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Abstract: With the development of automation technologies, autonomous robots are increasingly
used in many important applications. However, precise self-navigation and accurate path planning
remain a significant challenge, particularly for the robots operating in complex circumstances such
as city centers. In this paper, a nonholonomically constrained robot with high-precision navigation
and path planning capability was designed based on the Robot Operating System (ROS), and an
improved hybrid A* algorithm was developed to increase the processing efficiency and accuracy
of the global path planning and navigation of the robot. The performance and effectiveness of the
algorithm were evaluated by using randomly constructed maps in MATLAB and validated in a
practical circumstance. Local path planning and obstacle avoidance were carried out based on the
model predictive control (MPC) theory. Compared with the conventional A* + DWA (dynamic
window approach) method, the average searching time was reduced by 12.62~24.5%, and the average
search length was reduced by 9.25~9.5%. In practical navigating tests, the average search time was
reduced by 18~24%, and the average search length was reduced by 10.3~12%, while the overall path
was smoother. The results demonstrate that the improved algorithm can enable precise and efficient
navigation and path planning of the robot in complex circumstances.

Keywords: nonholonomic mobile robots; self-navigation; mapping; path planning; hybrid A* algorithm

1. Introduction

With the development of artificial intelligent and automation technologies, mobile
robots with self-navigation capabilities are gradually replacing conventional machines
such as manually operated vehicles. However, the working areas and traffic conditions
for autonomous mobile robots could be complex, e.g., in the central business district.
To work efficiently in these environments, an autonomous robot should have three
functions [1]: (1) global planning capability under different working conditions, which
enables the robot to plan a feasible global path efficiently according to the local surround-
ings; (2) tracking and controlling capability to ensure high precision in the movement
based on the path planning; and (3) rapid response to environmental constraints and
planning of new feasible paths in a time when the local environments are changed due
to the passing-by vehicles or pedestrians [2].

The planning of the path can be divided into global path planning and local path
planning. Global path planning is designing the route of the robot in a fully perceived
environment. It is the process of constructing a two-dimensional or three-dimensional
map of the known environment with specific constraints [3] and target information [4].
For the global path planning, two classical searching methods are often used to detect the
positions and areas of obstacles: (1) searching algorithms based on random samplings, such
as the probabilistic road-map (PRM) [5], rapidly exploring random tree (RRT) method [6],
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and RRT algorithm based on convolutional neural network (CNN) [7]; and (2) graph
search-based algorithms, such as the Dijkstra [8] and extended Dijkstra algorithms [9]. The
Dijkstra algorithm is characterized by its ability to guarantee that the obtained path will be
the shortest. However, it needs to scan all the nodes in the map, and the number of nodes
is generally immense. This results in a significant increase in computation and a potential
decrease in solution rate, while also consuming significant memory space.

To increase the scanning/searching efficiency, A* algorithm was proposed by using a
heuristic function as the search-guided approach [10,11]. The mathematical principle of
the A* algorithm is presented in Equation (1). To determine the priority of the next node
f (n) in the scanning/searching process, two cost functions, g(n) and h(n), are used in the
equation: g(n) represents the cost from the current node to the start node of the path, and
h(n) represents the estimated cost from the next node to the end node of the path.

f (n) = g(n) + h(n) (1)

Based on the A* algorithm, some improved algorithms were developed recently. For
example, Harabor and Grastien developed the jump point search (JPS) algorithm [12]
by storing nodes in the open list to improve search efficiency. Li et al. proposed self-
adaptive learning particle swarm optimization (PSO) with different learning strategies [13]
to improve the search capability of PSO. With the development of nonholonomically
constrained robots, path planning becomes more and more important for robots, such as
the Ackermann mobile robot chassis. However, the A* algorithm is not effective in planning
path for nonholonomically constrained mobile platforms. When planning the paths for
such robots, post-processing and smooth optimization processes are required before the
application of the paths because such robots are only feasible to paths that satisfy their
kinematic constraints, and they are not capable of tracking all the continuous paths. As
shown in Figure 1, the Ackermann robots cannot traverse angles greater than 90◦ (such as
the red robot in Figure 1a) in a limited range when confronting such obstacles (the blue
grid) in real-world scenarios. Therefore, flexible path planning should be used to avoid
potential collisions (Figure 1b).
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Figure 1. The collision schematic diagram. (a) The collision of Ackermann chassis due to the limitation
of transverse angle. (b) Avoiding collision via flexible path planning.

