digits for their corresponding channels.
The arg min|P′ − P| operation ensures that the stego pixel

(
PR′ , PG′ ,PB′

)
produced by

(k R, kG, kB) is as close as possible to the original one, thus reducing the distortion as
much as possible. We remark that when embedding message to LDR images, our algorithm
sets (µR, µG, µB) as the boundaries, and the pixel values after the message concealment
will remain within their original levels without crossing the boundaries to different levels.
This means that our algorithm can extract correct messages under the adaptive message
embedding strategy.

Taking an LDR pixel as an example for message embedding, we let P = (PR, PG, PB) =
(59, 114, 91), (dR, dG, dB) = (6, 3, 7), and (µR, µG, µB) = (106.91 , 100.87, 92.31). According
to Equation (2), (bR, bG, bB) = (7, 7, 11) represents the determined embedding base. We
first use Equation (3) to calculate PR′ = 6 + 59− (59 mod 7) + k, k ∈ {−7, 0, 7}, which
results in PR′ = 62, as it is closer to PR = 59 than the other two candidates, 55 and
69. Similarly, we can derive PG′ = 115 using the same process. As for PB′ = 7 + 91−
(91 mod 11) + k, k ∈ {−11, 0, 11}, which produces three possible values: 84, 95, and 106.
Since 95 is the closest one to PB = 91, we might choose it. However, 95 is larger than
the level boundary of µB = 92.31. Therefore, we choose the value 84, instead, in order to
ensure the correctness of message extraction. Finally, the stego pixel value produced is
P′ = (PR′ , PG′ , PB′) = (62, 115, 84).

It is worth noting that our adaptive method conveys more secret data in pixels with
low E values, which typically appear dark after the tone-mapping process. Similarly, our
two-level adaptive LDR image embedding conceals more secret messages in pixels with
values below the mean of the corresponding channels. These outcomes are consistent with
the human visual sensitivity system that darker pixels are better suited for conveying more
messages without attracting human attention, making it less likely for the stego image to
be detected by malicious attackers.

2.3. Image Encryption

To secure confidential information and prevent unauthorized access to the image, our
scheme involves encrypting the abstracted stego image, IS, and producing an encrypted
version, IE,. The process has four steps, which are detailed below:

1. Computing the attribute value of the image. We use Equation (4) to obtain the attribute
value h of the abstracted stego image:

h = 10a ×
W×H

∑
i=1

(
Pi,R′ × 1016 + Pi,G′ × 108 + Pi,B′

)
1024 , (4)

Here, W × H denotes image resolution; Pi,R′ , Pi,G′ , and Pi,B′ are values of the channels
in pixel i; the parameter a is an integer used to adjust the result h to comply with the
restriction, 0.1 < h < 1. After obtaining the result h, we convert it into a double precision
floating-point number and incorporate it into the secret key.
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2. The two-dimensional logistic tent modular map (2D-LTMM). We produce two pseudo-
random sequences, R1, R2, using a 2D-LTMM [31], as shown in Equation (5):

xi+1 =

{
(4axi(1− xi) + 2byi) mod 1, for yi < 0.5
(4axi(1− xi) + 2b(1− yi)) mod 1, for yi ≥ 0.5

yi+1 =

{
(4ayi(1− yi) + 2bxi)mod1, for xi < 0.5
(4ayi(1− yi) + 2b(1− xi)) mod 1, for xi ≥ 0.5

(5)

The constraints of control parameters, a and b, are a > 0 and b > 0. In this study,
we select (a, b) = (100, 100). The trajectory of the 2D-LTMM is shown in Figure 2, which
is uniformly distributed over the entire phase plane. In addition, the evaluations of the
2D-LTMM demonstrate a wide and continuous chaotic range, robust chaotic behavior, and
hyperchaotic properties [31]. To increase the security of image encryption, the initial values
are set as: (x0, y0) = (xK × h, yK × h). The values of (xK, yK) are a portion of the secret key.
It is worth noting that the initial values (x0, y0) are linked to the image’s attribute value
obtained in Step 1. Therefore, they dynamically change based on the stego image being
processed. We remark that this approach provides the benefit of resisting chosen-plain
attacks as attackers, who use more plaintext images for encryption, fail to gain any further
information to lessen the security of our scheme.
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Figure 2. Trajectory of two-dimensional logistic tent modular map using the initial values
(x0, y0) = (0.31416, 0.27183) and the control parameters (a, b) = (100, 100).

We then apply Equation (5) to generate two pseudo-random sequences:
X =

{
x0, x1, . . . , xq, xq+1, . . . , xq+n1

}
and Y =

{
y0, y1, . . . , yq, yq+1, . . . , yq+n2

}
, where the

first q elements in both sequences are discarded to eliminate the initial transient effects.
The quantities of (n1, n2) are (32WH, 4WH) for HDR images and (24WH, 3WH) for LDR
images. The format of each element is the double precision floating point, as defined by the
IEEE 754 standard [33]. The least significant 32 bits of each element in X are extracted to
form a 32-bit integer sequence, denoted as R1 =

{
R1,0, R1,1, . . . , R1,n1

}
. We extract the least

significant 8 bits of each element in Y to construct an 8-bit integer sequence, represented as
R2 =

{
R2,0, R2,1, . . . , R2,n2

}
. The sequence R1 is used in the next step to randomly permute

all n1 bits in the image, and R2 is employed in the following step to diffuse all n2 bytes of
the image.

