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Abstract: Big data is a rapidly growing field, and new developments are constantly emerging to
address various challenges. One such development is the use of federated learning for recommenda-
tion systems (FRSs). An FRS provides a way to protect user privacy by training recommendation
models using intermediate parameters instead of real user data. This approach allows for cooperation
between data platforms while still complying with privacy regulations. In this paper, we explored
the current state of research on FRSs, highlighting existing research issues and possible solutions.
Specifically, we looked at how FRSs can be used to protect user privacy while still allowing organiza-
tions to benefit from the data they share. Additionally, we examined potential applications of FRSs in
the context of big data, exploring how these systems can be used to facilitate secure data sharing and
collaboration. Finally, we discuss the challenges associated with developing and deploying FRSs in
the real world and how these challenges can be addressed.
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1. Introduction

In recent years, recommendation systems have become a popular tool to address
information overload in many real-world fields such as news, E-commerce, and health-
care [1–4]. This requires collecting a large amount of sensitive information about users, such
as user attributes, social relations, contextual information, and behaviors [5]. Unfortunately,
a central server is needed to store these data, leading to the potential risks of data privacy
leakage, such as selling user data to a third party without consent or malicious attackers
stealing the data [6]. Additionally, due to privacy concerns and regulatory restrictions,
it is difficult to integrate data from other platforms to improve the performance of the
recommendation system [7]. For example, the General Data Protection Regulation (GDPR)
has set strict rules for collecting user data and sharing data between different platforms,
which can lead to an inadequate amount of data for the recommendation system, thus
decreasing its performance [8].

To overcome this challenge, Google introduced federated learning, a privacy-preserving
distributed learning scheme that allows participants to collaborate to train a machine learn-
ing model without exchanging real data [9]. Instead, intermediate parameters such as
model parameters and gradients are exchanged between participants. This has opened up
a new field of application for recommendation systems known as federated recommen-
dation systems (FRSs), which combine federated learning with recommendation systems
for privacy-preserving recommendation systems [10]. In Figure 1, we present the generic
training procedure of FRSs.
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Figure 1. This figure represents the generic training procedure of FRSs, where a set of IoT devices
is connected to the cloud server. Firstly, the cloud server synchronizes with the IoT devices and
creates personalized recommendations; secondly, those IoT devices train the local learning models
individually and then upload those trained learning models to the cloud server. Finally, the cloud
server aggregates those local models to generate new recommendations for the next round.

1.1. Privacy Concerns

The FRS is an innovative approach that seeks to provide a privacy-aware paradigm
for model training by avoiding direct exposure to real user data [11,12]. However, there
are still some core concerns that need to be addressed in order to make this approach fully
effective. These concerns include finding the exact privacy-preserving technique that not
only provides the trustworthiness of the data, but also achieves higher accuracy. Moreover,
the scalability of the approach must be further explored in order to make it applicable to a
wide range of use cases:

• User-side concerns: the primary privacy concern of a user in an FRS is that personal
data are shared across multiple entities [13,14]. These data may include sensitive
information such as name, address, age, gender, and financial information. If these
data are not properly secured and shared securely, this could lead to a potential
violation of an individual’s privacy [15]. In addition, the user may be unaware of how
his/her data are being used, leading to a potential breach of his/her privacy. On the
other hand, an FRS can itself pose privacy risks due to the potential for profiling. This
means that the user’s data are used to build a profile of his/her interests and activities,
which can then be used to create targeted advertisements or other manipulative tactics.
This can lead to a potential violation of an individual’s right to privacy.

• Server-side concerns: An FRS is vulnerable to attacks by malicious actors, who can
disrupt the federated system by manipulating user ratings, injecting false information,
and taking over the federated system [16,17]. Attackers can also employ various
techniques, such as data poisoning, distributed denial-of-service attacks, and brute
force attacks, to disrupt the system [18]. Furthermore, attackers may be able to access
user data through unencrypted channels or modify the recommendations generated
by the system to suit their interests.

1.2. Related Work

Several surveys have focused on FRS, but they cannot provide comprehensive solu-
tions to address the effects of privacy and security issues in big data applications. In [19],
the study investigated the characteristics and challenges of federated learning in detail, but
did not provide enough detail on FRSs. In [20], the authors gave an accurate definition of
federated learning and its different architectures and applications, such as the FRS. In [21],
the authors provided a comprehensive categorization of recommendation methods, as well
as discussed their respective limitations. In addition, several surveys were conducted that
focused on the privacy and security of federated learning. In [22], the study identified and
analyzed the potential privacy threats and security vulnerabilities in federated learning.
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Similarly, in [23], the authors elaborated on the assumptions, reasons, principles, and dif-
ferences between the various attacks and defenses in the privacy and robustness fields of
federated learning, but none of them particularly focused on FRSs. Despite this, most of
these surveys focused on either recommendation systems or federated learning separately,
and few surveyed specific problems in FRSs. For example, in [10], the study proposed
a classification for FRSs from the perspective of federated learning and investigated the
algorithm-level and system-level challenges for FRSs. These surveys may provide insight
into the capabilities of FRSs, but they did not offer solutions that can effectively deal with
privacy and security within the framework of the system.

1.3. Our Contribution

Compared to the existing surveys, this survey paper provides the impact of FRSs
on privacy-preserving techniques in big data. It presents a comprehensive review of
the main challenges and existing approaches to enable data sharing while preserving
user privacy. Furthermore, it compared various privacy-preserving techniques, including
differential privacy, secure multiparty computation, homomorphic encryption, tokenization,
anonymization, and pseudonymization. Furthermore, this survey provides an overview
of the targeted applications and industry of FRSs. Moreover, a detailed description of
the public datasets used in FRSs is provided, highlighting the unique challenges posed
by big data sharing. Finally, this survey paper provides real-world challenges for future
research directions.