In addition to the global path planning, local path planning is also critical when the
working environment keeps changing dynamically. The local dynamic path planning
is mainly divided into two approaches [14]. The first approach involves the detection
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of new obstacles in the environment and obtaining space information. The robot then
conducts replanning at the navigation planning level to obtain a new collision-free path
that is sent to the underlying tracking controller for executing movement. The typical
methods in this category include the artificial potential field (APF) method, grid planning
method, and others. However, these methods require replanning and outputting control
commands, resulting in a large amount of computation, and cannot meet the real-time
requirements. The other approach to local path planning at the motion control level
involves considering the nonholonomic-constraint characteristics of the robot. The primary
concept is to establish an optimal control problem in the unit-time step when facing new
obstacles and solve the optimization problem while obtaining the optimal trajectory and
the corresponding control input. The primary representative methods of this approach
include the dynamic window approach (DWA) [15], time-elastic belt (TEB) approach [16],
and local planning based on model predictive control (MPC) [17] which is widely used
for avoiding collisions [18]. Yi Gan et al. proposed the A1-0 Bg-RRT algorithm to reduce
computational time in complex environments [19]. Zhang et al. proposed the algorithm for
ships with INS-aided shipborne GNSS, which considered the measurement update from
one-dimensional speed [20]. Zhang et al. introduced the Bézier curve method to smooth
the routes [21]. However, when applied to nonholonomic constraints, these algorithms
show slow navigation speed and can generate non-optimal paths.

Nonholonomic mobile robots such as Ackermann architecture mobile robots, single-
wheeled inverted pendulum robots and three-wheeled omnidirectional mobile robots
have fewer controlled variables than state variables during motion, which can easily lead
to motion slipping problems. How to control nonholonomic mobile robots to reach the
target location and face the target direction are a challenging task, and extensive research
has been conducted in this area. For example, Karl Worthmann et al. [22] proposed
a predictive control scheme based on tailored nonquadratic stage cost to address this
issue. Dang et al. [23] proposed a novel evaluation function based on the Theta-star
search algorithm. The new function can generate waypoints with an empirically averaged
distance to obstacles. In 2020, Li et al. [24] proposed a graph-based multi-agent path
planner. The planner can effectively generate optimal collision-free trajectories for multiple
nonholonomic mobile robots in environments with multiple obstacles. Johnson et al. [25]
proposed the dynamic motion planning networks (Dynamic MPNet) algorithm. They
modified the planning network to achieve real-time planning for nonholonomic robot
motion planning problems, instead of simply relaxing constraints. By adjusting the steering
of the robot through its path planner or driver, Gonon et al. [26] developed the method to
assist navigation in dense crowds.

However, although these path planning algorithms can accommodate nonholonomic
constraints in robots, many inherent issues exist, e.g., suboptimal operating speed, failure
in producing smoother paths with higher accuracy, and the randomly occurred excessive
searches. This is because the heuristic function h(x) of the conventional A* algorithm is
generally the Euclidean distance, which traverses a very large number of unnecessary
nodes in planning the path and significantly limits the efficiency of navigation. To optimize
the path planning, an improved hybrid A* algorithm was proposed in this paper with
the intension to improve the performance of autonomous navigation of mobile robots
with nonholonomic chassis. The Chebyshev distance [27] was used to weight the heuristic
function in the global path planning, and the local path planning algorithm was improved
as an MPC local planner. The performance of the algorithm was tested in MATLAB and
validated in practical navigation experiments, and the conventional A* algorithm was
used as comparison to demonstrate the effectiveness of the new algorithm. By compar-
ing the paths planned for maps with different obstacles, it was found that shorter and
smoother paths were generated via the improved A* algorithm due to the application of
the Chebyshev distance, which increased the efficiency and accuracy of the overall path
planning. The results of this study provide a practical method for the efficient autonomous
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navigation of robots with the nonholonomic-constraint mobile platform, e.g., the pit robot
with Ackermann chassis.

