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Abstract: To improve the computational efficiency and classification accuracy in the context of big
data, an optimized parallel random forest algorithm is proposed based on the Spark computing
framework. First, a new Gini coefficient is defined to reduce the impact of feature redundancy
for higher classification accuracy. Next, to reduce the number of candidate split points and Gini
coefficient calculations for continuous features, an approximate equal-frequency binning method is
proposed to determine the optimal split points efficiently. Finally, based on Apache Spark computing
framework, the forest sampling index (FSI) table is defined to speed up the parallel training process
of decision trees and reduce data communication overhead. Experimental results show that the pro-
posed algorithm improves the efficiency of constructing random forests while ensuring classification
accuracy, and is superior to Spark-MLRF in terms of performance and scalability.

Keywords: Apache Spark; approximate equal-frequency binning; Gini coefficient; forest sampling index

1. Introduction

Random forest (RF) is an ensemble learning algorithm that combines multiple deci-
sion trees to form a robust classifier [1]. Owing to the high prediction accuracy and good
tolerance for outliers and noise in data, RF is widely used in various fields such as bioin-
formatics [2,3], classification [4–7], educational information [8], etc. Since all the decision
trees are independent, RF algorithms are conducive to parallel implementation, making
it one of the research hot spots in the current big data field. However, due to memory,
time complexity, and data complexity limitations, traditional RF algorithms suffer from
low accuracy and computational efficiency because of big data and feature redundancy [9].
Therefore, it is necessary to alleviate the influence of feature redundancy on classification
accuracy and improve the computational efficiency of large-scale data.

In essence, RF is an integrated model composed of some decision trees including ID3 [10],
C4.5 [11], CART algorithms, etc. Among them, the CART algorithm applies the binary tree
construction and adopts the Gini coefficient to measure the impurity of variables. These
features effectively simplify the scale of the decision tree and a large number of logarithmic
operations and thus make the CART algorithm one of the popular ways for constructing
decision trees. Yu et al. [12] introduced the confidence of instances and proposed a C_CART
improvement algorithm, which improves the generalization performance and avoids over-
fitting to some extent. Lin et al. [13] combined the multi-level logistic regression model
with the CART algorithm, used binary results to model multi-level data, and improved the
classification accuracy and specificity. Seere et al. [14] also proposed a hybrid learning model
that combined the fuzzy minimum–maximum (FMM) neural network and CART algorithm.
However, the traditional Gini coefficient definition needs to consider the influence of feature
redundancy and might cause terrible classification performance because of serious feature
redundancy. Therefore, a new Gini coefficient definition is proposed to alleviate the impact of
feature redundancy on classification accuracy.

In addition, the Gini coefficient calculation relies on discrete data [15]. When the
original data is continuous, it is necessary to discretize the original data by setting some
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candidate split points. On this basis, the traditional CART algorithm has to calculate the
Gini coefficients of all candidate split points and select the one with the minimum Gini
coefficient as the optimal split point. For a continuous feature with n values, there are n − 1
candidate split points for Gini coefficient calculation. As the amount of data increases, the
number of candidate split points will significantly increase. The number of Gini coefficient
calculations will also increase linearly and affect the efficiency of constructing decision
trees. Therefore, reducing the number of candidate split points is necessary to improve the
computational efficiency for large-scale data.

With the development of big data technology, the research on the random forest
algorithm using parallel computing technology has become one of the current hot spots.
Fernandes et al. [16] proposed an enhanced decision tree ranking algorithm to speed up
distributed computing. Genuer et al. [17] parallelized and extended multiple variants
of random forests for processing large-scale data and experimentally demonstrated the
relative performance of different variants and their limitations. Sara et al. [18] partitioned
imbalanced data using MapReduce and alleviated its impact on the algorithm. Mu et al. [19]
introduced the Pearson correlation coefficient to determine the optimal split attribute
and split point during decision tree growth and trained decision trees in parallel using
MapReduce technology. Xu W et al. [20] calculated the information gain of various features
on MapReduce computing framework by introducing a feature weighting system and
improving existing data analysis with evaluation metrics. Chen et al. [21] combined data-
parallel and task-parallel optimization methods to reduce communication costs between
data and workload imbalances. Alessandro [22] grew all trees in parallel with a breadth-first
node approach to reduce the number of data scans. In addition, Apache Spark Mlib [23] also
provides a standard Spark-MLRF algorithm and is widely accepted by many researchers.
In general, there are lots of iterations in a RF algorithm, and the output of the previous job
is the input of the next job.

For the MapReduce computing framework, each job stores the intermediate results to
disk during iterations, resulting in a large number of disk I/O operations and data storage
requirements, leading to low running efficiency. Instead, the new generation big data tech-
nology Spark can cache data in memory and is more efficient in realizing the RF algorithm
for large-scale data. However, in calculating the optimal split point of continuous features,
the standard Spark-MLRF takes a random sampling strategy to achieve faster computation
but a lower classification performance. In addition, when constructing a training subset,
Spark-MLRF also provides each decision tree with a sampled data set consistent with the
original data set size, resulting in a large storage load and data communication.