3. Bit-level permutation for the whole image. This step shuffles the positions of all n1
bits in the abstracted stego image. To achieve the bit-level permutation, we utilize the
random permutation scheme [32], also called the Fisher–Yates Shuffling method, in
combination with the sequence R1 generated in Step 2.
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Considering an image with n1 bits, let {X} = {1, 2, . . . , n1} indicate the indices of bits
in the image. During the i-th iteration, we generate an ( n1 + 1− i)-ary random integer
by computing k = R1,i mod (n1 + 1− i), where R1,i is the i-th pseudo-random integer in
sequence R1. Following this, we swap the ( n1 + 1− i)-th index with the k-th index. The
procedure repeats (n1 − 1) times to rearrange the indices recorded in {X}.

We now use an image with only 8 bits (n1 = 8) as an instance. {X} = {1, 2, 3, 4, 5, 6, 7, 8}
indicates the indices of the bits in the image, and {B} = {1, 0, 1, 0, 0, 1, 0, 0} denotes the
corresponding bits. With this representation, we can refer to the first three bits as X[1] = 1,
X[2] = 0, and X[3] = 1. Table 1 illustrates the permutation process, where the gray color
represents the shuffled indices. At the initial round (i = 1), an 8-ary random number k = 58
is generated from the sequence R1, then the 5th index, 5, is swapped with the 8th index, 8,
resulting in shuffled indices {1, 2, 3, 4, 8, 6, 7, 5}. During the next iteration (i = 2), k = 37 is
generated and the 3rd index, 3, is exchanged with the 7th index, 7, resulting in the indices
{1, 2, 7, 4, 8, 6, 3, 5}. The final permuted indices

{
X′
}

are {8, 1, 6, 7, 2, 4, 3, 5}, which yields a
bit-level permutation of

{
B′
}
= {0, 1, 1, 0, 0, 0, 1, 0}.

Table 1. An illustration of random index permutation for an image with 8 bits, where
{X} = {1, 2, 3, 4, 5, 6, 7, 8} denotes the original order of the bit indices.

i k Swap 1st 2nd 3rd 4th 5th 6th 7th 8th

Original index {X} 1 2 3 4 5 6 7 8
1 58 (5th, 8th) 1 2 3 4 8 6 7 5
2 37 (3rd, 7th) 1 2 7 4 8 6 3 5
3 46 (4th, 6th) 1 2 7 6 8 4 3 5
4 25 (2nd, 5th) 1 8 7 6 2 4 3 5
5 34 (3rd, 4th) 1 8 6 7 2 4 3 5
6 03 No change 1 8 6 7 2 4 3 5
7 12 (1st, 2nd) 8 1 6 7 2 4 3 5

Permuted index
{

X′
}

8 1 6 7 2 4 3 5

Our implementation involves first aligning n1 bits in the image and then applying
a bit-level random permutation. It is worth noting that the indices are swapped in place
instead of producing a separate copy. As a result, the time complexity is O(N) for the
random permutation, and the space complexity is O(1). Furthermore, every element chosen
in the array {X} has an equal probability (1/n1). The output permutation has a probability
of 1

n1
× 1

n1−1 × . . .× 1
2 ×

1
1 = 1

n1! when applying this analysis recursively. This implies that
every permutation is equally likely to occur.

4. Byte-level diffusion. The last stage involves diffusing the permutated image using the
exclusive-OR operator, ⊕, in combination with the pseudo-random sequence, R2. The
shuffled byte set of the permutated image is denoted as
IS =

{
P1,R′ , P1,G′ , P1,B′ ,

(
P1,E′

)
, . . . , PW×H,R′ , PW×H,G′ , PW×H,B′ ,

(
PW×H,E′

)}
. Note that

an HDR image contains Pi,E′ elements as it has four channels, including the exponent
one. The byte diffusion process comprises of two sub-steps. Firstly, we extract the
initial values,

(
P0,R′ , P0,G′ , P0,B′ , P0,E′ , C0,E′

)
for RGBE and

(
P0,R′ , P0,G′ , P0,B′ , C0,B′

)
for

LDR images, from the secret key. Next, we apply Equation (6) to diffuse the bytes of
each channel. It is worth noting that as four initial values are provided, the range of
index, i, is from 0 to W × H − 1.

Ci+1,R′ = R2,4i ⊕ Pi+1,R′ ⊕ Pi,R′ ⊕ Ci,E′

Ci+1,G′ = R2,4i+1 ⊕ Pi+1,G′ ⊕ Pi,G′ ⊕ Ci+1,R′

Ci+1,B′ = R2,4i+2 ⊕ Pi+1,B′ ⊕ Pi,B′ ⊕ Ci+1,G′

Ci+1,E′ = R2,4i+3 ⊕ Pi+1,E′ ⊕ Pi,E′ ⊕ Ci+1,B′

, for RGBE images


Ci+1,R′ = R2,3i ⊕ Pi+1,R′ ⊕ Pi,R′ ⊕ Ci,B′

Ci+1,G′ = R2,3i+1 ⊕ Pi+1,G′ ⊕ Pi,G′ ⊕ Ci+1,R′

Ci+1,B′ = R2,3i+2 ⊕ Pi+1,B′ ⊕ Pi,B′ ⊕ Ci+1,G′

, for LDR images

(6)
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Let us consider a permutated LDR image and take the first pixel as an example. This
pixel is represented by the RGB values P′1 =

(
P1,R′ , P1,G′ , P1,B′

)
= (150, 66, 23). We use a

pseudo-random sequence R2 = {10, 153, 117, ...} and four initial values(
P0,R′ , P0,G′ , P0,B′ , C0,B′

)
= (79, 51, 114, 99) to diffuse the bytes using Equation (6) with i = 0.