2. Path Planning for Nonholonomic Robots
2.1. Map Construction and Robot Positioning

Simultaneous localization and mapping (SLAM) [28], which includes laser SLAM,
visual SLAM, and multi-sensor fusion SLAM according to the type of sensors employed,
was the commonly used method in the construction of maps for different working environ-
ments [29]. In this study, laser SLAM was chosen as the localization and mapping method
due to its higher accuracy, faster speed, and wide-ranging capabilities with the using of
LiDAR. The sensor emits laser signals to perceive the surrounding environment, and the
obstacles reflected back to the receiver by the laser are used to construct the map based
on the sizes, shapes, and positions of the obstacles. In plotting the map, the geometric
mapping approach, the topological mapping approach, and the occupancy grid mapping
approach are the commonly used methods. In this study, the occupancy grid map approach,
which plots the map by small squares, was employed. The number of squares represents
the size of the map, and the probability of the obstacle in a square is higher when the
number is larger. Then, the plotted map was meshed, and the values in the range of
0–255 were defined to each cell presenting different occupied characters (vacancy, obstacles,
etc.). The computer uses this feature to discriminate obstacles. A two-dimensional map
was constructed digitally via the G-mapping, which is a widely used SLAM algorithm in
ROS. This algorithm is an improvement upon the Rao-Blackwellized particle filter (RBPF)
approach, which prioritizes positioning before map construction.

2.2. Robot Positioning

The positions of a robot can be determined via the SLAM algorithm which utilizes
the probability distribution approach; particles are used to represent an estimation of the
robot’s position based on sensor measurements. However, the algorithm could generate
a very large number of particles, leading to high computational load and time delay.
Furthermore, the SLAM algorithm is less effective in addressing the robot kidnapping
problem, i.e., when the robot is suddenly moved to a different location or experiences tire
skidding. As a result, the positioning of robot was implemented via the AMCL algorithm,
which utilizes a particle filter to calculate the robot’s position according to the data from
both the odometer and LiDAR sensors. Moreover, AMCL can be applied in solving both
global and local localization problems to reduce the workload required for subsequent
navigation algorithm. With regard to robot kidnapping, AMCL incorporates weights
determined by the information from short-term observation and long-term observation.
These weights enable more reasonable particle number and time allocation, as expressed in
Equations (2) and (3), respectively:

wlong_t+1 = wlong_t + along

(
wavg −wlong_t

)
(2)

wshort_t+1 = wshort_t + ashort
(
wavg −wshort_t

)
(3)

where wi is the observation average function, ai is the average weight coefficient determined
by the observed information, i has three states: long-term, short-term, and average. In
the AMCL algorithm, the probability of increasing particle number is related to the two
weight coefficients. The weights were updated by iteration, and the values were typically
within the range of 0.0010~0.01. The probability of increasing the particle number can be
calculated using the following equation:

P = max
{

0.0, 1.0−
wlong

wshort

}
(4)
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It can be seen from Equation (4) that the increase in the particle number is related to
the value of

wlong
wshort

. When the weight of short-term information is less than that of long-term
information, which indicates that the robot has deviated from the predetermined trajectory,
the system will increase the number of random particles. At this stage, the robot’s self-
positioning capability can be achieved more quickly and accurately by matching a larger
number of particles. The visualized process of the robot’s self-positioning process via
AMCL algorithm is illustrated in Figure 2. Through multiple updates and resampling of
the particle set, the particle filter can adjust the weight and position of the particles to reflect
the probability distribution of the robot’s position. The location where particles appear
more frequently is where the robot is more likely to be located.
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2.3. Path Planning Based on Improved Hybrid A* Algorithm
2.3.1. Grid Environment Modeling

The planning of paths was determined according to the positions of vacancies and
obstacles on the constructed maps. As introduced in Section 2.1, grid mapping approach
was used for the construction of the map, and the map was meshed into grids with certain
numbers presenting starting point, end point, obstacles, security areas, and other relevant
information. As shown in Figure 3, the black regions in the grid map represent obstacle
areas, while the white regions represent areas which are available for travel, and both areas
can be updated in real time according to the positions of obstacles and vacancies when the
environment is changed.