The rest of the paper is organized to provide an in-depth exploration of the field of
FRSs. Section 2 provides the necessary overview of the research. Section 3 delves into
the details of privacy-preserving techniques used in this area. Section 4 examines the
applications and industries that are targeted with FRSs. Section 5 looks at the publicly
available datasets for FRSs. Section 6 delves into the future directions and challenges that
can be faced in real-world applications. Lastly, Section 7 concludes the survey and provides
an overall summary of the research.

2. Overview of the FRS

An FRS is a distributed system for providing a personalized product and content
recommendations across multiple platforms [24]. It is designed to leverage the collective
intelligence of the network of participants, providing a more comprehensive view of the
user’s preferences and needs [25]. Below, we precisely explain the main entities in FRSs.
Figure 2 presents the architectural overview of the FRS.

Figure 2. Overview of the FRS entities.

• User: The user entity in an FRS is an individual identified by his/her unique ID.
The user is the primary person interacting with the system and provides information to
generate personalized recommendations [26]. This includes user preferences, interests,
purchase history, and other data that can be used to suggest relevant items. The user
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entity is also used to store information related to the user’s interactions with the
system, such as ratings, reviews, feedback, etc. This information can be used to help
improve the accuracy of future recommendations.

• Item: The item entity in the FRS refers to the items recommended to the users.
This could include products, services, books, movies, music, etc. [27]. The items
can come from different sources, such as websites, stores, or catalogs. The recommen-
dation system uses the item entity to suggest items to users based on their preferences
and interests. The item entity also contains information about the items, such as the
price, description, and other relevant details.

• Cross-system: The cross-system entity in an FRS is a type of user profile created by
combining user data from multiple systems [28]. This allows for more accurate rec-
ommendation algorithms to be developed and deployed across multiple systems [29].
For example, if a system collects user data from multiple different websites and plat-
forms, the cross-system entity can be used to create a unified profile of a user across
all of these different sources. This unified profile can then be used to generate more
accurate recommendations, such as suggesting a product that a user might like based
on his/her preferences across all of the different systems.

• Recommendation: A recommendation entity in an FRS allows individual users to
access personalized recommendations from multiple sources [30,31]. This type of
system is useful for organizations that have multiple data sources and need to be able
to provide personalized recommendations to individual users based on their historical
experience [32]. The recommendation entity acts as a central hub that can aggregate
data from multiple sources and provide tailored recommendations to individual users.
This helps organizations make decisions more quickly and efficiently, allowing them
to increase customer satisfaction and loyalty.

• Cloud server: A cloud server is an entity in an FRS that stores user information and
makes recommendations for other users [33]. The cloud server is responsible for
collecting data from multiple sources, processing them, and making recommendations.
It also is a hub for other participating entities, such as individual users, content
providers, and recommendation systems. By connecting these entities, the federated
server can provide more accurate and personalized recommendations to users [34].

2.1. Architecture of FRS

The architecture of an FRS can be divided into the following four components,
as shown in Figure 3:

Figure 3. Architecture of the FRS, divided into four components used for user’s data sources.

1. Data aggregator: This component is responsible for collecting and processing data
from multiple sources (e.g., websites and mobile apps). The data aggregator then
stores the data in a unified format, allowing the recommendation system to access
the data from all sources in one place [35]. It can be used to create user profiles and
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determine user preferences, as well as to enable recommendations to be made across
multiple platforms [36].

2. Feature extractor: This component is a critical part of the FRS architecture. It is re-
sponsible for extracting key features from data sources in order to create a unified
representation of the data [37]. This unified representation enables the system to com-
pare data from different sources and make recommendations accurately. Furthermore,
it enables the system to generalize the data, reducing the amount of data that need to
be processed [38]. The feature extractor component can extract features such as user
preferences, user demographics, item attributes, and item ratings.

3. Recommendation system: A recommendation system is a key component of an FRS.
It generates user recommendations based on the data gathered from the different
federated sources [39]. The system uses algorithms to analyze the data and create per-
sonalized recommendations for the users. The goal is to provide the most-relevant and
accurate recommendations tailored to users’ interests and preferences [40]. The recom-
mender system is also responsible for updating the recommendations as new data are
added to the federated sources. This helps ensure that the recommendations remain
relevant and up-to-date [41].

4. Evaluation engine: This component measures the system’s performance, such as user
engagement, user satisfaction, and other metrics [42]. The evaluation engine collects
and analyzes data from different sources and uses machine learning algorithms to
identify patterns in the data and evaluate the system’s performance. It also provides
feedback to the other components in the system, such as the content providers, to en-
able further optimization [43,44]. The evaluation engine ensures fairness and accuracy
in the system.

2.2. Categories of FRS

In this section, we explore the different categories of FRSs and discuss how FRSs can
be used to improve the accuracy and efficiency of recommendations. We also present how
these categories can pose serious privacy concerns to users’ sensitive data. In Figure 4, we
present the categories of FRSs. In Table 1, we briefly highlight the pros and cons of each
below mentioned FRS technique.

Figure 4. Categories of federated recommendation systems.

• Content-based filtering: This type of FRS uses content-based information to provide
personalized recommendations to users without needing to collect and store personal
user data [45,46]. FRSs work by aggregating data from multiple sources, such as
online stores, websites, and other applications, and using algorithms to detect patterns
in the data. To this end, content-based filtering uses information about the content
of the recommended items, such as genre, author, or keywords, to generate recom-
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mendations [47]. Content-based filtering has several advantages over other forms of
FRSs. It does not require any user data, so it can protect user privacy by avoiding
the need to collect and store any sensitive personal information. Additionally, it is
less resource-intensive than other forms of FRSs, since it does not require creating a
centralized database to store user data. Moreover, it is easy to implement since it does
not require a complex algorithm to generate the recommendations [48]. Content-based
filtering is often used in conjunction with other forms of FRSs, such as collaborative
filtering, in order to generate more accurate and personalized recommendations [49].
This category is becoming increasingly popular among online retailers and other
businesses due to its effectiveness and privacy-preserving benefits. However, content-
based filtering requires access to the user’s interaction data to make recommendations,
which means that the system can access the user’s preferences and behavior, which
could be sensitive information. Therefore, without proper privacy measures in place,
content-based filtering systems can pose a risk to the user’s privacy.