Aiming at the above existing problems, we propose an optimized parallel random
forest algorithm based on Spark. The main contributions are as follows: (1) A new Gini
coefficient definition is proposed to calculate the feature information and reduce the impact
of feature redundancy on classification accuracy. (2) An approximate equal-frequency
binning method is proposed to optimize the number of candidate split points of continuous
features and effectively reduce the number of Gini coefficient calculations. (3) A parallel
decision tree training method based on the forest sampling index (FSI) table is proposed.
We achieve less storage load and data communication by establishing the index table for
the entire random forest.

The rest of this paper is organized as follows. Section 2 briefly introduces the principle
of the random forest algorithm and Spark technical framework. Section 3 improves the cal-
culation of CART tree splitting information and proposes an approximate equal-frequency
binning algorithm. Section 4 presents a parallel implementation of the proposed Random
forest algorithm. Section 5 shows the related experimental results to evaluate the classifica-
tion accuracy and parallel performance of the proposed algorithm. Section 6 concludes the
work and presents an outlook for future research.
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2. Preliminary Knowledge
2.1. Random Forest Algorithm

The random forest algorithm is an ensemble classification algorithm. First, it randomly
extracts K different training subsets from the original data set to construct K decision trees.
Next, all the decision trees are integrated into a random forest, and the final classification
decision depends on the voting of decision trees.

Given a data set S with M features, the construction steps of Random forest are as follows:
Step 1, Data sampling. Randomly select K training subsets {S1, S2, . . . , SK} of the same

size as the original data set from the training data set S.
Step 2, Constructing decision trees. These decision trees are constructed recursively

by C4.5 or CART algorithms from the corresponding training subset. For any subset Si,
m (m�M) feature variables are randomly selected first. In the next process of node split,
all the Gini coefficients of a feature are calculated to find the optimal split point. This split
process is repeated until a leaf node is generated. Finally, K decision trees are trained in the
same way from K training subsets.

Step 3, Voting decision. Combine K trained decision trees {h1(S1), h2(S2), . . . , hk(Sk)}
into a random forest model. The classification decision of RF model depends on voting
among trees, and the most popular voting method is simple majority voting.

2.2. Apache Spark

Spark is an improved distributed computing framework based on MapReduce. The
related research has shown that Spark’s computation speed is 100 times faster than MapRe-
duce in large-scale data iterative operations [24]. With enough memory space, Spark can
cache intermediate data and result in memory, significantly reducing the number of I/O
operations between disks. Additionally, Spark avoids shuffle through local calculations
and improves the efficiency of iterative calculations.

The core concept of Spark are the resilient distributed data sets (RDD), which imple-
ment application task scheduling, invocation, operation, and error recovery, and provide
API for upper-layer components.

RDD is a lazy computing mechanism with two kinds of data operations. The first
one is transformation, which creates a new RDD based on an existing RDD. The second
is action, which triggers the calculation when executed and stores the RDD into the disk
after obtaining a result. Some Spark API related to the algorithm in this paper is briefly
introduced as follows. For a more comprehensive API function introduction, please refer to
the official Spark documentation.

map(func): Convert each row of the original RDD to a new data structure through the
map function to generate a new RDD.

mapPartitions(func): It is equivalent to map function, but the difference is that map
performs a conversion operation on each row of RDD, and mapPartitions only performs a
conversion operation on each data partition.

reduceByKey(func): Aggregate the data with the same key in RDD, so that the original
key and the newly obtained value are combined to form a new row.

collect: Collect all elements in the data set as an array.
persist: Cache RDDs in memory.

3. Improved Random Forest Algorithm

In this section, we optimize the traditional random forest algorithm from two aspects
including the following: (1) A new Gini coefficient is defined to reduce the impact of
feature redundancy on classification accuracy. (2) An approximate equal-frequency binning
method is proposed to optimize the number of candidate split points of continuous features
and effectively reduce the number of Gini coefficient calculations.
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3.1. The New Gini Coefficient

The Gini coefficient can measure the impurity of information and is usually applied by
the CART algorithm to evaluate all split features. The smaller the Gini coefficient, the lower
impurity and the stronger the correlation between the feature and the target. Suppose
feature a has K different values, and the probability of kth sample value in the total samples
is, then the Gini coefficient of feature a is defined as follows:

Gini(a) =
K

∑
k=1

pk(1− pk) = 1−
K

∑
k=1

pk
2 (1)

According to the above definition, the Gini coefficient of a data set D is described as
follows, where Ck represents the sample subset belonging to the kth class in the data set D,
and K is the number of classes:

Gini(D) = 1−
K

∑
k=1

(
|Ck|
|D|

)2
(2)

If data set D is divided into two subset D1 and D2 by split point x of feature a, then the
Gini coefficient of data set D with respect to feature a is defined as follows:

Gini(D, a) =
|D1|
|D| Gini(D1) +

|D2|
|D| Gini(D2) (3)

where Gini(D) represents the uncertainty of data set D, and Gini(D, a) represents the new
uncertainty if data set D is divided by split point x. The larger Gini coefficient, the greater
the uncertainty of the data set.