2.3.2. Global Path Planning Based on Improved Hybrid A* Algorithm

Robot path planning consists of global path planning and local path planning. As
mentioned before, the processing efficiency of conventional A* algorithm is limited
when the areas of the obstacles are complex. Therefore, the hybrid A* algorithm [30]
was used for the global path planning. The algorithm improved the specification of the
heuristic function and the searching method to achieve better results. For the heuristic
search-based path planning, the effectiveness of the heuristic function h(x) is critical. In
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conventional A* algorithm, h(x) is usually the Euclidean distance between the two nodes
(xn, yn) and (xg, yg), as presented in Equation (5).

h(x) =
√(

xn − xg
)2

+
(
yn − yg

)2 (5)

However, this approach causes the traversal of unnecessary nodes and an increase
in the redundancy of the path planning when the distance calculated via h(x) is smaller
than the actual path. To address the limitations of the Euclidean-distance heuristic function,
Chebyshev distance dq, which was expressed in Equation (6), was applied. The improved
algorithm is presented in Equation (7).

dq = max
{∣∣xn − xg

∣∣, ∣∣yn − yg
∣∣} (6)

(n) = g(n) + w·h(n) (7)

w = exp
(

1
αdn + β

)
(8)

dn =
max{|xn − xs|, |yn − ys|}
max

{∣∣xg − xs
∣∣, ∣∣yg − ys

∣∣} (9)

Value dn in Equation (9) is the ratio of the Chebyshev distance from the starting point
of the current node to the full Chebyshev distance. Value w is the weighting coefficient,
which dynamically weights the heuristic function. Values (xs, ys) are the horizontal and
vertical coordinates of the starting point, (xg, yg) are the horizontal and vertical coordinates
of the target point, and (xn, yn) are the horizontal and vertical coordinates of the current
node. The weighting coefficient α (typically 5~9) is used to obtain better results, depending
on the distribution of obstacles in the map. The obstacle ratio β represents the proportion
of the area occupied by obstacles to the total area of the map. By weighting the heuristic
function with the Chebyshev distance (Equation (8)), a balance between planning efficiency
and effectiveness can be achieved; it reduced the gap between the heuristic function h(x)
and the actual path length, the number of nodes traversed, and eventually the search time.
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The smoothing of the path is necessary for the vehicle (the Ackermann-steered mobile
platform) and the position of each target point, especially the position of the vehicle at
the starting and ending points on the path, which should be appropriately designed in
order to minimize the total length of the path. The determination of the position of the
vehicle at each point is presented in Figure 4. If the angle formed by a target vertex and
its two adjacent points is less than 90◦ (Figure 4), the scheme of entering and exiting the
opposite direction with an angular bisector position will be adopted. On the other hand,
if the angle is greater than 90◦ (Figure 4), the one-way entry–exit method with the stop
position being the vertical line of the angular bisector line will be adopted. This approach
allows for smoother movement and efficient transverse of the vehicle.
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To improve the searching efficiency and meanwhile satisfy the condition of the heuris-
tic function, Reeds-Shepp curve was applied at the end of the global path planning process.
The Reeds-Shepp curve is a cost-optimized path curve that has been proven to be opti-
mal for nonholonomically constrained robots in a general-purpose environment free from
obstacles [31]. During the global path planning, the improved hybrid A* algorithm with
Chebyshev distance attempted to generate a Reeds–Shepp curve from the current node
to the target node if a node was expanded during the loop search. If such a curve was
generated between the two points without encountering any obstacles, the curve would be
combined with the result in the closed list to generate the optimal path. The adoption of
Reeds–Shepp curve significantly increased the efficiency of the algorithm.

The flowchart depicting the final global planning algorithm is presented in Figure 5.
Figure 6 shows the pseudocode of the global path planning algorithm in the improved
hybrid A* algorithm.
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2.3.3. Local Path Planning Based on MPC Theory