• Knowledge-based systems: This type of system uses a “knowledge base” to create
recommendations based on user preferences and behavior, rather than relying solely
on data collected from an individual user [50,51]. This means that the system does
not collect any data from the user, instead relying on a pre-existing collection of infor-
mation. The knowledge base is typically a collection of data about different products,
services, or experiences [52]. It contains information about the characteristics of each
item, such as its features, price, popularity, and ratings. Using these data, the system
can generate recommendations tailored to the user’s interests without collecting any
personal information from the user. However, knowledge-based systems require
access to the user’s explicit knowledge about items and preferences to make recom-
mendations. This means that the system has access to the user’s sensitive information,
which can be a serious concern from the user’s perspective [53,54].

• Collaborative filtering: This type of FRS prioritizes user privacy while providing
effective and accurate recommendations [55]. It uses the user’s data to generate
personalized recommendations [56,57]. Moreover, the system uses data from similar
users to make recommendations to the user. This means that the system can make
accurate recommendations by accessing limited users’ data or having to share it
with other users or systems. The collaborative filtering approach works by first
identifying similar users who have the same demographic characteristics, tastes,
or preferences [16,58]. Next, the system takes the data from these similar users and uses
them to make recommendations to the user. This data might include past purchases,
ratings, or reviews. The system then uses these data to develop recommendations for
the user [59]. One major privacy issue with collaborative filtering is that it requires
access to sensitive user behavior data to make recommendations. These data can
include information about the user’s past purchases, searches, and interactions with
other users. Therefore, without proper privacy measures in place, these data can be
vulnerable to unauthorized access, misuse, or disclosure [60].

• Context-aware recommendation: This type of FRS uses context-aware techniques to
help tailor the recommendations to the users in a way that is more meaningful and
tailored to their interests and needs [61,62]. Context-aware recommendation systems
are designed to consider the user’s current context when making recommendations,
such as his/her location, time, and surrounding environment [63,64]. This allows
the system to make more accurate and personalized recommendations that better
suit the users’ needs and preferences [65]. By taking into account the user’s current
context, the system can provide recommendations that are more accurate and relevant
to the user’s needs [66,67]. This type of system can help reduce the amount of data
that need to be collected and stored by the system, as the data used to generate the
recommendations are already present in the user’s context [68]. The privacy concern
with context-aware recommendations is that they require access to a wide range of
user data, including location, device information, and social media activity, to make
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personalized recommendations. These data can be sensitive and reveal private infor-
mation about the user’s behavior, interests, and preferences. Therefore, it is important
for context-aware recommendation systems to implement robust privacy-preserving
techniques to protect user privacy while still providing effective recommendations.

• Hybrid recommendation systems: Hybrid recommendation systems are a type of FRS
that combine the capabilities of traditional centralized and distributed recommenda-
tion systems to provide users with the best of both worlds [3]. Hybrid recommendation
systems enable users to make use of personalized recommendations while also protect-
ing their privacy. In a hybrid system, the data are stored in a central repository, and the
recommendation algorithm is executed by a federated learning system [69]. The cen-
tral repository stores all of the user’s profile data, and the federated learning system
executes the recommendation algorithm without any user data being shared between
the two. This allows the system to remain secure and the user data to remain private.
Besides, the hybrid system allows different algorithms to be used. For example, col-
laborative filtering can be used in conjunction with content-based filtering to provide
a more accurate recommendation [70]. Furthermore, the system can be adapted to
different data sources, such as social media and web analytics. This type of system also
has the advantage of scalability. As new users join the system, the recommendation
algorithm can be updated without requiring additional user data to be shared [71].
This makes the system more efficient and effective and allows for more users to be
accommodated. The primary privacy concern with hybrid recommendation systems
is the extensive collection of user data from various sources required to make accurate
and diverse recommendations. These data can include sensitive user behavior, pro-
file, and contextual data, which if not properly protected, can lead to unauthorized
access and unintended disclosure of personal information. Thus, such systems must
prioritize the implementation of robust privacy-preserving techniques, such as data
anonymization, homomorphic encryption, and differential privacy, to mitigate the
risks of data breaches and ensure that user privacy is not compromised.

Table 1. Comparison of categories of FRSs.

Category Techniques Advantages and Disadvantages

Content-Based
Filtering

Recommends items
similar to those the user
has liked before

Effective at recommending niche items; limited
to recommending items with similar
characteristics; may not work well for users
with varying interests

Knowledge-
Based
Systems

Uses knowledge about
user preferences and
item attributes to
recommend items

Allows for more personalized
recommendations; can recommend items
outside of the user’s usual preferences; requires
many data and expert knowledge; may not
work well for users with varying interests

Collaborative
Filtering

Recommends items
based on the preferences
of similar users

Can recommend items outside of the user’s
usual preferences; can work well with large
datasets; requires many user data to be
effective; can suffer from the “cold start”
problem for new users and items

Context-Aware
Recommendation

Recommends items
based on additional
contextual information,
such as time of day
or location

Can provide more personalized
recommendations based on specific situations;
requires additional data sources and can be
difficult to implement

Hybrid
Recommendation
Systems

Combines two or more of
the above techniques

Can provide more accurate recommendations
by leveraging the strengths of multiple
techniques; can be complex to implement and
requires additional computational resources
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3. Privacy Techniques

FRSs pose a unique privacy concern due to their distributed nature. Since the training
data are processed and stored across multiple nodes, it is more difficult to ensure data
privacy than with a centralized approach. Existing research has shown that the central
server can infer sensitive information from the intermediate parameters. For instance,
a server can identify items the user has interacted with based on the non-zero gradients
sent by the client [72]. Moreover, the server can also infer ratings from the user-uploaded
gradients in two consecutive rounds [73]. To address those concerns, privacy-preserving
techniques have been developed to protect user data privacy while still allowing FRSs to
operate efficiently, as shown in Figure 5. In this section, we present these privacy-preserving
techniques of FRSs and compare their advantages and limitations.