Applying this equation, we get C1,R′ = 10⊕ 150⊕ 79⊕ 99 = 176. We then use this value to
diffuse C1,G′ to obtain C1,G′ = 153⊕ 66⊕ 51⊕ 176 = 88. Similarly, we diffuse C1,B′ = 72
using C1,G′ . Finally, the stego pixel P′1 is diffused to become C′1 = (176, 88, 72).

One advantage of our scheme is the avalanche effect [34,35]. This effect means that if
an error occurs in one pixel during encryption, it will trigger a chain reaction that spreads
the error to all subsequent pixels. The error spreading causes a significant change in the
encrypted image, making it difficult to analyze using differential attack methods.

2.4. Image Decryption

We need to decrypt the image before revealing the hidden messages. This involves
taking the encrypted image, IE, as input and producing the deciphered stego image, IS, as
output. The decryption process is detailed as follows:

1. Regenerating the pseudo-random sequences using the 2D logistic tent modular map.
We retrieve the values of (h, q, xK, yK) from the secret key and follow Step 2 of the
image encryption to regenerate the same pseudo-random sequences R1 and R2.

2. Byte-level inverse diffusion. Applying R2 with the initial values,
(

P0,R′ , P0,G′ , P0,B′ , P0,E′ , C0,E′
)

for RGBE and
(

P0,R′ , P0,G′ , P0,B′ , C0,B′
)

for LDR images, we can utilize Equation (7) to
decipher stego encrypted values in all channels:

Pi+1,R′ = R2,4i ⊕ Ci+1,R′ ⊕ Pi,R′ ⊕ Ci,E′

Pi+1,G′ = R2,4i+1 ⊕ Ci+1,G′ ⊕ Pi,G′ ⊕ Ci+1,R′

Pi+1,B′ = R2,4i+2 ⊕ Ci+1,B′ ⊕ Pi,B′ ⊕ Ci+1,G′

Pi+1,E′ = R2,4i+3 ⊕ Ci+1,E′ ⊕ Pi,E′ ⊕ Ci+1,B′

, for RGBE images


Pi+1,R′ = R2,3i ⊕ Ci+1,R′ ⊕ Pi,R′ ⊕ Ci,B′

Pi+1,G′ = R2,3i+1 ⊕ Ci+1,G′ ⊕ Pi,G′ ⊕ Ci+1,R′

Pi+1,B′ = R2,3i+2 ⊕ Ci+1,B′ ⊕ Pi,B′ ⊕ Ci+1,G′

, for LDR images

(7)

As a continuation of our previous example, assume that we have generated a pseudo-
random sequence R2 = {10, 153, 117, . . .}, and the four initial values

(
P0,R′ , P0,G′ , P0,B′ , C0,E′

)
=

(79, 51, 114, 99). Suppose that the first encrypted stego pixel is C′1 = (176, 88, 72). To de-
crypt this pixel, we use Equation (7) and derive P1,R′ = 10⊕ 176⊕ 79⊕ 99 = 150 for the
red component. By applying the same approach, we can decrypt the other two components
and obtain the deciphered stego pixel P′1 = (150, 66, 23).

3. Bit-level inverse permutation. This step applies the sequence R1 generated in Step 1
and the random permutation scheme to inversely restore bits in an image. After this
step, the bit order will return to the original one. Following up on the previous 8-bit im-
age example, we can obtain the indices of permutated bits

{
X′
}
= {8, 1, 6, 7, 2, 4, 3, 5},

representing the permuted bits
{

B′
}

= {0, 1, 1, 0, 0, 0, 1, 0}. Table 2 illustrates the
operation in this step. The first bit in

{
B′
}

is 0, and its corresponding index is 8.
Thus, we place this bit in the 8th position of the output buffer. Similarly, the second
bit, 1, is placed in the 1st position of the output buffer, etc. Finally, we produce the
inversely permutated bits {B} = {1, 0, 1, 0, 0, 1, 0, 0}, which has the same order before
the permutation process.
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Table 2. An illustration of inverse permutation in bit-level, where
{

X′
}
= {8, 1, 6, 7, 2, 4, 3, 5} repre-

sent the permutated indices, and
{

B′
}
= {0, 1, 1, 0, 0, 0, 1, 0} are the permutated bits.

Position 1st 2nd 3rd 4th 5th 6th 7th 8th

Permutated bits
{

B′
}

0 1 1 0 0 0 1 0
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2.5. Data Extraction

Once the stego image has been decrypted, the embedded messages can be extracted.
The first step of message extraction is to determine the embedding base.

When dealing with HDR images in the RGBE format, we employ the six-level adaptive
base technique, shown in Equation (1), which uses the intact E values to determine the
embedding bases for the R, G, and B channels of the pixel. In the case of LDR images,
we utilize the values (µR, µG, µB) provided in the secret key and apply Equation (2) to
determine the embedding base (bR, bG, bB) for each channel of the pixel.