Although the traditional CART algorithms consider the impact of conditional features
on decision features, they analyze the redundancy between conditional features less. To
avoid the impact of redundancy between features on classification accuracy, we define the
conditional Gini coefficient based on the concept of conditional entropy.

Definition 1. Given a data set D, the conditional Gini coefficient of feature a with respect to feature
b is defined as follows:

Gini(a|b) = 1−
num_b

∑
j=1

∣∣Dj
∣∣

|D|

num_a

∑
k=1

(
|D jk|∣∣Dj

∣∣
)2

(4)

where num_b represents the number of categories of feature b, |Dj| is the number of samples that
belong to the jth category of feature b, |D jk| is the number of samples in subset Dj that belong to the
kth category of feature a, and num_a represents the number of categories of feature a in subset Dj.
The smaller the Gini(a|b), the higher the redundancy between feature a and feature b.

Definition 2. Given a feature set F = C− {a}, C represents all conditional features, then the average
Gini coefficient of feature a with respect to feature set F is defined as follows:

GiniaF(D) =
∑ f∈F(Gini(a)− Gini(a| f ))

|F| . (5)

where Gini(a|f) represents the conditional Gini coefficient under the known feature f ∈ F, and
Gini(a) represents the Gini coefficient of feature a, the differences between feature a and other features
are averaged to quantify the degree of correlation or redundancy on feature a.

When calculating the optimal split feature and split point, the feature redundancy
information between feature a and other features should be subtracted to reduce the impact
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of feature redundancy on classification accuracy. To this end, a new Gini coefficient with
low feature redundancy is defined as follows:

Gini(D, a, F) =
[
|D1|
|D| Gini(D1) +

|D2|
|D| Gini(D2)

]
− GiniaF(D). (6)

Obviously, if the redundancy relationship between feature a and other features is small,
then Gini(D, a, F) is small, too. This means that feature a is highly likely to be selected as
the split feature. A simple example is shown in Table 1.

Table 1. Credit data example.

Age Have a Job Credit Status Label

youth no generally no
youth no good no
youth yes good yes
youth yes generally yes
youth no generally no

middle aged no generally no
middle aged no good no
middle aged yes good yes
middle aged no very good yes
middle aged no very good yes

old age no very good yes
old age no good yes
old age yes good yes
old age yes very good yes
old age no generally no

There are 15 samples in Table 1, which include 3 conditional features and 1 decision
feature. Features a, b, and c represent “age”, “have a job”, and “credit status”, respectively.
To simplify the next description, some digital marks are also adopted to represent the related
feature values such as 1, 2, and 3 meaning youth, middle aged, and old age, respectively.
The related values of “have a job” are represented by 1 and 2, which stand for yes and no,
respectively. The values of “credit status” are represented by 1, 2, and 3, which stand for
very good, good, and generally, respectively.

For the traditional calculation method, the Gini coefficient of feature a is calculated by
formula (3); it has Gini(D, a = 1) = 0.44, Gini(D, a = 2) = 0.48, Gini(D, a = 3) = 0.44. The
Gini coefficient of feature b is as follows: Gini(D, b = 1) = 0.32. The Gini coefficient of
feature c is as follows: Gini(D, c = 1) = 0.36, Gini(D, c = 2) = 0.47, Gini(D, c = 3) = 0.32.
Since Gini(D, b = 1) and Gini(D, c = 3) are the smallest coefficients, both feature b and c are
thus considered as the best split features, and b=1 and c=3 are the best split points, respectively.

According to formula (1), Gini(b) = 0.44, Gini(c) = 0.658. According to formula (4),
Gini(b|a) = 0.427, Gini(b|c) = 0.407, it has GinibF(D)=0.023. At the same time,
Gini(c|a) = 0.587, Gini(c|b) = 0.627, it has GinicF(D) = 0.051. According to formula (6),
Gini(D, b = 1, F) = 0.32− 0.023 = 0.297, Gini(D, c = 3, F) = 0.32− 0.051 = 0.269. Finally,
feature c is chosen as the best split feature, and c=3 is the optimal split point. Obviously,
feature c has lower redundancy compared to other features.

3.2. Approximate Equal-Frequency Binning Method

For a continuous data set, the traditional random forest algorithms have to discretize
the continuous value and average all adjacent feature values to set candidate split points.
Assuming that a continuous feature a has m different sample values, arranged from small to
large a1, a2, . . . , am, the traditional CART algorithm has to calculate the average of adjacent
two sample values to obtain m − 1 candidate split points, where the ith candidate split
point Ti is expressed as Ti = (ai + ai+1)/2. This means that it has to calculate m − 1 Gini
coefficients for feature a to find out the optimal split point. Obviously, when dealing with
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massive data, these candidate split points will cause lots of Gini coefficient calculations and
reduce the efficiency of operation.

