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Abstract: The Internet of Medical Things (IoMT) is a network of healthcare devices such as wearables,
diagnostic equipment, and implantable devices, which are linked to the internet and can communicate
with one another. Blockchain (BC) technology can design a secure, decentralized system to store and
share medical data in an IoMT-based intelligent healthcare system. Patient records were stored in
a tamper-proof and decentralized way using BC, which provides high privacy and security for the
patients. Furthermore, BC enables efficient and secure sharing of healthcare data between patients and
health professionals, enhancing healthcare quality. Therefore, in this paper, we develop an IoMT with
a blockchain-based smart healthcare system using encryption with an optimal deep learning (BSHS-
EODL) model. The presented BSHS-EODL method allows BC-assisted secured image transmission
and diagnoses models for the IoMT environment. The proposed method includes data classification,
data collection, and image encryption. Initially, the IoMT devices enable data collection processes,
and the gathered images are stored in BC for security. Then, image encryption is applied for data
encryption, and its key generation method can be performed via the dingo optimization algorithm
(DOA). Finally, the BSHS-EODL technique performs disease diagnosis comprising SqueezeNet,
Bayesian optimization (BO) based parameter tuning, and voting extreme learning machine (VELM).
A comprehensive set of simulation analyses on medical datasets highlights the betterment of the BSHS-
EODL method over existing techniques with a maximum accuracy of 98.51%, whereas the existing
methods such as DBN, YOLO-GC, ResNet, VGG-19, and CDNN models have lower accuracies of
94.15%, 94.24%, 96.19%, 91.19%, and 95.29% respectively.

Keywords: Internet of Medical Things; smart healthcare; blockchain; security; key generation;
image encryption

1. Introduction

Smart healthcare is the advancement of conventional healthcare with advanced inter-
net technologies. It incorporates various technologies to render real-time health-relevant
data collected from patients utilizing smart wearable devices and detection of health prob-
lems in real time from the collected data [1]. The Internet of Medical Things (IoMT) plays a
crucial role in the medical field to increase electronic devices’ throughput, precision, and
consistency. Due to the outbreak of the coronavirus pandemic, visiting a doctor becomes a
high risk for a person with small problems [2]. With the help of IoMT devices, it becomes
easy to monitor health records daily, and preventive measures can be taken on our own.
An IoMT-based smart healthcare system refers to a collection of several smart medical
devices linked within the network over the internet [3]. Analysis can be done by making
use of proper AI-based data transformation and interpretation methods after getting the
medical dataset. However, easy access to healthcare applications and services has increased
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the risks and vulnerabilities that hinder smart healthcare systems’ performance. Also,
many more heterogeneous devices collect data that differ in formats and size, making it
a challenge to manage the data in the healthcare repositories and secure it from attackers
who seek to profit from the data [4]. Therefore, smart healthcare schemes are prone to
several security risks and threats, such as network attacks, software and hardware-based
attacks, and system-level attacks, which put the lives of patients at risk.

Developing technologies, namely blockchain (BC), were utilized for providing cutting-
edge solutions in several settings [5], one among them being the healthcare sector. BC tech-
nology is used in the medical field to guarantee the security of patient reports and rationalise
data sharing amongst pharmaceutical companies, health care providers, and labs [6]. In
the medical world, applications (apps) built on BC technology can detect significant and
even hazardous errors [7]. Thus, it is capable of enhancing the openness, efficacy, and
safety of the systems to exchange healthcare data in the medical field. Medical institutions
are aided by BC technology to obtain insight and enhance medical record analysis. Then,
the healthcare support system demands a new processing method with delay-sensitive
monitoring which should be smart and managed stably [8].

Deep learning (DL) related medical diagnosis in the IoMT signifies the use of machine
learning (ML) and artificial intelligence (AI) approaches to examine medical datasets col-
lected from different devices connected to the internet, namely medical equipment and
wearable devices [9]. It enhances the precision level of diagnostic decisions, helps identify
trends and patterns in patient data, and enables efficient and more personalized healthcare
delivery [10]. Simultaneously, hyperparameter tuning of the DL models becomes essential
to improve the overall classification performance. Since trial-and-error hyperparameter
selection is a challenging task, metaheuristic optimization techniques are used. In addition,
image encryption schemes can be used to securely transmit healthcare data in the IoMT
encryption. Furthermore, the key generation process is critical to the security of an encryp-
tion algorithm, as the strength of the key directly impacts the security of the encrypted
data. Therefore, it is important to use strong and secure key generation methods and to
properly manage and protect the keys.