Once the embedding bases have been determined, the secret digits (dR, dG, dB) em-
bedded in the R, G, and B channels of a stego pixel can be extracted using Equation (8).
These secret digits are later used to produce the original binary secret bits:

(dR, dG, dB) = (PR′ mod bR, PG′ mod bG, PB′ mod bB) (8)

Continuing from our previous example in data embedding, the decrypted stego
pixel P′ = (PR′ , PG′ , PB′) = (62, 115, 84), and the corresponding mean values (µR, µG, µB)
produced by the secret key are (106.91 , 100.87, 92.31). First, we apply Equation (2) to
determine the embedding base (bR, bG, bB) = (7, 7, 11), and then we use Equation (8) to
extract the secret digits: (dR, dG, dB) = (62 mod 7, 115 mod 7, 84 mod 11) = (6, 3, 7). In this
way, our scheme correctly extracts secret messages that have been concealed in the stego
pixel, P′.

3. Experimental Results and Analysis

We implemented our algorithm in the C++ programming language and conducted
experiments on a notebook computer equipped with a Ryzen 7 3750H CPU, 16 GB memory,
and the operating system is Windows 10. To evaluate our algorithm, we used five HDR
RGBE images (HDR 1 to HDR 5) which had been used as test images in HDR data embed-
ding literature [11–15]. In addition, we adopted five standard LDR color images (LDR 1 to
LDR 5) collected from the USC-SIPI image database which have been utilized in several
data hiding or steganographic schemes [16,17,36]. Our original test images are presented
in Figure 3. Additionally, all HDR images presented in this paper were tone mapped
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using [37] prior to display for visualization purpose. In addition, we use tone-mapped
images for image quality assessments presented later in this section.
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3.1. Embedding Results of Secret Messages

Figure 4 and Table 3 show the abstracted embedded outcomes of our test images,
comprising five RGBE and five LDR images. In Table 3, the embedding capacity (EC) varies
between 2.30 million bits (for LDR 5) to 33.50 million bits (HDR 4), while the embedding
rate (ER) varies from 8.332 bpp (HDR 4) to 12.428 bpp (HDR 1). The PSNR values between
the tone-mapped original abstracted HDR image and the tone-mapped stego HDR images
are over 43 dB. In addition, the PSNR values between the original abstracted LDR image
and the stego LDR images are all greater than 37 dB. These high PSNR values exhibit good
image quality. Additionally, the structural similarity index measure (SSIM) values, which
were derived on the similar definition for HDR and LDR images, are very close to 1.0 for
the two types of test images. The statistics demonstrate that our scheme can convey a large
number of secret messages while producing stego images with excellent image quality.
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Table 3. Test images and the payloads.

ID Name Resolution EC (bits) ER (bpp) * PSNR (dB) * SSIM

HDR 1 Desk 644 × 874 6,995,448 12.428486 45.506 0.999875
HDR 2 Atrium Night 760 × 1016 8,523,403 11.038390 45.399 0.999836
HDR 3 507 1072 × 712 8,487,159 11.119559 50.949 0.999736
HDR 4 Bird of Paradise Flower 2464 × 1632 33,503,279 8.331563 47.327 0.999845
HDR 5 Windows 524 × 800 4,658,477 11.112780 43.934 0.999314

LDR 1 Pond 1072 × 603 5,731,397 8.866421 39.213 0.995143
LDR 2 Kodim07 768 × 512 3,461,004 8.801788 38.960 0.996886
LDR 3 F15 960 × 540 4,597,217 8.868089 39.533 0.995428
LDR 4 NCHU Main Gate 1024 × 634 5,660,622 8.719166 37.400 0.969324
LDR 5 Lena 512 × 512 2,295,636 8.757156 39.087 0.996439

* For HDR images, the values are tone-mapped results.

It is worth noting that HDR images have a higher embedding rate and better image
quality than LDR ones. This is because the abstracted HDR images have a great number
of black edge pixels, where their exponent channel is PE = 0. Our algorithm takes advan-
tage of this phenomena to embed nearly 24 bpp using our proposed six-level adaptive
embedding scheme. Additionally, the distortion caused by data embedding is significantly
reduced after the tone-mapping operation. As a result, the embedding rate and quality
assessment results for HDR images are better than those for LDR images, which only use a
two-level adaptive embedding scheme without conducting any tone-mapping operation.
However, the test image HDR 4 is an exception which offers a smaller embedding rate,
because it has significantly fewer number of black edge pixels. Furthermore, the pixel
distribution skews towards higher E-channel values. Consequently, the overall embedding
rate for the test image, HDR 4, is smaller than that of other test HDR images.

3.2. Analysis of Security

This section presents a performance evaluation of our image encryption algorithm,
which is designed to encrypt the stego image, IS, and generate an encrypted image, IE. We
adopt the security metrics proposed by Lan et al. [14], which include visual perception,
histogram analysis, correlation analysis, entropy, image sensitivity, and key security. Addi-
tionally, we conduct noise addition analysis to evaluate the security of our proposed scheme.