Global path planning is generally constructed for one time at the initial of the path
planning. In practice, the environment could be dynamically changed during the operation
of the robot. Therefore, it is necessary to update the local path according to the changed
environment and incorporate such local path planning into the total path planning pro-
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cess [32]. The real-time update of the environment changes (e.g., new obstacles or changes
in the existed trajectory) can be realized by the MPC-based local path planning. MPC is a
specialized form of control that generates the current control action by solving an open-loop
optimal control problem within a finite time horizon [33,34]. It provides a more adaptive
and robust control strategy for mobile robots, ensuring safe and efficient navigation in
dynamic environments. In the improved hybrid A* algorithm, the total cost f (n) of a node
n is expressed as f (n) = g(n) + h(n), where g(n) and h(n) are the actual cost from the start of
the path to node n and the estimated cost from node n to the goal. Specifically, g(n) is the
stage cost determined by the current state and controlling input, which is calculated using
the following formula: g(n) = g(parent) + c(parent, n), where g(parent) is the actual cost
from the start of the path to the parent of node n, and c(parent, n) is the actual cost from
the parent to node n. Value h(n) is the terminal cost according to the predicted future
state, and it is obtained by using a heuristic cost estimate function that estimates the
cost from node n to the goal. As a result, it can be seen that the optimal control via MPC
is directly influenced by g(n) and h(n). With regard to Ackermann steering chassis, the
MPC is particularly suitable for local path planning because it can effectively handle the
nonholonomic constraints that are unique to the chassis. As shown in Figure 7, MPC can
plan a path that takes into account these constraints and also has a feedforward system
that includes a prediction function, allowing for dynamic obstacle prediction during
local path planning.
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Figure 7. Schematic diagram of the MPC principle.

In the MPC strategy, the constraint conditions of dynamic obstacles are fully con-
sidered, reflecting the optimization of the robot motion state and prediction of possible
collision situations between the robot and dynamic obstacles at future time steps. Adjust-
ments are made based on these constraints, ensuring safe and efficient navigation. At a
given sampling moment, the geometric visualization of the entire constraint condition of
dynamic obstacles is illustrated in Figure 8.
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The mathematical expression of the obstacle constraint on the robot position space
m(k) at the current time k can be obtained. Equations (10) and (11) show the criteria
of collision elimination of a robot when confronting the static obstacle and the dynamic
obstacle with constant motion state: the distance d between the center points of the two
obstacles should be larger than the sum of the expansion radius in all predicted states.

‖m(k + j)−mos‖2 ≥ ros + ρ, ∀j =
{

0, 1, 2, ..., Np
}

(10)

∥∥∥m(k + j)−md(k + j)
∥∥∥

2
≥ ρd + ρ, ∀j =

{
0, 1, 2, ..., Np

}
(11)

where ros and ρd are the expansion radius for the static and dynamic obstacles, respectively,
j represents a certain time, mos and md represent the position space of static obstacle and
dynamic obstacle, m represents the spatial position of the robot, and ρ is the expansion
radius of the robot.

3. Simulation and Experiment
3.1. Simulation of Map Construction

To evaluate the effectiveness and efficiency of the improved hybrid A* algorithm,
a computer simulation was carried out via MATLAB 2018b. The hardware/software
environments are listed in Table 1. The following reasonable assumptions were considered
in the simulation:

(1) The robot can perform turns within the reaction time, and the turning angle does not
exceed its maximum turning angle while moving in the map, without considering
factors such as friction and other resistances.

(2) The robot’s orthographic projection area occupies one quarter of a grid. In a map with
an obstacle ratio of 0.2, the value of variable α is 5, and the value of variable β is 0.2.
In a map with an obstacle ratio of 0.3, the value of variable α is 6, and the value of
variable β is 0.3.

These assumptions fit the definition of our model. The Chebyshev distance from start
to finish is 8 m.

Grid maps with obstacle proportions of 0.2 and 0.3 (the ratio of the obstacle number
to the total number of grids) was used as the comparative experiments. The simulation
process is the random generation of a grid graph by MATLAB using the A* algorithm
and improved algorithm for path planning. Four experiments were carried out on each
map with different ratio of obstacles, and the time and length of each planned path were
calculated. The grid map used in the simulation was 20 × 20, with a size of 0.5 m × 0.5 m
per grid. The information of the hardware is listed in Table 1. The model of the GPU used in
this study is NVIDIA GTX1650 with 896 CUDA cores and the core frequency of 1485 MHz.
The SLAM and relevant machine-learning algorithms were processed via CUDA toolkit,
and the processing efficiency is directly determined by the core frequency and core number
of the GPU. Since GPUs have a large number of cores, which allow for better computation
of multiple parallel processes, they can process multiple computations simultaneously.
Therefore, the calculation running on a high-performance GPU can have a significantly
shorter time compared to those running on the CPU.