This article develops an IoMT with a blockchain-based smart healthcare system using
encryption with an optimal deep learning (BSHS-EODL) model. The presented BSHS-
EODL technique comprises a few processes: data collection, image encryption, and data
classification. Initially, the IoMT devices enable data collection processes, and the gathered
images are stored in BC for security. Then, image encryption is employed to encrypt
the data, and its key generation process is performed via the dingo optimization algo-
rithm (DOA). Finally, the BSHS-EODL technique performs disease diagnosis comprising
SqueezeNet, Bayesian optimization (BO) based parameter tuning, and voting extreme
learning machine (VELM). A comprehensive set of simulation analyses is performed on
medical datasets.

The rest of the paper is organized as follows: Section 2 discusses the related works,
Section 3 demonstrates the proposed approach, performance validation is depicted in
Section 4, and the conclusion is shown in Section 5.

2. Related Works

Almaiah et al. [11] present a DL framework based on BC that offers a dual level of
security and privacy. Initially, a BC technique was modelled in which each participating
entity was verified, validated, and registered by making use of a smart contract related
enhanced proof-of-work to reach the target of privacy and security. Then, a DL approach
including bidirectional long short-term memory (BLSTM) for a variational autoencoder
(VAE) and intrusion detection systems for privacy were devised. Khan et al. [12] introduced
BIoMT, a BC Hyperledger fabric-assisted consortium architecture which offers transparency,
security, and integrity to health-oriented transactions and interchanges delicate medical
data in serverless peer-to-peer (P2P) secured network settings. A consensus was devised
and constituted to decrease rate of BC resource limitations on the IoMT.
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In [13], suggesting a BC-based secured data management framework (BSDMF) for
medical data related to the IoTs to exchange patients’ data securely and improve data acces-
sibility and scalability. To assure data management and data transmission security among
associated nodes, the IoMT-related security structure uses BC. In [14], this study evaluated
offloading and scheduling issues for medical workflow in IoMT fog-cloud platforms. Thus,
this study addressed the issue as an offloading and scheduling issue and developed deep re-
inforcement learning (DRL) as a Markov problem. This study designed an innovative DRL
and BC-based system which contained multi-criteria offloading depending on DRL policies.

Lakhan et al. [15] developed an LSEOS method called lightweight secure efficient
offloading scheduling. LSEOS has lightweight and secured offloading and scheduling
methodologies whose offloading delay will be lesser compared to prevailing techniques.
The end goal of LSEOS is to run the application over other nodes and diminish the delay
and security threats in the mechanism. The metaheuristic LSEOS has the elements they are
scheduling with neighbourhood search schemes, adaptive deadlines, and sorting. Kumar
and Tripathi [16] offered an innovative contract-based consortium BC technique. The
authors compiled interplanetary file systems (IPFS) and cluster nodes where smart con-
tracts are deployable in the early phase. The IPFS cluster node assures the authentication
and security of gadgets and even offers safe storage in IoMT based health care systems.
Alqaralleh et al. [17] designed DL with BC-based secured image transmission and diagnosis
system for the IoMT environment. The elliptic curve cryptography (ECC) was imple-
mented in the initial stage, and then by combining grasshopper and fruit fly optimization
(GO-FFO) system, ECC’s optimum key generation is taken. Finally, a method called a deep
belief network (DBN) is applied to find the existence of disease. In [18], a novel secure
authentication method utilizing ML was presented. To find the attack authentication and
detection in an IoMT platform, this study applies ML and k-nearest neighbour (KNN) with
smart contract (KNN-MLSC).

Uppal et al. [19] proposed an interplanetary file system (IPFS) enabled model for
secure healthcare system. It enables the client to continuously upload the healthcare
information gathered by IoT devices and to add to the BC transactions. The authors in [20]
developed a BC based electronic medical records (EMR) management model for a smart
healthcare system. The privacy of the healthcare data can be accomplished using BC
technology. It offers off-chain storage for the records and assuring the authenticity and
integrity of the health records. In [21], a new hybrid Elman Neural-based Blowfish BC
approach has been introduced for the security of the healthcare data in the IoT environment.
The Elman network offered continual monitoring to predict abnormal activities in the
trained multimedia data. The authors in [22] developed a Lionized Golden Eagle based
Homomorphic Elapid Security (LGE-HES) technique with blockchain in healthcare network.
The blockchain provides the privacy of the medical images using hash operations.