To reduce the number of candidate split points, improve training efficiency, and
ensure that classification accuracy is not significantly reduced, we propose an approximate
equal-frequency binning method to optimize the number of candidate split points.

The approximate equal-frequency binning method places the values of continuous
features into different bins and continuously takes the average of the maximum value in
the previous bin and the minimum value in the next bin to obtain all candidate split points.
This method mainly includes two steps. In the first step, the feature values are sorted in
ascending order, and the number of occurrences of each value is counted. Additionally,
the total number of bins is usually set to the square root of the number of different values.
In the second step, the feature values are classified into different bins one by one, and the
boundaries between each bin are calculated to obtain all candidate split points. Algorithm
1 provides the specific steps of the approximate equal-frequency binning method.

Algorithm 1: Approximate equal frequency binning algorithm

Input: Continuous values of feature a {a1, a2, . . . , an−1, an}
Output: All candidate split points of feature a
Step 1: All feature values are sorted in ascending order;
Step 2: Obtain all distinct values A′ = {a′1, a′2, . . . , a′m−1, a′m} and the number of each value
counts = {count1, count2, . . . , countm};
Step 3: Set the number of boxes bins = int(sqrt(num(A′)));
Step 4: The size of the current bin is set to a constant S = sum(counts)/bins;
Step 5: The binning operation. All feature values are processed sequentially;

Step 5.1 If counti >= S then a′i is treated as a large number and boxed individually, set the
average of this feature value and the next feature value as the candidate split point;

Step 5.2 If counti < S then add the remaining feature value in order until the number of feature
value is greater than or equal to S. At this time, the average of the largest feature value in the box
and the next feature value not in the box is set as the candidate split point;

Step 5.3 bins = bins − 1; if bins = 1, go to step 6, or jump to step 4.
Step 6: Put all remaining feature value into the last bin and the algorithm ends.
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A simple example is described in Figure 1 to show the process of Algorithm 1. Assum-
ing a feature with the value set [1,1,1,2,1,3,4,8,1,4,5,6,1,7,9], the proposed approximate equal-
frequency binning algorithm sorts the feature values and obtains A′ = [1,2,3,4,5,6,7,8,9],
counts = {6,1,1,2,1,1,1,1,1}. At this time, bins are set to 3, which means the average size
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S of a bin is 5. Since the count of “1” is 6, all the values of “1” are put into the same
bin as [1,1,1,1,1,1] and the related split point is 1.5. Next, jump to Step 4 and recalculate
S as 4.5, then the next bin includes five numbers as [2,3,4,4,5], and the related split point
is 5.5. Finally, the last bin [6,7,8,9] is obtained in Step 6. In conclusion, there are only two
candidate split points and the related Gini coefficients are calculated twice. In contrast,
the traditional random forest algorithm has to generate eight candidate split points. It
means that the Gini coefficients on this feature have to be calculated eight times. Obviously,
Algorithm 1 can effectively improve computational efficiency, and the larger the data set,
the more obvious the superiority is.

4. Parallelization of Random Forest Based on Spark

To improve the computing performance for big data sets, we propose two optimization
strategies based on Spark including the following: (1) Parallel decision tree training strategy
based on a forest sampling index table (FSI). The FSI table is defined to record the indexes of
all training subsets. Based on FSI and the related RDD partitioned data, all the decision trees
are trained in a parallel model, which effectively reduces the demand for data transmission
in a distributed environment. (2) Gini coefficient calculation optimization strategy based
on dictionary. When searching for the best split point of a certain feature, two dictionaries
are declared to reduce the number of traversals from the traditional (n − 1) times to once,
which effectively improves the calculation speed of the split point and avoids repeated
traversal of the entire data set.

4.1. Parallel Decision Tree Training Strategy Based on a Forest Sampling Index Table

In the traditional random forest algorithm, it is necessary to obtain a training subset
for each decision tree through the random sampling method (bagging) and construct a
decision tree based on each training subset. The training process is shown in Figure 2.
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Usually, the size of the training subset is proportional to the size of the original data
set. Therefore, when the original data set is large, Spark has to allocate extra space to store
the sampled training subset, which causes a large number of disk I/O operations and less
computational efficiency. To address this issue, we define a forest sample index table (FSI)
to record the indexes of all training subsets to reduce the storage requirement. The detailed
definition is as follows.
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Definition 3. Given a data set D, the forest sampling index table FSI on k training subsets is
defined as follows:

FSI =


C01, C02, . . . , C0n
C11, C12, . . . , C1n

. . .
C(k−1)1, C(k−1)2, . . . , C(k−1)n


FSI is a k × n binary matrix. Each row represents the index of a training subset, which can be

used to train a decision tree. Cij represents the sampling situation of sample j with respect to ith
training subset. If Cij is 1, it means that the ith subset contains sample j, otherwise sample j does
not participate in the construction process of the ith decision tree.