Table 1. Hardware environment for simulation.

Operating System CPU RAM GPU

64 bit Windows 10 Intel(R) Core (TM) i5-9300H 8.0 GB GTX1650

3.2. Physical Mock-Ups and the Controlling System

A robot which consisted of an Ackermann steering chassis, a three-degree-of-freedom
mechanical arm, and an actuator was fabricated (Figure 9a). Specifically, the chassis was
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responsible for tasks such as target navigation and path planning, while the mechanical
arm performed track planning assisted with an auxiliary actuator and camera-based target
positioning. The Ackermann chassis was equipped with LiDAR, a binocular camera,
a control box, a manipulator, a motor, and a drive which facilitated the autonomous
driving and operation of the robot. The controlling system of the autonomous robot was
made up by a upper computer and a lower computer, as shown in Figure 9b. The path
planning algorithm was stored and performed in the upper computer which consisted
of a PC terminal with an Intel (R) Core (TM) i5-9300H CPU @ 2.30 GHz processor and a
microcontroller with the Jetson Nano demo board. The PCD terminal performed decision-
making and information processing, whereas the Jetson Nano controlled the radar and
the camera and facilitated communication between the components. The lower computer
comprised two STM32 demo boards. The STM32 F103 received commands sent by the
upper computer and controlled the movement of chassis. This demo board was also
responsible for information collection from odometer and responded back to the upper
computer for navigation. The STM32 F405, along with the related drive, received commands
from the upper computer to control the mechanical arm according to the track.
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3.3. Navigation Experiment

The practical navigation experiment was conducted at a 10 m × 10 m testing site,
and cardboard boxes and chairs were allocated within the site to imitate the obstacles
(Figure 10). In the experiment, the obstacle ratio of the whole map is 0.15, so β is 0.15, α is
5, and the Chebyshev distance dq from the starting point to the end point is 7 m.
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We used SLAMTEC A2 radar to build the map (Table 2). The accuracy of the radar
is 1 cm to 5 cm, the scanning radius is 12 m, and the scanning frequency is 5 Hz to 15 Hz.
The global map was established with the data collected via LiDAR and processed by the
mapping algorithm. It can be seen that the constructed map is roughly the same as the
practical environment, with a relative error of about 1%. The Rviz visualization interface
was launched to verify the normality of map information, robot model, LiDAR, and other
relevant data. Moreover, the planned path, such as global and local paths, can be visualized
in the Rviz interface to monitor the results of the tests. After the generation of the path
according to the global map, various speed instructions and other relevant data such as
steering angle and rotating speed of the front wheel were generated in real-time. The
autonomous navigation system in the upper computer constantly received and released
topics (i.e., data and instructions) in the ROS communication mode. The lower computer
received relevant instructions, performed the necessary tasks, and ultimately completed
the navigation task.

Table 2. Specific parameters of the radar.

Model Number Accuracy Scanning Radius Scanning Frequency Sampling Frequency Angular Resolution

SLAMTEC A2 1–5 cm 12 m 5–15 Hz 16 k 0.9◦
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4. Results and Discussions