Although several encryption techniques have been presented in the literature, security
performance still needs to be improved. Since the images encompass a massive quantity of
data, high redundancy rate, and increased correlation between neighboring pixels, classical
encryption models cannot be used to resolve the requirements of the image encryption
technique. Therefore, several approaches have been presented based on chaotic concepts,
pixel swapping, etc. On the other hand, the continuous deepening of the DL model
has resulted in the model overfitting issue. In addition, various hyperparameters have
provided a substantial impact on the performance of the CNN model. In particular, the
hyperparameters such as learning rate, batch size, and number of epochs are important to
attain effectual outcome. As the trial-and-error technique for hyperparameter tuning is a
challenging and erroneous procedure, a BO algorithm is used in this study.

3. The Proposed Model

In this paper, we develop a new BSHS-EODL method for secured medical image
transmission and analysis in the IoMT environment. The presented BSHS-EODL technique
enables BC assisted secured image communication and detection models for the IoMT



Appl. Sci. 2023, 13, 6108 4 of 18

environment. The proposed method includes data classification, data collection, and image
encryption. At the initial stage, the IoMT devices enable data collection processes, and
the gathered images are stored in BC for security. Once the images are gathered, they are
encrypted using effective image encryption technique with a DOA based key generation
process. Next, the encrypted image was securely transferred using BC technology. At the
receiver end, the image decryption was implemented, and the disease diagnosis process
was later. Figure 1 demonstrates the working process of the BSHS-EODL method.
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3.1. Image Encryption

In this work, image encryption method takes place to secure medical images. The im-
age encryption procedure mostly comprises key selection, chaotic sequence pre-processing,
diffusion, block scrambling, confusion, and expansion [23]. The chaotic sequence pre-
processing makes the sequence more arbitrary. Block scrambling has been separated, as
intra- and inter-block scrambling decrease the correlation and offer optimum protection
against statistical attack. The expansion stage enhances arbitrary numbers to novel images
towards all the encryption and thus gains a distinct ciphertext image that is optimally pre-
pared to resist chosen plaintext attack. Diffusion and confusion complicate the connection
amongst ciphertext and keys, which make it complex for adversaries to decrypt a ciphertext
image and that improves the resistance of such scenarios.

Key Selection

Optimizing values x0, y0, µ1, µ2, λ1, and λ2 created by the DOA technique can be
utilized as the keys for 2-D logistic maps. For avoiding transient impact, the first 200 points
can be discarded and generate 2 chaotic sequences {xn}, {yn} that are of length MN.

Chaotic Sequence Preprocessing

The 2 chaotic sequences {xn}, {y} can be pre-processed based on Equation (1).

x1(i) = 10q · xn(i)− round(10q · xn(i)) + 0.5
y1(i) = 10q · yn(i)− round(10q · yn(i)) + 0.5

(1)

whereas x1(i) and y1(i) implies the chaotic sequences {xn}, {y} pre-processed sequence,
whereas q = 8.

Image Scrambling

The 16 sub-blocks B(i), i = 1, 2, . . . , 16 of similar sizes can be separated by the new
image P1, and the remaining 16 numbers of sequences x(i) are acquired for composing a
sequences D(i). The acquired integer sequence S(i) was sorted, and inter-block scrambling
was attained based on Equation (2).

S(i) = f loor
(
mod

(
D(i)× 1014, 16

))
+ 1

[s, l] = sort(S)
B1 = B(l)

(2)

Sequences t1 and t2 refer to the collection of 8 sequence values from the mid sequences
x(i) and (i), correspondingly and a novel sequence t was created based on Equation (3). All
the sub-blocks were disordered tj times by intra-block scrambling established to process
the novel disordered sixteen sub-blocks.{

t(2(i− 1) + 1) = f loor
(
mod

(
t1× 1014, 3

))
+ 4

t(2i) = f loor
(
mod

(
t2× 1014, 3

))
+ 4

(3)

Finally, the 16 sub-blocks can be combined with procedure image P2.

Image Expansion

The R0 and R1 are 2 random matrices created, whereas the sizes of R0 and R1 are
4×(N + 4) and M× 4, correspondingly. Develop image P2 based on the system for forming
an expanded image P3.