Figure 5. Privacy-preserving techniques used in FRSs.

3.1. Differential Privacy

On the one hand, differential privacy (DP) is a privacy-preserving technique that
provides a mathematical guarantee of privacy [74,75]. It works by adding random noise to
the data, making it difficult to identify individual data within the dataset [76]. This tech-
nique has been used in various contexts, including recommendation systems. For example,
in [77], the study used DP to protect the privacy of users in a collaborative filtering-based
recommendation system. The authors added Laplace noise to the user ratings to ensure
privacy preservation. Similarly, in [78], the study used DP to protect the privacy of user
ratings in a matrix factorization approach to recommendations.

On the other hand, local differential privacy (LDP) is a variant of DP that is used
for federated learning. Instead of adding noise to the entire dataset, LDP adds noise to
each user’s data before sending them to the server [79]. This ensures that the server never
has access to the raw data, but still can obtain useful information. Several studies have
been conducted in this context; for example, in [80], the study used LDP to protect the
privacy of users in a matrix-factorization-based recommendation system. Similarly, in [81],
the authors improved the matrix factorization using LDP for recommendation systems.

The benefits of using DP and LDP in FRS include the ability to protect user privacy
while still allowing the server to obtain useful information from the data [82–84]. Moreover,
it ensures that the raw data are never exposed to the server, which is important for protect-
ing user privacy. The limitations of using DP and LDP in FRSs include the fact that the noise
added to the data can lead to inaccurate results, as well as increased computation time due
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to the need to add the noise [85]. Besides, it is difficult to determine the optimal noise level
for a given dataset, which can lead to inaccurate results. Therefore, it is essential to design
a system that can effectively trade off between recommendation accuracy and privacy.

3.2. Secure Multi-Party Computation

Secure multi-party computation (SMPC) is a cryptographic technique that allows two
or more parties to securely compute a function over their private data without any of the
parties being able to access the data of the other parties [86,87]. In other words, SMPC
ensures that the private data of each party remain secure while still allowing the parties
to obtain the result of the computation over all the data without ever having to share the
data themselves.

SMPC has been used in FRSs to protect user data and enable collaborative recom-
mendations across multiple parties. For example, in [88], the study used SMPC to create a
privacy-preserving collaborative filtering system that allows multiple parties to generate
personalized recommendations without sharing the user data. Similarly, in [89], the study
used SMPC in blockchain for privacy preservation.

The benefits of using SMPC in FRSs include the ability to protect user data privacy,
the ability to generate personalized recommendations from multiple parties collaboratively,
and the ability to create a decentralized recommendation system [90,91]. However, the use
of SMPC also has some limitations, such as the high computational cost associated with
secure computation, as well as the complexity of designing and implementing secure
multi-party protocols.

3.3. Homomorphic Encryption

Homomorphic encryption is a type of encryption that allows computations to be
performed on encrypted data without having to decrypt it [92]. In an FRS, homomorphic
encryption allows for data to be encrypted and shared between multiple parties while allow-
ing for the computation of recommendations based on the encrypted data [93]. There are
two main types of homomorphic encryption used in FRSs: fully homomorphic encryption
(FHE) and partially homomorphic encryption (PHE). FHE allows for the computation of
arbitrary functions on encrypted data, while PHE allows only specific computations, such
as addition or multiplication [94].

Several studies have used homomorphic encryption in recommendation systems with
promising results. For example, a recent study [95] developed a privacy-preserving system
for matrix factorization using FHE. Another study [96] proposed a privacy-preserving
user-based recommendation system using homomorphic encryption. The main benefit of
homomorphic encryption in FRSs is that it provides a high level of privacy and security
for users, as their data are encrypted and remain confidential [97,98]. However, the main
limitation of homomorphic encryption is that it is computationally expensive, which can
reduce the system’s overall performance.

3.4. Tokenization

Tokenization in FRSs helps to break down the data into smaller components (tokens)
to make them easier to analyze and process. This includes breaking down the text into
words, sentences, and phrases and breaking down numerical data into numbers and other
values [99]. Tokenization also helps to ensure privacy and data security by preventing
the leakage of sensitive user data, such as personal information and preferences [100,101].
Several studies have used tokenization in FRSs. For example, in [102], the authors used
tokenization to improve the performance of an FRS. They used a tokenization method based
on the federated learning framework, which allowed the recommendation model to learn
from distributed data sources without compromising user privacy. In [103], the authors
used tokenization to improve the accuracy of an FRS by splitting the data into smaller parts.

The benefits of using tokenization in FRSs include improved accuracy, privacy, and scal-
ability. In particular, tokenization allows the system to process data more quickly and
accurately while ensuring user privacy [104,105]. In addition, it allows the system to scale
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to larger datasets without compromising performance. On the other hand, the limitations of
using tokenization in FRSs include the complexity of the tokenization process and the poten-
tial for data loss [106]. Tokenization can be computationally intensive and time-consuming,
and it can lead to data loss if the tokens are not generated correctly. Besides, some tokens
may be more difficult to process than others, leading to potential accuracy issues.

3.5. Anonymization

Anonymization is a privacy-preserving technique in an FRS that is used to protect
users’ data privacy by concealing their identities [107,108]. The main idea of this technique
is to mask users’ identity information, such as user ID, username, and other user-related
information, while still maintaining their data utility. This technique can protect users’
identity information in the FRS while allowing the system to generate useful and accu-
rate recommendations.

There have been several studies that have utilized the anonymization technique in
FRS, showing the effectiveness of the technique [109–111]. Anonymization is easy to
implement, as it only requires masking the user’s identity information. The limitations of
using anonymization in FRSs include the potential for data leakage, as well as the risk of
data distortion due to the masking of user identity information [112].