3.2.1. Perception by Vision

Figure 5 displays the images produced by our algorithm at various stages. The HDR
RGBE case is shown first followed by the case for the LDR image. Figure 5a,b show the
original HDR image by directly display it without tone-mapped operation and the tone-
mapped results, respectively. Figure 5c exhibits the abstracted stego images concealed
around 8.487 million bits of hidden messages, while Figure 5d shows the contours of
the abstracted stego images. Figure 5e shows the encrypted tone-mapped image which
successfully shelters the outlines and detail features without revealing any meaningful
information. Finally, Figure 5f shows the image decryption result. Figure 5g–j are the
corresponding results for the LDR case. The visual perception demonstrates that our
encryption scheme is visually secure.
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Figure 5. The visual perception of the HDR test image “507” (a–f) and LDR test image “NCHU
Main Gate” (g–j). (a) Directly displaying the original HDR image without any tone-mapping (TM)
operation. (b) The tone-mapped HDR image. (c) The abstracted stego image concealed with around
8.487 million secret bits. (d) The edges of the abstracted stego image. (e) The ciphered image. (f) The
deciphered TM image. (g–j) The corresponding results of LDR test image “NCHU Main Gate,” where
the abstracted stego image (h) has concealed more than 5.66 million secret bits.

3.2.2. Analysis of Histogram

An image’s histogram provides valuable statistical information, making it a prime
target for statistical attacks by malicious eavesdroppers. A well-designed encryption algo-
rithm should hide statistical information and prevent them from being revealed. Figure 6
displays histograms of the original, intermediate abstracted, abstracted stego, and ciphered
images. Our encryption algorithm makes the histogram of abstracted stego uniform and
completely different from that of the plaintext in all the channels, making it impossible to
reveal any meaningful information. The results of the histogram analysis indicate that the
proposed method is effective in preventing statistical attacks.
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The uniformity of a histogram can be quantitatively evaluated using the Variance
of Histogram (VOH), which can be computed using Equation (9). The equation uses
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Z = {z0, z1, . . . , z255} to represent the number of counts in each bin, while µ is the mean
count of all bins. A smaller VOH indicates a more uniform histogram.

VOH(Z) =
255

∑
i=0

E
[
(zi − µ)2

]
(9)

We use the Chi-square (χ2) test, in addition to VOH, to determine any statistically
significant difference between the expected and observed frequencies of the histogram. If
considering the present scenario, the degree of freedom is 255. Assuming a significance level
(α) of 0.05, the threshold would be 293.25. If the calculated χ2 value from the histogram is
less than the given threshold, it would lead us to accept the null hypothesis, which indicates
that the histogram of the stego abstracted image is statistically indistinguishable from a
uniform distribution.

In Table 4, we have presented the values of VOH and χ2 for two sample stego ab-
stracted images, namely “507” and “NCHU Main Gate”. The table presents these values in
both plain and ciphered status, offering a comparison of VOH and χ2 values before and
after encryption. In particular, VOH values drop to less than 4× 10−3% of the plaintext,
and χ2 values are less than the threshold value (293.25) in all the channels. Moreover, we
have performed χ2 test for all 10 test images to gain more insights, and the results are
plotted in Figure 7. From the graph, it is evident that the χ2 values of all 10 test images in
every channel are below the dashed-line threshold.

Table 4. Variance of Histogram (VOH) and χ2 values for the abstracted stego images.

Image Channel
VOH χ2 Value

Plain Ciphered Plain Ciphered

507
(HDR)

R 78,703,629.406 2810.023 6,757,715.622 224.635
G 79,139,306.367 2668.469 6,795,124.075 289.866
B 80,909,521.609 3241.375 6,947,119.749 249.191
E 281,099,137.109 3114.953 24,135,964.816 292.041

NCHU Main
Gate

(LDR)

R 121,376,328.734 2373.852 12,252,500.062 239.632
G 124,007,220.664 2610.609 12,518,079.058 263.532
B 133,176,246.500 2740.508 13,443,658.953 276.644
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Based on the findings displayed in Table 4 and Figure 7, we can conclude that our algo-
rithm significantly reduces VOH and χ2 values during the encryption process. In addition,
the output images generated by our encryption algorithm passed the statistical hypothesis
test. Our scheme ensures that the histogram of the encrypted image in all channels has a
uniform distribution, thus providing a high level of security for the ciphered images.

3.2.3. Analysis of Correlation

Adjacent pixels in plain images are typically highly correlated, making it feasible to
predict a pixel using the nearby pixels. To prevent malicious attacks, a suitable encryption
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algorithm should eliminate as many as possible those correlations. We can measure the
correlation among pixels using the correlation coefficient (rx,y) specified in Equation (10):

rx,y =
E(x− E(x))E(y− E(y))√

D(x)
√

D(y)
(10)

In this equation, x and y represent the adjacent pixel pair, while E(x) and D(y)
correspond to the expectation and variance of x and y over these samples, respectively. The
value of rx,y ranges from −1 to +1, with values closer to zero indicating lesser correlation
between paired pixels. Moreover, when rx,y > 0, it indicates a direct correlation between
the pixels, whereas rx,y < 0, the pixels are inversely related.