The FSI table records the indexes of all the k subsets and is allocated to each slave
node. During the training process of each decision tree, the related data is loaded from the
RDD data partitions according to the FSI table, and the related Gini coefficient is calculated
directly in memory. That is, it does not store the training subset repeatedly.

The detailed parallel decision tree training process based on the FSI table is shown in
Figure 3. First, the FSI table is allocated to all slave nodes. At the same time, the original
data set is divided into k RDD data partitions by mapPartition function, and each RDD data
partitions is allocated to the corresponding slave nodes to achieve data parallel processing,
namely Partition_1, Partition_2, . . . , and Partition_k, respectively. Next, each slave node
processes the corresponding RDD data partition based on the FSI table and calculates the
Gini coefficients of the related candidate splitting points. Each Gini coefficient calculation
task TGini loads data records from the RDD partition according to the indexes in the FSI
table. Finally, the candidate splitting points of all slave nodes are compared by reduceByKey
function to find out the optimal one for a decision tree.
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For example, tasks TGini1.1,TGini1.2 and TGini1.3 on slave1 calculate the Gini coefficients
of decision trees 1, 2, and 3, respectively, and find out the local best split point. Next,
these parallel outputs of TGini are combined by reduceByKey function to find out the best
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global split point. In detail, tasks {TGini1.1, TGini1,2, TGini1.3} are used to construct decision
tree 1, tasks {TGini2.1, TGini2,2, TGini2.3} are used to construct decision tree 2, and tasks
{TGini3.1, TGini3,2, TGini3.3} are used to construct decision tree 3.

4.2. Gini Coefficient Calculation Optimization

According to formula (3), the Gini coefficient of each candidate split point depends on
two subsets D1, D2, and their class distribution. This means that the traditional random
forest algorithm has to traverse the entire data set when dealing with continuous features.
If there were n− 1 candidate split points for a certain feature, then it is necessary to traverse
(n − 1) training subsets. Obviously, the computational efficiency is low for a big data set.

In this paper, we declare two dictionaries named left and right to optimize the Gini coefficient
calculation. The dictionary is expressed as {key1:value1, key2:value2, . . . , key n:value n}, where key
is the feature value category, and value is the number of categories. Left and right are used to store
the information of each category in the left and right subsets after splitting, respectively.

At the initial state, left is an empty dictionary, and right contains all categories and
their corresponding number of occurrences in the local data set. Next, for each candidate
split point, the feature value smaller than the split point is divided into the left subset,
and the other feature values still remain in the right subset. On this basis, the additional
category and numbers in the left subset are accumulated into the left dictionary, and are
subtracted from the right dictionary. At this time, the left and right, respectively, represent
the category distribution of the left and right subsets. The Gini coefficient of this candidate
split point can be directly calculated based on the left and right dictionaries. In detail,
value_k represents | Ck|, which means the number of kth sample categories. The sum of
all value in the left dictionary means |D1|, and the sum of all value in the right dictionary
represents |D2|. Therefore, the related Gini coefficient can be easily calculated based on
the two dictionaries, and it is unnecessary to traverse the entire data set. A simple example
is given here to illustrate this optimization process.

Table 2 shows a feature column and its corresponding categories. Initialize left = {}
and traverse the entire data set to obtain right = {1:3, 2:1, 3:1}. For the first candidate split
point 0.2, the states of two dictionaries are altered as left = {1:1} and right = {1:2, 2:1, 3:1}. At
this point, the number of samples in the left subset is |D1| = 1, and the number of samples
in the right subset is the sum of value of right dictionary |D2| = 4. In addition, the number
of sample categories in the left subset is |C 1|= 1 , and the number of sample categories in
the right subset is |C 1|= 2 , |C 2|= 1 ,|C3|= 1 . According to formula (3), the Gini coefficient
of this candidate split point is 0.45. Similarly, for the second split point 0.5, the states of
two dictionaries are updated to left = {1:1, 2:1} and right = {1:2, 3:1}, |D1| = 2, |D2| = 3,
|C 1|= 1, |C2|= 1 in the left subset, and |C 1|= 2, |C3|= 1 in the right subset, then the Gini
coefficient is 0.53. Repeat the above process until the Gini coefficients of all candidate
points are calculated. Obviously, the new Gini coefficient calculation method only traverses
the original data set once in the initialization process. In contrast, the traditional method
requires to traverse data set n − 1 times.

Table 2. A simple data set.