3.6. Pseudonymization

Pseudonymization is a privacy-preserving technique used in FRSs to protect the
privacy of users by replacing their identifiable attributes with a pseudonym [113,114]. It is
a method of masking the true identity of a user while allowing his/her to be identified by
his/her pseudonym. Pseudonymization can protect a user’s sensitive attributes, such as age,
gender, and location, as well as his/her explicit and implicit preferences. Several studies
have been conducted on this matter [115–117].

The benefits of using the pseudonymization technique in FRSs include improved
privacy for users, as their data are not stored, and only their pseudonym is used to identify
them [118]. Furthermore, pseudonymization also allows for better scalability of an FRS as
the amount of data stored is reduced and the data can be divided into smaller chunks [119].
However, there are also some limitations to using pseudonymization in FRSs. One of
the main drawbacks is that it can be difficult to accurately link a user’s pseudonym with
his/her true identity and preferences. Furthermore, pseudonymized data can also be
vulnerable to dictionary attacks and re-identification attacks.

3.7. Comparison

The aforementioned privacy mechanisms have been widely utilized in FRSs to offer
stronger privacy protection. Table 2 details the comparison between these mechanisms.
Similarly, Table 3 overviews privacy-preserving techniques, including their descriptions,
domains, platforms, and environments. Firstly, the main objects of protection vary between
the mechanisms. The tokenization mechanism secures user interaction behaviors, while
the remaining mechanisms protect user ratings. Moreover, homomorphic encryption can
also integrate data from other participants in a secure manner. Secondly, homomorphic
encryption and secure multi-party computation are both encryption-based mechanisms,
which protect privacy while maintaining accuracy, but the high computational cost of
homomorphic encryption restricts its application in large-scale industrial settings. Secret
multi-party computation reduces the computation cost, but increases the communication
costs. On the other hand, differential privacy and local differential mechanisms protect
privacy by adding random noise, which has low computational costs and does not add
any communication costs. Nonetheless, adding random noise will unavoidably influence
model performance to a certain degree.
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Table 2. Comparison between several privacy-preserving techniques.

Reference Privacy Type Privacy Target Privacy C/C Costs

[34,120–123] Differential Privacy Ratings High Low

[25,86–88,111,124] SMPC Ratings Low High

[31,35,73,125–127]
Homomorphic

Encryption

High-Order Graphs
Social Features

Ratings
Moderate High

[103,128–130] Tokenization Prediction Low Low

[24,131] Anonymization User’s data High High

[72,132–135] Pseudonymization User’s data Moderate Low
In column “Privacy”, we compare privacy with respect to accuracy. High means a good tradeoff between privacy
and accuracy. Moderate means high privacy, but lower accuracy. Low means poor privacy and poor accuracy.
C/C stands for communication/computation costs.

Table 3. Privacy-preserving techniques in various domains, platforms, and environments.

Privacy-Preserving
Technique Description Domain Platform Environment

Differential Privacy

A technique that adds
noise to the data to
protect individual
privacy while still
allowing for useful
analysis

Healthcare, social
science, finance

Google, Apple,
Microsoft

Cloud computing,
big data

Secure Multi-Party
Computation

A technique that allows
multiple parties to
jointly compute a
function without
revealing their inputs
to each other

Banking, insurance,
healthcare

Intel SGX, IBM
Homomorphic
Encryption Toolkit

Cloud computing, IoT

Homomorphic
Encryption

A technique that allows
computations to be
performed on
encrypted data without
decrypting them

Healthcare, finance,
government

Microsoft SEAL, IBM
Homomorphic
Encryption Toolkit

Cloud Computing, IoT

Tokenization

A technique that
replaces sensitive data
with non-sensitive data,
while preserving
their meaning

Payment processing,
E-commerce Stripe, Braintree Cloud computing, web

Anonymization

A technique that
removes personally
identifiable information
from data

Social media, market
research

Facebook, Twitter,
Google Web, mobile

Pseudonymization

A technique that
replaces personally
identifiable information
with a pseudonym

Healthcare, research AWS, Azure Cloud computing,
big data

4. Applications and Target Industry

The FRS is a powerful tool that can be utilized in various applications and target
industries. It enables secure and privacy-preserving data sharing for big data and provides
real-time recommendations across multiple sources [136]. However, sharing data means
that users must reveal their private information, such as name and address, which can
easily be taken advantage of by third-party companies [137,138]. In particular, this private
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information can be used in the retail industry to provide personalized product recom-
mendations to customers, in the healthcare industry to identify potential treatments for
patients [139], in the finance industry to suggest financial products to customers [140], and
in content recommendation for E-commerce websites and for recommending movies and
shows on streaming services [141]. In Figure 6, we present the potential applications and
target industries of FRSs and outline their details in the following subsections. In Table 4,
we present potential real-time applications and targeted industries of FRSs.

Figure 6. Applications and target industries of FRSs.

Table 4. Real-time applications and targeted industries of FRSs.

Application Online Shopping Social Media Healthcare Education Advertising

Personalized Recommendations X X X X X

Cross-Platform Recommendations X X X X X

Improved User Engagement X X X X

Targeted Marketing X X X

Better Patient Outcomes X

Efficient Learning X

4.1. Online Shopping

Currently, online shopping services are becoming increasingly popular and are in-
volved in various aspects of our lives [14]. A large amount of private information of users is
collected and stored centrally by online shopping service providers, which poses a serious
risk of privacy leakage [142–144]. User data may be sold to third parties by service providers
or stolen by external hackers. FRSs can help users enjoy personalized recommendation
services while maintaining personal privacy, make the service providers more trusted
by users, and ensure the recommendation service complies with the regulations [145].
For example, an FRS can be designed to implement various popular recommendation
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algorithms to support many online shopping services and deploy them on a real-world
content recommendation application.