We calculate the rx,y for R, G, and B channels horizontal (H), vertical (V), and diagonal
(D) directions, using 5000 pairs of adjacent pixels. For an RGBE image, we compute the
rx,y, which are all floating-point values in the R, G, and B channels. The results for the
plain and ciphered images are presented in Table 5. The statistics indicate that the rx,y
have been substantially reduced in the encrypted image and its values are approaching
zero. This outcome demonstrates the success of our encryption algorithm in disrupting the
pre-existing correlation in the plain image.

Table 5. Correlation coefficients of the adjacent pixels in the abstracted stego test images.

Image Channel
Plain Image Ciphered Image

H V D H V D

507
(HDR)

R 0.974378 0.969364 0.950080 −0.000235 −0.000080 0.000381
G 0.976883 0.974866 0.956821 0.000765 −0.000685 0.000299
B 0.979750 0.980885 0.964439 −0.000883 0.000147 0.000373

NCHU Main
Gate

(LDR)

R 0.908312 0.905556 0.855767 −0.000568 0.000030 0.001296
G 0.915412 0.913782 0.868304 −0.001012 0.001337 0.000797
B 0.937499 0.937616 0.903753 −0.000181 0.000799 −0.000592

Figure 8 displays the correlation coefficients of all 10 encrypted abstracted stego
test images. The results are found to be very close to zero, indicating that the proposed
encryption algorithm has significantly reduced the correlation in all three directions, thereby
improving the security of the encrypted images.

3.2.4. Analysis of Entropy

Information entropy is a concept in information theory that quantifies the amount of
uncertainty or randomness in a set of data or a signal. It is also known as the Shannon
entropy [38]. In the case of an 8-bit grayscale image, denoted by Z, the gray level i is
represented by zi. Equation (11) defines the Shannon entropy, where P(zi) represents the
probability of gray level i occurring:

H(Z) = −
255

∑
i=0

P(zi)log2[P(zi)] (11)

Assuming that Z represents a perfect random image, where P(zi) = 1/256 and it has
the entropy of 8. Thus, a well-encrypted 8-bit image will have an entropy close to 8. Table 6
presents the entropy analysis results of our encryption algorithm. The plain image exhibits
low entropy value, particularly in the E-channel, with a minimum value of 3.16 in the HDR
image. However, the statistics of the ciphered image indicate that the entropy values in all
the channels are close to 8. The results indicate that our scheme is effective in producing a
ciphered image with entropy values that closely resemble those of an ideal random image.
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Figure 8. Correlation coefficients between adjacent pixels are close to zeros for all 10 encrypted
abstracted stego test images in three channels and three directions. (a) HDR images; (b) LDR images.

Table 6. Analysis of entropy for the abstracted stego test images in the plain and ciphered statuses.

Image Channel Plain Image Ciphered Image

507
(HDR)

R 7.368588 7.999787
G 7.329590 7.999727
B 7.216471 7.999764
E 3.161784 7.999724

NCHU Main Gate
(LDR)

R 6.182650 7.999734
G 5.950375 7.999707
B 5.882892 7.999693

Moreover, Wu et al. [39] introduced the local Shannon entropy (LSE) to address the
limitations of the Shannon entropy, aka the global one. The LSE for an 8-bit grayscale image
Z, can be calculated by averaging the information entropy over k non-overlapping and
randomly chosen n-pixels blocks, Bi. The computation of LSE is shown in Equation (12).
If the parameters (k, n) = (30, 1936) and significance level (α) is 0.05, a ciphered image is
expected to have an LSE value close to the ideal of 7.9025. To satisfy the test criteria, the
LSE value should be within the interval [7.9019, 7.9030]

Hk,n(Z) =
k

∑
i=1

H(Bi)

k
(12)

In order to evaluate our algorithm, we calculated the average LSE values across
10 encrypted stego images, as depicted in Figure 9. The results indicate that all LSE values
fall within the target range, thus satisfying the statistical test. The tests conducted on both
global and local entropy indicate that our encryption scheme generates ciphered images
that display characteristics of randomness on both global and local levels, thereby making
them resilient against statistical attacks.
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3.2.5. Image Sensitivity Analysis

Differential attacks are a crucial process in undermining the encryption security be-
cause a malicious hacker is likely to reveal vital information from two ciphered images
containing a subtle change in their plaintext images. A competent encryption algorithm
must be able to detect the slightest variation between two input images, even a single bit
of difference. The sensitivity of an image is an indicator of its ability to thwart differential
attacks. The most commonly used metrics to evaluate image sensitivity are the number
of pixel change rates (NPCR) and the unified average changed intensity (UACI) [40–42].
Equations (13)–(15) define NPCR and UACI. These equations utilize the pixel values of
input images I1 and I2, denoted as I1(i, j) and I2(i, j):

D(i, j) =
{

0 i f I1(i, j) = I2(i, j)
1 i f I1(i, j) 6= I2(i, j)

(13)

NPCR(I1, I2) =
∑i,j D(i, j)

W × H
× 100% (14)

UACI(I1, I2) =
1

W × H

(
∑
i,j

|I1(i, j)− I2(i, j)|
255

)
× 100% (15)

The NPCR and UACI results are reported in Table 7. All statistics are close to the ideal
value of 99.6094 and 33.4635 [41], respectively, indicating that our encryption scheme can
effectively defeat the differential attack.

Table 7. NPCR and UACI statistics for two encrypted abstracted stego images.