Feature Value Category

0.1 1
0.3 2
0.7 1
0.7 1
1.2 3

4.3. Parallel Implementation of Improved Random Forest Algorithm

Figure 4 shows the overall structure of the proposed optimized random forest algorithm,
and the parallel implementation process of the random forest is described in Algorithm 2.
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Algorithm 2: Parallel Training Process of Optimization Random Forest

Input: The number of decision trees K, data set D, the FSI table
Output: Random forest model
1: For i = 0 to (K − 1)
2: For index in range(start, end)
3: For j, feature in enumerate(featureIndex)
4: Sc.broadcast(FSI)//Build an index table and load the training subset
5: Left = {},right = {}//Declare two dictionaries to record the number of labels for the two subsets
6: LeftLen = 0,rightLen=len(node.recoeds)//Number of categories for the left and right subsets
7: The set of candidate split points is obtained based on Algorithm 1
8: For thisSplitVal in spiltNode
9: Divide the left and right subsets according to the split point
10: LeftLen + = 1,rightLen − = 1
11: Calculate the Gini coefficient according to Equation (6)
12: Take the split point with the smallest Gini coefficient
13: End for
14: End for
15: Obtain the best split feature and the best split spot, split the current node according to

these two values, generate two new child nodes, and continue splitting until all nodes
are leaf nodes

16: End for
17: Training to obtain a single decision tree
18: End for
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The time complexity of the traditional random forest algorithm is O(KMNlog N),
where K is the number of decision trees in the random forest algorithm, M is the number of
features, N is the number of samples, and log N is the average depth of all tree models.

For Algorithm 2, the time complexity of the approximate equal-frequency binning
method described in Section 3.2 is O(MN). At this time, the size of data set is reduced from
N to n, where n is the number of bins and less than sqrt(N). Therefore, the time complexity
of training a base classifier is O(MN + Mnlog N) and the total time complexity of the entire
algorithm is O(K(MN + Mnlog N)). When implementing an optimized random forest al-
gorithm based on Spark, K trees are constructed in parallel. Therefore, the parallelized time
complexity is O(K(MN + Mnlog N)/KM) = O(N + nlog N). In the big data environment,
the number of samples N is very large; it is thus efficient to reduce N to n to improve the
algorithm’s performance.

5. Experiments

To evaluate the performance of the proposed algorithm, we conducted several com-
parative experiments. Section 5.2 presents a comparison of single machine performance,
which was conducted on a machine with a CPU frequency of 2.9 GHz, 16 GB of memory,
and a 64-bit operating system. Section 5.3 presents distributed environment performance,
which was carried out on the supercomputer of the High Performance Computing Platform
at Central South University. The related experiments were performed on a cluster with
48 cores, each of which has an Intel Xeon Gold 6248R core model, 3.0 GHz main frequency,
and 192 GB RAM memory. The software and their versions used in the experimental
process were Spark 2.3.1, Hadoop 2.7.3, JDK 1.8.0, Scala 2.12.6, and Python 3.7.4.

5.1. Data Set Description

There are 11 data sets with different scales selected from the UCI machine learning
library [25], including 7 small and 4 large data sets. The specific information of each data
set is shown in Table 3.

Table 3. Data set information.

Data Set Instances Features Class

Glass 214 9 7
Wine 178 13 3

Ionosphere 351 33 2
Optical 3823 64 10
Image 2310 19 7
Letter 20,000 16 26
Adult 48,842 14 2

HT_senor 919,438 11 100
WinniPeg 325,834 175 7

Swarm 24,017 2400 2
SUSY 5,000,000 18 2

5.2. Evaluation of Algorithm Performance

Four evaluation indicators, Accuracy, Precision, Recall, and F1-value, are used to measure
the classification performance of the algorithm. The calculation formula of the evaluation
indicators is as follows:

Accurcacy =
TP + TN

TP + TN + FP + FN
(7)

Precision =
TP

TP + FP
(8)

Recall =
TP

TP + FN
(9)
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F1 =
2

1/Precision + 1/Recall
(10)

where TP and FN are the numbers of correctly and incorrectly classified compounds of the
actual positive class, respectively. Similarly, TN and FP denote the number of correctly and
incorrectly classified compounds of the actual negative class.

This section used seven small data sets from UCI, Glass, Wine, Letter, Ionosphere, Opti-
cal, Image, and Adult to compare the accuracy and running time with RF and MGARF [26].
All data were divided into 70% for training and 30% for testing, and the number of trees was
set to 200. The selection rate of the best individual and the seed selection rate parameters
of MGARF was set to 0.8, and other parameters were set to their default values according
to the literature [26]. The experimental results are shown in Table 4.

Table 4. Accuracy and runtime comparison.

Our Algorithm RF MGARF

Data Set Acc Time (s) Acc Time (s) Acc Time (s)

Wine 0.9815 3.7 0.9455 3.8 0.9735 68.8
Glass 0.7538 4.4 0.7425 4.1 0.7325 73
Image 0.9547 4.7 0.9018 3.9 0.9679 34.3

Ionosphere 0.9057 8.3 0.9146 9.5 0.8928 25.3
Letter 0.9532 43.2 0.9321 46.4 0.9482 477.6

Optical 0.9564 51.9 0.9608 30.6 0.9652 98.2
Adult 0.8688 167.2 0.8512 173.8 0.8466 358.9

The best performance is shown in bold.