4.2. Social Media

Social media in FRSs allows users to interact with each other and share content, such as
comments, photos, videos, and links [135,146]. This is a platform that allows users to create
networks, post content, and engage with one another in various ways. Social media can
include sites such as Facebook, Twitter, LinkedIn, Instagram, Pinterest, and YouTube [147].
Studies have found that recommender systems can help to increase the accuracy and
relevancy of recommendations by leveraging the vast amount of user data from social
media platforms [148–152]. Therefore, using an FRS can enable the personalization of
recommendations by leveraging user preferences and interests from social media profiles
and can eliminate bias by incorporating the collective wisdom of users from different social
media platforms. FRSs can benefit social media in a number of ways, i.e., they can provide
more accurate and relevant recommendations, which can increase user engagement and
satisfaction. They can also help reduce bias and personalize recommendations, which
can improve the user experience [153]. Moreover, they can provide better insights into
user preferences and interests, which can be used to inform marketing campaigns and
product development.

4.3. Healthcare

The healthcare industry is one of the most-heavily regulated industries in the world,
and using FRSs to share data can help reduce the burden of compliance [154,155]. In par-
ticular, FRSs can allow various healthcare providers share patient data, medical records,
and other relevant information while maintaining the privacy of individual data. Re-
searchers have studied the potential of FRSs for healthcare data sharing [156,157]. The con-
sensus is that FRSs can provide a secure, efficient, and cost-effective way to share sensitive
patient data between organizations. Studies have also shown that FRSs can reduce the cost
of healthcare data storage, improve the quality of care, and reduce the burden of compliance
with data privacy regulations [158,159]. FRSs can benefit healthcare in a number of ways.
For one, they can allow for more secure and efficient data sharing between healthcare
providers. By using FRSs, organizations can share data without sacrificing the privacy of
individual data [160]. Moreover, FRSs can reduce the cost of healthcare data storage and
improve the quality of care by allowing a more comprehensive view of each patient [161].
Finally, FRSs can reduce the burden of compliance with data privacy regulations, as data
can be stored in a secure and encrypted manner [162].

4.4. Education

Education can be defined as the process of preparing individuals for life, work, and cit-
izenship through the acquisition of knowledge, skills, values, beliefs, and habits. In an
FRS, education uses computers and other electronic technologies to facilitate those acquisi-
tions [163,164]. In particular, FRSs allow for a more personalized and tailored educational
experience, allowing students to progress at their own pace and according to their inter-
ests [165]. There has been increasing research into using recommendations in the education
industry [166]. Several studies have focused on the use of a recommendation system to
provide personalized and tailored educational experiences through the use of computer-
based learning [167–169]. Such research has highlighted the potential of recommendations
to increase student engagement, improve student performance, and reduce the need for
teachers to provide instruction. To this end, FRSs can provide personalized and tailored ed-
ucational experiences to students of all ages and backgrounds. By leveraging the power of
computers and other electronic technologies, FRSs can provide students with personalized
feedback and guidance tailored to their learning needs.
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4.5. Advertising

Advertising in an FRS identifies and targets potential customers by delivering cus-
tomized messages and offers. This is usually accomplished through personalization and
contextualization, leveraging user data and preferences, geography, and other demographic
characteristics [170–172]. In FRSs, the main goal of advertising is to increase the visibility
of products and services and to increase the likelihood of conversion [173]. Recent re-
search has highlighted the potential of FRSs to facilitate better advertisement targeting.
In [174], it was found that a recommendation system using a machine learning approach
can improve the accuracy of ads by up to 20%. This improvement was attributed to the
ability of recommendations to model user preferences and characteristics more accurately,
allowing for better targeting of ads. Moreover, FRSs can help reduce the cost associated
with advertising campaigns, as well as the amount of effort needed to build and maintain
the campaigns. On the other hand, privacy preservation is an essential component of
any recommendation system. This is due to the fact that recommendation relies on the
collection and analysis of user data [175]. Without proper privacy measures, user data
can be easily exposed to malicious actors, leading to privacy violations and potential data
misuse [176]. Therefore, FRSs must employ privacy measures such as data anonymization,
data encryption, and access control in order to ensure the privacy of users.

4.6. E-Commerce

E-commerce is the buying and selling products and services over the Internet [125].
It enables customers to access a wide range of products, services, and information from
businesses worldwide. The increase in E-commerce activity has led to an increased usage
of recommendation systems [177,178]. To this end, FRSs can allow different data sources to
collaborate in order to provide personalized recommendations to customers. A literature
review on the application of FRSs in E-commerce revealed the various advantages [179–181].
First, FRSs can help reduce the cost of data access and storage. By sharing data across
different sources, FRSs can provide a more efficient and cost-effective way of accessing
and storing data. Furthermore, FRSs can improve the accuracy of recommendations by
providing more relevant and personalized recommendations [182]. This can increase
customers’ satisfaction and loyalty by providing customers with better recommendations
that are tailored to their individual needs.

5. Publicly Available Datasets

This section provides a list of publicly available datasets for FRSs. These datasets
cover a wide range of topics, including movie ratings, TV show ratings, music tastes,
consumer preferences, and more. Each dataset has been carefully curated to contain
relevant information for developing FRSs. Those datasets are available for free download
and can be used to train and test the performance of FRSs. In Table 5, we show the list of
those datasets and discuss the details in the following subsections.

Table 5. Publicly available datasets that can be used for the development of FRSs.

Name Category Variables Data Type License Format

Amazon [183] Reviews Users, Reviews Text, Numeric Open-Source CSV

MovieLens [184] Movies Ratings, Genres Numeric Open-Source CSV

Yelp [185] Reviews Users, Reviews Text, Numeric Open-Source JSON

Film Trust [186] Movies Ratings, Genres Numeric Open-Source CSV

Goodreads [187] Books Reviews, Ratings Text, Numeric Open-Source XML

Netflix [188] Movies Ratings, Genres Numeric Open-Source JSON

LastFM [189] Music Listeners, Genres Numeric Open-Source CSV

Douban [190] Movies/Books Reviews, Ratings Text, Numeric Open-Source XML

BookCrossing [191] Books Reviews, Ratings Text, Numeric Open-Source XML
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5.1. Amazon Reviews Dataset

The Amazon Reviews dataset is a set of data collected from customers who have
purchased products from the Amazon platform. These data can be used to create an
FRS that can accurately predict what products a user might be interested in based on
his/her past purchase and browsing behaviors. The Amazon Reviews dataset provides
the necessary data needed to create a robust FRS that can recommend relevant products
to users.