Image Channel NPCR (%) UACI (%)

507
(HDR)

R 99.602208 33.456771
G 99.607187 33.461968
B 99.608628 33.462320
E 99.605300 33.471379

NCHU Main Gate
(LDR)

R 99.604538 33.470771
G 99.604538 33.468483
B 99.606941 33.447217

We note that the values of NPCR and UACI are influenced by the resolutions of the
input images. Moreover, the optimal range of NPCR/UACI values that would render the
ciphered image immune to malicious attacks remains uncertain. To address this issue,
Wu et al. [41] established the criteria for statistical hypothesis tests by calculating the means
and standard deviations of NPCR and UACI.

To perform the hypothesis test, we used 10 abstracted stego test images. For each
image, we altered the least significant bit (LSB) of the R-channel in the center and the four
corner pixels, generating five corresponding stego images that differed by one bit from the
original. After image encryption, we calculated the NPCR and UACI values for each image
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pair, the original and the altered one, to analyze their statistical significance. Figure 10
shows the NPCR and UACI results, averaged over five test cases.
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Results shown in Table 7 and Figure 10 indicate that our encryption scheme exhibits
a significant degree of image sensitivity, making it capable of withstanding differential
attacks. This conclusion is supported by the fact that all NPCR values are greater than the
threshold, and all UACI results fall within the bounds defined by the lower and upper
limits, indicating that our scheme has successfully passed both the NPCR and UACI
statistical tests.

3.2.6. Key Security

A suitable encryption algorithm must have a large key space to prevent brute force
attacks. Additionally, it should be responsive to even subtle changes in the key, resulting in
a completely different ciphered image in order to resist chosen key attacks. Key space and
key sensitivity are two perspectives from which the security of a key can be analyzed:

• Key space: When applying a 2D-LTMM to produce two pseudo-random sequences,
three floating-point numbers, each consisting of 64 bits and in double-precision format,
are utilized: h, xK, and yK. Moreover, in order to eliminate the initial transient effect,
we discard the first q items of the sequences, where q is represented by a 16-bit integer.
In addition, during the encryption process, we adopt 8-bit integers as the initial
values:

(
P0,R′ , P0,G′ , P0,B′ , P0,E′ , C0,E′

)
for HDR RGBE and

(
P0,R′ , P0,G′ , P0,B′ , C0,B′

)
for

LDR images. Therefore, the key space exceeds the minimum requirement of 2128, as it
is greater than 2240. The analysis shows that our scheme requires large key space; this
provides the ability to resist brute force attacks.

• Key sensitivity: The sensitivity of the key in our algorithm was evaluated as follows:
Initially, two keys, K1 and K1, were generated with a single-bit difference. We then
applied K1 and K2 to encrypt the same abstracted stego image IS, thus producing IE1
and IE2, which are shown in Figure 11b,d, respectively. Next, using K1, we decrypted
IE1 and were able to obtain the original image, as demonstrated in Figure 11e. However,
if we attempt to decrypt IE1 using the other key, K2, the output appears similar to a



Appl. Sci. 2023, 13, 6208 22 of 26

noisy image, as shown in Figure 11f. Analogous outcomes are attained in Figure 11g,h
if we decrypt IE2 using K2 and K1, respectively. Furthermore, we analyzed NPCR
and UACI between IE1 and IE2 in Figure 11c. The results are in close proximity to the
ideal values of 99.6094 and 33.4635, indicating that our algorithm remains sensitive to
secret keys, even when only a single bit differs between them. Consequently, the key
sensitivity analysis confirms that our scheme can withstand chosen key attacks.
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Figure 11. The test of key sensitivity using the image “NCHU Main Gate,” with secret key K1 differing
from secret key K2 by only one bit. (a) The original abstracted stego image IS. (b) IS ciphered with
K1, producing IE1. (c) NPCR and UACI values between the image pair (IE1, IE2). (d) IS ciphered
with K2, producing IE2. (e) IE1 decrypted by K1 to obtain the original IS. (f) Decryption of IE1 using
the incorrect key, K2, produces a noisy image. (g) Decryption of IE2 by K2 successfully recovers IS.
(h) Decryption of IE2 using the incorrect key, K1, also produces a noisy image.

3.2.7. Robustness to Noise Addition Analysis

In this section, we evaluate the robustness of our proposed method under different
types of noise added to stego images. Specifically, we apply 1% and 5% of bit flip (BF)
to HDR images. For LDR images, we add 1% and 5% salt-and-pepper (S&P) noise to
each channel.

Table 8 presents the bit error rates (BER) obtained from four test images when extract-
ing secret bits from stego images with added noise. A smaller BER indicates less impact
of added noise on the secret bits. The results indicate that more noise added leads to a
higher BER. Additionally, there is more impact of noise when the stego image has a higher
embedding rate (ER). This is because larger embedding bases are more susceptible to noise.
For instance, HDR 2 has an ER of 12.43 bpp, higher than HDR 4 (8.33 bpp), results in a
higher BER.

Table 8. The bit error rate and image quality under the noise addition attacks.