The best performance is shown in bold.As shown in Table 4, the algorithm proposed
in this paper has achieved the best classification results on the four data sets of Wine,
Glass, Letter, and Adult. Furthermore, compared with the traditional Random Forest
(RF) algorithm, the proposed algorithm achieved an average 2.01% higher classification
accuracy, indicating that the classification accuracy is improved by correcting the redundant
relationships among features. Additionally, the run time of the proposed algorithm is
relatively faster than that of the MGARF algorithm, which indicates that the approximate
equal-frequency binning method reduces the number of candidate split points and sacrifices
a certain degree of accuracy in exchange for improved efficiency.

These running times on small to medium data sets are shown in Figure 5. Our
algorithm has slightly longer running times for some small data sets compared to RF
because of the new Gini coefficient definition. However, as the size of the data set increases,
the advantage of the proposed algorithm in terms of running time becomes apparent. For
some medium data sets, such as Ionosphere, Letter, and Adult, the proposed algorithm
has fewer running times and a 5.03% reduction in average running time compared to RF.
Furthermore, the traditional random forest algorithm based on single machine computation
is difficult to handle large-scale data within an acceptable time range. It tends to experience
memory overflow during the execution, resulting in program termination. Instead, the
proposed algorithm is effective for parallel computing in a distributed environment.

In addition, the algorithm in this paper is also compared with the current popular
classification algorithms K-nearest neighbor (KNN), support vector machines (SVM) [27],
and naïve bayes (NB) [28]. In the experiment, these three classification algorithms are
implemented using the sklearn machine learning library, and the parameters of these
algorithms are set to default values. The four indicators of Accuracy, Precision, Recall, and
F1-value are mainly compared and analyzed. The experimental results are five-fold cross-
validation. For the repeatability of the experiment, the random seed random_state is set to
a fixed value of 42 in the algorithm, and the experimental results are shown in Table 5.
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Table 5. Comparison results of different algorithms.

Data Set Our Algorithm KNN SVM NB

Wine

Accuracy 0.9815 0.7782 0.9255 0.9818
Precision 0.9833 0.7933 0.9433 0.9867

Recall 0.9825 0.7611 0.9278 0.9867
F1-value 0.9824 0.7602 0.9245 0.9852

Glass

Accuracy 0.7538 0.6705 0.6000 0.5692
Precision 0.8559 0.5316 0.5279 0.4306

Recall 0.6846 0.5601 0.5509 0.4980
F1-value 0.7058 0.5296 0.5200 0.4482

Image

Accuracy 0.9547 0.9079 0.9460 0.7984
Precision 0.9563 0.9123 0.9510 0.8378

Recall 0.9543 0.9134 0.9489 0.8126
F1-value 0.9533 0.9105 0.9483 0.7982

Ionosphere

Accuracy 0.9057 0.8784 0.8403 0.8221
Precision 0.9095 0.9247 0.8936 0.8224

Recall 0.8642 0.8357 0.7870 0.8385
F1-value 0.8769 0.8482 0.8022 0.8171

Letter

Accuracy 0.9532 0.9017 0.8352 0.6437
Precision 0.9542 0.9053 0.8367 0.6562

Recall 0.9531 0.8997 0.8331 0.6423
F1-value 0.9532 0.9004 0.8327 0.6390

Optical

Accuracy 0.9564 0.9538 0.9695 0.8204
Precision 0.9569 0.9552 0.9713 0.8613

Recall 0.9564 0.9519 0.9688 0.8174
F1-value 0.9564 0.9527 0.9691 0.8167

Adult

Accuracy 0.8688 0.7749 0.7828 0.7983
Precision 0.8207 0.6811 0.8795 0.7419

Recall 0.7792 0.6032 0.5457 0.6297
F1-value 0.7962 0.6154 0.5216 0.6494

Average

Accuracy 0.9106 0.8379 0.8738 0.7672
Precision 0.9195 0.8148 0.8576 0.7624

Recall 0.8820 0.7893 0.8953 0.7465
F1-value 0.8892 0.7881 0.7883 0.7363

The best performance is shown in bold.
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It can be seen from Table 5 that other classification algorithms are only better than the
algorithm in this paper in some indicators, and only the SVM algorithm is better than the
algorithm in this paper in calculating the average of the classification indicators of all test
data sets. Therefore, compared with other classification algorithms, the proposed algorithm
has a better classification performance.

In order to conduct statistical analysis on the test results, this paper uses the Friedman
test [29] to verify whether there is a significant difference between the methods, where
the null-hypothesis of Friedman test is that the tested indices are equivalent. There are
seven data sets and six classifiers, the Friedman statistics FF are distributed according to the
F-distribution with 5 and 30 degrees of freedom, and the significance level for the critical
value of α = 0.05 is 2.534. According to the average rank of the Accuracy indicators in
Tables 4 and 5, the FF statistic is 5.321, which is greater than 2.534. Therefore, we reject the
null hypothesis that there is a significant difference between the classification algorithms.
Therefore, we use the Nemenyi post hoc test [29] to evaluate the pairwise differences,
where the critical difference (CD) is 2.850 for α = 0.05. Figure 6 depicts the average rank
of each classification algorithm for the Nemenyi post hoc test on the Accuracy evaluation
indicators. When the pairwise difference of the two algorithms is greater than the CD, it
indicates that there is a significant difference between the two algorithms. It can be seen
from Figure 6 that the classification performance of the algorithm proposed in this paper is
significantly higher than NB and KNN classification algorithms because the approximate
equal-frequency method proposed in this paper sacrifices some classification performance
in exchange for the computational efficiency of the algorithm; thus, compared with RF,
MGRAF algorithm in this paper the classification effect is not significant.
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5.3. Parallel Performance Evaluation

In this section, we use speedup, scaleup, and sizeup [30] to evaluate the parallel perfor-
mance of the proposed algorithm and compare it with the standard Spark-MLRF algorithm.