5.2. MovieLens Dataset

The MovieLens dataset is a popular dataset used for collaborative filtering. The dataset
comprises ratings from over 20 million users for more than 10,000 movies. It contains
ratings from 0.5 to 5, with 0.5 being the lowest and 5 being the highest. In terms of FRSs,
the MovieLens dataset is used to provide users with personalized movie recommendations
based on the ratings of other users. It does this by considering the similarity between users
and the ratings they have given to the movies. For example, if User A and User B both
rated a particular movie highly, then it is likely that the system would recommend that
movie to both users. This is performed by calculating the similarity between users and
their ratings and then identifying movies that are popular among users with similar tastes.

5.3. Yelp Dataset

The Yelp dataset is a publicly available dataset that contains reviews, ratings, and other
metadata related to businesses and services. It is a popular data source for recommendation
systems, both in the context of federated learning and non-federated learning. In an FRS,
the Yelp dataset can be used to build personalized user recommendations. Specifically,
the dataset can be used to build a collaborative filtering model that considers user prefer-
ences and item ratings. The collaborative filtering model can then create personalized user
recommendations based on his/her preferences and other related factors.

5.4. Film Trust Dataset

The Film Trust dataset is a collection of data about user ratings and preferences for
movies. It was developed as part of the Netflix Prize competition and can be used to build
an FRS. The dataset contains movie ratings from over 500,000 users. Each user rated at least
20 movies, and the ratings range from 1 to 5 stars. The dataset also includes user movie
preferences and demographic information. The demographic information includes gender,
age, zip code, and occupation. In the case of FRSs, the system allows users to share their
ratings and preferences, and the system can then use these data to make recommendations.
For example, if a user shares his/her ratings and preferences with his/her peers, the system
can recommend other movies that the user may be interested in.

5.5. Goodreads Dataset

The Goodreads dataset is a dataset of book ratings and reviews from the popular book
recommendation website, Goodreads. The dataset contains over 6 million user-generated
ratings of and reviews on books, authors, and other related items, as well as over 1 million
user-generated book reviews. This dataset can be useful for FRSs because it allows for the
creation of personalized recommendations that are tailored to the interests of each user.
The dataset also includes information about the books, authors, and reviews so that the
FRS can provide personalized recommendations based on the user’s interests.

5.6. Netflix Dataset

The Netflix dataset is a collection of user ratings of movies in the Netflix library. It can
be used for creating an FRS, which allows users to make recommendations to one another
without revealing their individual preferences. The dataset comprises over 20 million
ratings from over 480,000 users for over 17,000 movies. The data are provided in a matrix
containing users, movies, and their ratings. This allows for creating a collaborative filtering
system, where users can make recommendations to one another based on the ratings
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they have given to movies. Moreover, this dataset provides additional information, such
as release year, genre, and user age, which can be used to build a more personalized
recommendation system.

5.7. LastFM Dataset

The LastFM Dataset is a collection of user-generated music-listening data from the
Last.fm online music service. The dataset is well suited for FRSs, as it contains large
amounts of user-specific music-listening data from various users. These data can create
personalized recommendations for users, as they are more likely to be interested in music
similar to what they have already listened to. The dataset includes user IDs, the artist
name, the release name, the song title, the album name, the number of plays, and the
timestamp when the song was played. These data can be used to create more detailed
recommendations for each user. By analyzing the number of plays and the timestamp of
each song, the system can identify which songs are most-popular among users and make
recommendations accordingly.

5.8. Douban Dataset

The Douban dataset is a large collection of user-generated content from the popular
Chinese social networking site Douban. It is a useful resource for FRSs, providing a rich
data source for understanding user preferences and behaviors. The dataset contains user
ratings, reviews, and tags for movies, books, and music. It also contains user profiles,
including age, gender, location, and occupation. All this information can be used to build a
robust FRS.

5.9. BookCrossing Dataset

The BookCrossing dataset is a collection of user ratings and book ratings from
a website called BookCrossing. It is composed of three tables: BX-Books, BX-Users,
and BX-Book-Ratings. The BX-Books table contains the ISBN, title, author, and publisher
information for the books that have been rated by the users. The BX-Users table contains the
users’ information, including their age, location, and book ratings. The BX-Book-Ratings
table contains the ratings that the users have given to each book. The BookCrossing dataset
is a great resource for training an FRS, as the system can use the ratings from multiple users
to create a personalized recommendation for each user.

6. Future Directions and Real-World Challenges

In this section, we discuss the need for further research and development in order to
optimize the effectiveness of FRS. We first show the existing limitations, issues, and chal-
lenges in Table 6. Then, we look at the potential challenges that need to be overcome for
FRS to be implemented successfully. In Figure 7, we show the overview of future directions
while we discuss the details of them in the following subsections.

Figure 7. Directions that should be followed in FRSs for future developments.
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Table 6. Current security protocols, limitations, issues, and challenges in FRSs.