Figure 11 shows the simulation results of mapping and path planning in MATLAB.
The results of the improved hybrid A* algorithm were evaluated and compared to those
of the traditional A* algorithm. The obstacle ratios of the maps used in the simulation
were 0.2 and 0.3, respectively. The blue lines in the figures represent the paths planned
by the conventional A* algorithm, and the red lines stand for those from the improved
hybrid A* algorithm. It was found that the conventional A* algorithm searched the
concave obstacles by scanning the eight surrounding nodes. This increased the search
time and distance and reduced the algorithm’s efficiency, although it did not result
in the local minimum problem. Moreover, the sharp corners of the paths generated
by the conventional A* algorithm were not suitable for nonholonomically constrained
Ackermann chassis. In contrast, the path generated by the improved hybrid A* algorithm
was shorter and smoother. This significantly reduced the total length of the path as well
as the turning radius at the boundary of the obstacles, facilitating the movement of the
Ackermann chassis.
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Figure 12 shows the difference between the A* algorithm and improved algorithm
in the simulation experiments. It can be seen that the path charted by the A* algorithm
possesses a large corner, displaying a tendency to collide with the boundary of the obstacles.
This problem was caused by the algorithm’s manner of node expansion in eight directions
without considering motion constraints and the actual size of the robot. This makes the A*
algorithm unsuitable for actual navigation. Conversely, the path planned by the improved
algorithm is notably smoother with a small corner, presenting a more feasible performance
than that of the conventional A* algorithm. This is because the application of the Chebyshev
distance optimized the node expansion when the transverse angle was larger than 90◦.
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The performance of both algorithms was evaluated using a grid map at the two
obstacle ratios. The comparison of the improved algorithm and the traditional algorithm is
shown in Figure 13. The values of the average searching length and time consumption of
the two algorithms are listed in Tables 3 and 4. The results obtained from the simulation
and experiment demonstrate that the improved algorithm is advantageous in the path
selection. Specifically, the average searching length with the improved hybrid A* algorithm
was about 9% less at both obstacle ratios of 0.2 and 0.3. This is because the improved hybrid
A* algorithm avoids the generation of nodes that were generated by the conventional A*
algorithm. The smoother path generated via the improved hybrid A* algorithm contributed
to the overall increase in the efficiency of the algorithm, which was reflected by the average
searching time. As listed in the tables, the average search times using the improved hybrid
A* algorithm were 12.62% and 24.5% when the obstacle rates were 0.3 and 0.2, respectively.
This indicates the better efficiency of the improved algorithm, but the time reduction
became less significant when the obstacle rate was increased.
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Table 3. Comparison between the algorithms at the obstacle rate of 0.3.

Indicators A* Algorithm Improved Hybrid A* Algorithm

Path state Unsmoothed Smooth and continuous
Average searching length 25.2 23.1 (9.25% reduction)
Average searching time 2.06 s 1.8 s (12.62% reduction)

Table 4. Comparison between the algorithms at the obstacle rate of 0.2.

Indicators A* Algorithm Improved Hybrid A* Algorithm

Path state Unsmoothed Smooth and continuous
Average searching length 25.13 22.75 (9.5% reduction)
Average searching time 1.722 s 1.3 s (24.5% reduction)

Figure 14 shows a map of passable and impassable areas and obstacles. In this context,
the black regions represent impassable areas and obstacles, whereas the gray regions signify
passable areas. The starting point and end point for the comparison experiment remain
the same. The path planned by the A* algorithm is shown in Figure 14a, while the path
planned by the improved hybrid A* algorithm is shown in Figure 14b. It is evident from the
image that the improved hybrid A* algorithm effectively circumvents the robot’s entry into
concave areas while searching for the optimal path. This approach results in a shorter path
length, smoother trajectory, and reduced likelihood of collisions. In practical navigating
tests, the average time of search was reduced by 18~24%, and the average length of search
was reduced by 10.3~12%. Accounting for the positioning error of the robot, the present
study suggests that the improved algorithm generates superior paths compared to that of
the A* algorithm.

The improved algorithm uses the Chebyshev distance to weight the heuristic function,
and under the guidance of global programming; it avoids the concave area of obstacles,
improves the redundancy and inefficiency of the traditional A* algorithm, and can quickly
generate an optimal curve in the early and middle stages.



Appl. Sci. 2023, 13, 6141 17 of 19Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 19 
 

 
Figure 14. Path generated via different algorithms in the practical navigation experiment: (a) con-
ventional A* algorithm and (b) improved hybrid A* algorithm. 

5. Conclusions and Further Work 
The nonholonomic robot with autonomous navigation was developed in this paper. 

The improved hybrid A* algorithm with Chebyshev weighting was applied in the path 
planning process to increase the efficiency of the navigation. The development of the self-
path planning method was conducted in the following processes: (1) the construction of 
maps via the Robot Operating System (ROS), (2) the self-positioning of the robot via the 
adaptive Monte Carlo (AMCL) algorithm, (3) the global path planning via the improved 
hybrid A* algorithm, and (4) the local path planning via the model predictive control 
(MPC) strategy. By testing the performance of the algorithm in the simulation and practi-
cal environments, it was found that the improved hybrid A* algorithm outperformed the 
conventional A* algorithm in both search time and search length. These improvements 
make it an ideal choice for mobile chassis with nonholonomic constraints. Compared with 
the conventional A* algorithm, the average search time was reduced by 12.62%~24.5%, 
and the average search length was reduced by 9.25%~12% at different obstacle rates. In 
the practical navigating tests, the average time of search was reduced by 18%~24%, and 
the average length of search was reduced by 10.3%~12%, while the overall path was 
smoother. These results demonstrate the superior performance of the improved algorithm 
in various working environments. 