5.3.1. Speedup

The Speedup evaluation method keeps the amount of data constant and increases the
number of physical cores in the cluster to m times to measure the acceleration capability of
an algorithm as the cluster resources increase. The calculation formula is as follows:

speedup(m) =
run time on a single computer

run time on m computers
(11)

If the speedup (m) can maintain a linear growth with the increase in m, then the
parallelization performance of the algorithm is excellent for reducing the computation time.
However, it is difficult to achieve linear speedup due to the additional time consumption
caused by unbalanced data transmission and task assignment. In this section, the speedup
values were tested when launching 1, 8, 16, and 32 computing cores on the HT_sensor,
Winnipeg, Swarm, and SUSY data sets, respectively, and compared with Spark-MLRF. The
experimental results are shown in Figure 6.

As shown in Figure 7, the algorithm has a relatively stable acceleration process with
the increase in the number of cores, and the speedup growth of the proposed algorithm is
closer to linear growth than that of Spark-MLRF.
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5.3.2. Scaleup

The Scaleup evaluation method expands the amount of data to m times and increases
the number of machines to m times at the same time. The calculation formula is as follows:

scaleup(DB, m) =
run time for processing DB on a singel computer
run time for processing m× DB on m computers

(12)

If the scaleup (DB, m) can stay around 1.0 as the value of m changes, then the algorithm
can adapt well to the changes in the size of the data set in a distributed environment. In this
experiment, HT_sensor, Winnipeg, Swarm, and SUSY were selected as the experimental
data sets to test the change of scaleup and compare with Spark-MLRF. Three different
methods were used to test the change in the value of scaleup on each data set. (1) Start
8 computing cores to calculate a quarter subset of the data set. (2) Start 16 computing
cores to calculate a half subset of the data set. (3) Start 32 computing cores to calculate the
complete data set. The experimental results are shown in Figure 7.

According to reference [31], good performance can be achieved when the scaleup
is greater than 0.5. As shown in Figure 8, with the increase in the number of cores and
data volume, the scaleup of the proposed algorithm is above 0.6, and the decrease rate is
relatively flat compared to Spark-MLRF. When the number of cores increases to 32, the
scaleup of our algorithm is more than Spark-MLRF—on average, 7.45% higher. This result
indicates that the algorithm proposed in this paper has better adaptability to changes in the
size of parallel data sets.
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5.3.3. Sizeup

The Sizeup evaluation method increases the amount of data to test the time complexity
of the algorithm while keeping the number of cluster cores constant. The calculation
formula is as follows:

sizeup(DB, m) =
run time on m× DB
run time on the DB

(13)

In this experiment, we choose the SUSY data set, set the number of cores to 32, control the
number of attributes to 18, and test the Sizeup values when the number of samples is 1,000,000,
2,000,000, 3,000,000, and 4,000,000. The experimental results are shown in Figure 9.
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As shown in Figure 9, the growth rate of the algorithm’s running time is significantly
lower than the growth rate of the data volume. The acceleration effect shown in Figure 8
orientates from the proposed approximate equal-frequency binning algorithm, which
reduces the sample traversal number from N to n, reducing the computational process and
effectively improving the operating efficiency of the algorithm.

6. Conclusions

In this paper, we propose a fast parallel random forest algorithm for big data. In theory,
we introduce a new definition of the Gini coefficient to reduce the impact of redundancy
between features. Additionally, we propose an approximate equal-frequency binning
method to reduce the number of candidate split points for continuous features, thereby
improving computation speed for searching the optimal split point. During the engineering
implementation on Apache Spark platform, we defined a forest sampling index table
to reduce data storage requirements and two dictionaries to greatly reduce the number
of data traversals. The experimental results show that our algorithm outperforms the
standard Spark-MLRF algorithm in key indicators such as speedup, scaleup, and sizeup,
demonstrating good parallel performance and scalability.

The approximate equal-frequency binning method proposed in this paper may lose
some split points that are good for the classification of the algorithm, resulting in a de-
crease in classification accuracy. In addition, we use balanced data sets in the experiments
and do not consider the impact of unbalanced data sets on the classification effect of the
algorithm. Therefore, in the future, we can study the performance optimization of the
algorithm on the unbalanced data set and how to screen out the segmentation points with
better classification effects to improve the classification accuracy.
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