System Security Protocols Limitations Issues and Challenges

Content-Based Filtering Secure aggregation Data privacy and
security concerns

Develop more scalable and
efficient secure aggregation
methods, improve data
sharing protocols

Knowledge-Based Systems Access control
and authorization

Limited scalability,
reduced accuracy

Lack of data for
knowledge-based models

Collaborative Filtering Access control, authentication Data privacy and
security concerns

The reliability of data between
different parties

Context-Aware
Recommendation

Secure aggregation,
authentication,
and authorization

High computational overhead Lack of data for
context-aware models

Hybrid Recommendation
Systems

Access control, authentication,
authorization

High computational overhead,
reduced accuracy

Improve scalability, develop
secure aggregation methods,
explore privacy-preserving
MPC techniques

6.1. Data Privacy

• Future directions: Data privacy is an increasingly important issue in FRSs. In order
to ensure that all users’ data are secure, FRSs must have security protocols in place
for exchanging data between different organizations. These protocols should be
designed to protect user privacy by preventing unauthorized access to user data and
by allowing users to control with whom their data are shared. In addition, the FRS
must take steps to ensure that user data are not misused or abused. This could include
implementing policies and procedures for data security and monitoring, as well as
developing technologies to detect any unauthorized access or misuse of user data.

• Real-world challenges: A major challenge for FRSs is ensuring that user data are
secure, both in terms of the data exchanged between different organizations and the
data stored on each organization’s servers. To address this challenge, FRSs must
ensure that all data exchanged between different organizations are encrypted, secure,
and adequately protected. Besides, the system must ensure that each organization’s
servers are secure and that all user data are stored in a secure manner that prevents
unauthorized access or misuse.

6.2. Cold Start Problem

The cold start problem is a challenge faced by FRSs when providing accurate and per-
sonalized recommendations. This problem arises when there are no existing data available
to predict user preferences accurately. Without these data, the system cannot make accurate
recommendations and may default to providing generic suggestions. As a result, users
may be less likely to engage with the system, leading to a decrease in customer satisfaction:

• Future directions: These may include collecting more user data, such as preferences,
likes, and dislikes, and implementing techniques such as collaborative filtering that
allow the system to draw connections between similar users and their preferences.
Moreover, techniques such as deep learning may be used to understand user behavior
better. The FRS may also benefit from integrating external data sources, such as social
media, from personalizing the user experience further.

• Real-world challenges: These include protecting user privacy, balancing accuracy and
complexity, and ensuring scalability. To ensure user privacy, FRSs must be designed
with privacy-preserving techniques in mind. The complexity of the model must be
balanced with its accuracy, as complex models may be difficult to interpret and may
not be able to predict user preferences accurately. Finally, the system must be able
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to handle large amounts of data when scaling, as more data will allow for more
accurate predictions.

6.3. Data Fragmentation

The use of FRSs is becoming increasingly popular due to the fact that they enable
organizations to manage and store data in a distributed manner without compromising
privacy. However, when data are stored in a distributed manner, there is a risk of data
fragmentation. Data fragmentation occurs when the data are split into pieces and stored in
different locations. This can cause problems with accessing and utilizing the data, as well
as with data consistency:

• Future directions: To address the issue of data fragmentation, research should focus
on approaches to facilitate seamless data transfer between different locations and to
ensure that the data are consistent and up-to-date. This could include the development
of distributed databases, distributed query processing, and distributed data analytics.
Moreover, research should focus on developing methods for federated learning with
fragmented data. These methods should aim to reduce the computational cost of
training models and improve the accuracy of the models.

• Real-world challenges: Data fragmentation can be a significant challenge in FRSs,
as it can lead to inconsistent data and can make it difficult to access and utilize the
data. In addition, privacy concerns may prevent the data from being shared across
different locations, further exacerbating the problem of data fragmentation. As such,
organizations will need to develop policies and technologies to facilitate data transfer
and to ensure that the data are consistent and up-to-date. Moreover, organizations
will need to ensure the security of the data and protect the privacy of users.

6.4. Scalability Issues

FRSs hold great promise for improving the quality and accuracy of personalized
recommendations, but they can also be difficult to scale. As the number of sources and
users grows, the complexity of managing data across multiple sources and ensuring the
accuracy of recommendations can become increasingly difficult:

• Future directions: In order to address the scalability issues associated with FRSs,
researchers are developing improved methods for managing and processing data
across multiple sources. This includes optimizing algorithms to reduce the number of
data transfers, as well as utilizing distributed computing architectures and artificial
intelligence to manage data better. In addition, researchers must continue to explore
methods of improving the accuracy of federated recommendations, such as using
transfer learning, ensemble learning, and other latest machine learning techniques.

• Real-world challenges: There are scalability concerns about data privacy and security,
as well as the need for robust methods for managing user profiles and managing
conflicts between multiple sources. Moreover, as federated systems become more
complex and involve more stakeholders, it will be important to develop governance
models and mechanisms for cooperation among the different parties involved.

6.5. Lack of Interoperability

Interoperability is the ability of different systems to work together and exchange
information. Without interoperability, FRSs would be unable to share information, limiting
their effectiveness. This could lead to a lack of the personalization and accuracy of recom-
mendations. Moreover, this would create a barrier between users and their data, making it
difficult for them to find the most-relevant content.

• Future directions: These may include developing standards and protocols for data
exchange between systems, as well as utilizing open-source solutions that allow differ-
ent systems to communicate with each other. In addition, developing technologies
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such as blockchain could provide solutions to ensure data privacy and security while
allowing interoperability.

• Real-world challenges: The main challenge in achieving interoperability in FRSs is
the need for systems to be able to share data without compromising privacy or security.
Moreover, different systems may have different data formats, making it difficult for
them to communicate with each other. Developing standards and protocols for data
exchange could help address this challenge, as could the development of open-source
solutions. In addition, ensuring data privacy and security in federated systems could
be a difficult task, as data may need to be shared between different systems. Utilizing
blockchain technology could help address this challenge, allowing for secure data
sharing while ensuring privacy.

7. Conclusions

This paper discussed the potential of federated recommendation systems for protecting
user privacy while allowing organizations to benefit from the data they share. We explored
how federated recommendation systems allow for secure data sharing and collaboration in
the context of big data. In addition, we identified the challenges associated with developing
and deploying these systems in the real world. With the increasing demand for privacy,
federated recommendation systems provide a powerful tool for protecting user data while
allowing organizations to benefit from the data they share. With the right tools and practices
in place, federated recommendation systems can help organizations navigate the complex
landscape of data privacy.
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