Consideration for moving obstacles is an inevitable aspect of future work. With the 
evolution and increasing accessibility of autonomous navigation technologies, the rapid 
detection and avoidance of mobile objects become an imperative concern [35]. Future re-
search focus will be on the development of new sensors, construction of more accurate 
obstacle-prediction models, and implementation of faster path-planning algorithms. Fur-
thermore, applying artificial intelligence and deep learning in navigation algorithms can 
result in more precise prediction and avoidance of moving obstacles. The widespread im-
plementation of these technologies will advance the maturity and expansion of robotics. 

Author Contributions: Conceptualization, Z.C. and G.L.; methodology, Z.C.; validation, G.L.; in-
vestigation, Z.C. and Q.H.; resources, Z.Y. and Q.W.; data curation, Q.H.; writing—original draft, 
Z.C.; writing—review & editing, G.L. and S.D.; visualization, Z.Y., Q.W. and G.L.; supervision, G.L. 
and S.D.; funding acquisition, S.D. All authors have read and agreed to the published version of the 
manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Data sharing not applicable. No new data were created or analyzed 
in this study. Data sharing is not applicable to this article. 

Conflicts of Interest: The authors declare no conflict of interest. 

  

Figure 14. Path generated via different algorithms in the practical navigation experiment: (a) conven-
tional A* algorithm and (b) improved hybrid A* algorithm.

5. Conclusions and Further Work

The nonholonomic robot with autonomous navigation was developed in this paper.
The improved hybrid A* algorithm with Chebyshev weighting was applied in the path
planning process to increase the efficiency of the navigation. The development of the
self-path planning method was conducted in the following processes: (1) the construction
of maps via the Robot Operating System (ROS), (2) the self-positioning of the robot via the
adaptive Monte Carlo (AMCL) algorithm, (3) the global path planning via the improved
hybrid A* algorithm, and (4) the local path planning via the model predictive control
(MPC) strategy. By testing the performance of the algorithm in the simulation and practical
environments, it was found that the improved hybrid A* algorithm outperformed the
conventional A* algorithm in both search time and search length. These improvements
make it an ideal choice for mobile chassis with nonholonomic constraints. Compared
with the conventional A* algorithm, the average search time was reduced by 12.62~24.5%,
and the average search length was reduced by 9.25~12% at different obstacle rates. In the
practical navigating tests, the average time of search was reduced by 18~24%, and the
average length of search was reduced by 10.3~12%, while the overall path was smoother.
These results demonstrate the superior performance of the improved algorithm in various
working environments.

Consideration for moving obstacles is an inevitable aspect of future work. With the
evolution and increasing accessibility of autonomous navigation technologies, the rapid
detection and avoidance of mobile objects become an imperative concern [35]. Future
research focus will be on the development of new sensors, construction of more accurate
obstacle-prediction models, and implementation of faster path-planning algorithms. Fur-
thermore, applying artificial intelligence and deep learning in navigation algorithms can
result in more precise prediction and avoidance of moving obstacles. The widespread
implementation of these technologies will advance the maturity and expansion of robotics.
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Nomenclature

Symbol Definition
f (n) Priority of the next node
h(n) Estimated cost from the next node to the end
g(n) Cost from the current node to the start
wlong Long-term observation average function
wshort Short-term observation average function
along Average weight coefficient of the long-term observation information
ashort Average weight coefficient of the short-term observation information
wavg Long-term observation average function
wi Observation average function
w Weighting coefficient
α Distribution coefficient
β Obstacle ratio
dn Ratio of Chebyshev distances
dq Chebyshev distance
xn, yn Horizontal and vertical coordinates of the current node
xg, yg Horizontal and vertical coordinates of the target point
xs, ys Horizontal and vertical coordinates of the starting point
ros Expansion radius of static obstacle
ρd Expansion radius of dynamic obstacle
mos Position space of static obstacle
md Position space of dynamic obstacle
m Spatial position of the robot
ρ Expansion radius of the robot
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