Image Type BER (%) PSNR SSIM

HDR 2
BF (1%) 0.9287 32.6236 0.9879
BF (5%) 4.5601 25.2547 0.9485

HDR 4
BF (1%) 0.9049 31.0547 0.9920
BF (5%) 4.4381 24.8969 0.9696

LDR 1
S&P (1%) 0.8868 24.6057 0.8680
S&P (5%) 4.3696 17.6689 0.6353

LDR 2
S&P (1%) 0.8912 24.9598 0.8800
S&P (5%) 4.3763 18.1616 0.6752



Appl. Sci. 2023, 13, 6208 23 of 26

In addition to the bit error rates, Table 8 presents the image quality results. The
reference images used are the stego images without any attacks. The PSNR values increase
as the noise ratios decrease. The experimental results indicate that HDR images have better
image quality than LDR images. This is because the impact of noise addition is significantly
reduced after the tone-mapping process, thereby producing better image quality.

3.3. A Comparison with the Latest Related Works

In Table 9, we compare our algorithm with other approaches that currently represent
the forefront of research in adaptive data hiding for HDR images. Our scheme is the only
algorithm that can support the image abstraction. In addition, while [11–13,15] concealed
secret messages by modifying the existing cover images, our scheme and that in [14]
adopted constructive data hiding, where secret messages are embedded by constructing a
stego image directly. Our scheme and that in [14] can support image encryption to further
protect the hidden messages.

Table 9. An evaluation of adaptive data hiding in comparison with state-of-the-art methods.

Scheme Proposed [14] [13] [15] [12] [11]

Year 2023 2022 2020 2017 2011 2009
Input Image RGBE/LDR OpenEXR RGBE OpenEXR RGBE RGBE

Image
Abstraction Yes No No No No No

Constructive Yes Yes No No No No
Encryption Yes Yes No No No No
ER (bpp) 8.332–12.428 7.30–9.29 0.490–2.292 2.433–20.002 0.1256–0.1281 5.04–9.70

PSNR (dB) 37.400–50.949 32.60–51.90 50.65–51.77 45.12–82.32 N.A. 30.00–40.00
SSIM 0.9693–0.9999 0.994–1.000 0.854–0.995 0.7572–0.9999 N.A. N.A.

In terms of the embedding rate, it ranges from 0.5 to 20.0 bpp, with most competitors
being outperformed by our algorithm, except for that in [15] since the encoding bit length
in an HDR RGBE is 32, while that in HDR OpenEXR is 48. In addition, the space to conceal
secret message in RGBE is far less than that in OpenEXR, since the Exponential channel is
required to be intact for message concealment in order to avoid significant pixel distortion.

Our algorithm generates a moderate level of image quality, where a tone-mapped stego
image has the PSNR of 50.949 dB, lower than [15] but close to [13,14]. It is worth noting
the PSNR is influenced by tone-mapping algorithms as well as the number of hidden
secret messages. Our algorithm offers a larger embedding rate than most competitive
schemes, while still producing the stego image with good quality exhibiting moderate
PSNR values and high SSIM values. We conclude that our approach surpasses the current
state-of-the-art methods.

Table 10, presents a comparison between our proposed encryption scheme and state-
of-the-art algorithms for HDR images. Upon closer examination, these schemes did not
undergo a thorough security analysis. In contrast, our proposed scheme has conducted
a comprehensive security evaluation process, consisting of seven different metrics. Un-
doubtedly, security is the most crucial aspect of an encryption algorithm. The lack of
comprehensive security analysis leaves room for doubt that the ciphered images can effec-
tively withstand malicious attacks, such as differential and statistical attacks [34,35].
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Table 10. A comparison of security metrics on HDR image encryption schemes.

Scheme Proposed [14] [22] [21] [20] [19] [18]

Year 2023 2022 2022 2021 2014 2014 2013
Input Image RGBE/LDR OpenEXR RGBE OpenEXR OpenEXR LogLuv RGBE

Visual Perception Yes Yes Yes Yes Yes Yes Yes
Histogram Yes Yes No Yes Yes No Yes
Correlation Yes Yes No Yes Yes No No

Entropy Yes Yes No No No No No
Image Sensitivity Yes Yes No No No No No

Key Security Yes Yes No No No No Yes
Noise Addition Yes No No No No No No

4. Conclusions and Future Work

We presented a constructive adjustable image data hiding scheme for HDR RGBE
images and LDR images, where secret messages are concealed by directly synthesizing
a stego abstracted image. Depending on the E channel in an HDR image, our six-level
adaptive message embedding approach can conceal various secret messages. A two-level
adaptive technique was presented for LDR images, where adaptivity is on the basis of
the mean value of each channel. This encourages our scheme to convey more data in
lower luminance pixels and fewer in higher luminance ones without upsetting the human
visual system. Without degrading the quality of the stego image, our scheme achieves an
embedding rate that is 14% to 33% higher than current state-of-the-art schemes.

A novel image encryption method was introduced to protect the hidden messages
carried in an abstracted image. Our new scheme incorporates a 2D logistic tent modu-
lar map with a bit-level random permutation technique. The former has a continuous
chaotic range, robust chaotic behavior and hyperchaotic properties, while the latter is
flexible and exhibits the time complexity and the space complexity of O(N) and O(1),
respectively. The proposed algorithm supports excellent security and is robust against
statistical, differential, brute force, and chosen key attacks. Our proposed adaptive data
hiding and secure encryption scheme is feasible in seeking to extend the HDR and LDR
data hiding applications.

Possible future work includes extending our algorithm to provide the feature of reversibil-
ity, which includes the ability to recover the initial image followed by message extraction.
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