Confusion and Diffusion

The chaotic scheme comprises two stages: diffusion and confusion. Confusion seeks to
obscure and confound the relationships among key and the cipher images. Diffusion aims
to obscure the relationships among the cipher and plain images by making it as convoluted.
Principally, the swapping operation on the rows and the columns was performed for



Appl. Sci. 2023, 13, 6108 6 of 18

the realization of the confusion effects. Primarily, compute the novel row index r(i) =
ceil(x1(i)× (M + 4)) utilizing x1(i), followed by related row i with row indexes r(i).

i f r(i) < i, then
r(i) = i

(4)

Secondly, the parameters k11, k12 are computed utilizing x1(i).

k11(i) = mod
(

f loor
(
x1(i)× 108), 256

)
k12(i) = mod

(
f loor

(
x1(i)× 109), 256

) (5)

Thirdly, accomplish a bitwise XOR function on the expansion image P3 with parame-
ters k11, k12.

If = r(i), then
P30(i, :) = P3(i, :)⊕ k11(i)

i f 6= r(i), then
P30(i, :) = P3(i, :)⊕ k11(i)

P30(r(i), :) = P3(r(i), :)⊕ k12(i)

(6)

At the fourth stage, swap the ith and r(i)th row of P30 for obtaining P31.

temp = P30(i, :)
P30(i, :) = P30(r(i), :)

P30(r(i), :) = temp
P31 = P30

(7)

In the fifth, the first and last columns of P31 can be computed to obtain P4.

P4(i, 1) = mod (P31(i, 1) + P31(i, N + 4), 256) (8)

At the sixth stage, the other columns of P31 and P4 can be computed.

P4(i, j) = mod (P31(i, j) + P4(i, j− 1), 256) (9)

The diffusion and confusion of columns are related to the row, but that sequence y1(i)
was utilized rather than sequence x1(i). The particular computation process was projected
in Algorithm 1.

Algorithm 1: Column confusion and diffusion

Input: Image P4 and pre-processed chaotic sequence y1(i)
Output: Image P5
for j = 1 to N + 4

q(j) = ceil((N + 4) · y1(j)),
k21(j) = mod

(
f loor

(
108 × y1(j)

)
, 28),

k22(j) = mod
(

f loor
(
109 × y1(j)

)
, 28),

if q(j) < j then
q(j) = j,

end if
if q(j) = j then

P4(:, j) = k21(j)⊕ P4(:, j),
else if

P4(:, j) = k21(j)⊕ P4(:, j),
P4(:, q(j)) = k22(j)⊕ P4 q(j)),
end if
temp = P4(:, j),
P4(:, j) = P4(:, q(j)),

P4(:, q(j)) = temp,
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P41 = P4;
for i = 1 to M + 4

P5(1, j) = mod
(

P41(1, j) + P41(M + 4, j), 28),
P5(i, j) = mod

(
P5(i− 1, j) + P41(i, j), 28),

end for
end for

3.2. Key Generation Process

The DOA is used for an effective key generation process. The DOA is a metaheuristic
approach stimulated by the hunting behaviours of dingo. DOA is chosen for key generation
due to its following advantages: high convergence, robust, global optimization, a smaller
number of parameters, simplicity, and highly versatile. This strategy includes scavenging
nature, attack by persecution, and assembling procedures [24]. Australian dingo dogs are
in danger of extermination. Consequently, the survival rate of dingo is regarded in the
DOA. The mathematical expression of DOA is given in the following. In general, dingoes
meet in groups during hunting. They then find the prey location and surround it using the
following equation:

→
x i(t + 1) = β1

na

∑
k=1

[ →
ϕk(t)−

→
x i(t)

]
\

φk(t)

na
−→x i∗(t) (10)

In Equation (10),
→
x (t + 1) represents the new prey location of the searching agent,

na denotes the random integer generated within [2, SizePop
2 ], where SizePop indicates

overall dingo population size.
→
ϕk(t) shows the subset of search agent where φ ⊂ X,

X denotes the randomly generated dingo population,
→
x i(t) specifies the existing search

agent,
→
x i(t) signifies the best possible searching agent attained from prior iteration, and β1

is a consistently produced arbitrary number within [−2, 2]. Typically, dingoes hunt tiny
prey and chase it till it gets caught. These characteristics are expressed as follows:

→
x i(t + 1) =

→
x ∗(t) + β1 ∗ eβ2 ∗

(→
x r1(t)−

→
x i(t)

)
(11)

In Equation (11),
→
x (t + 1) describes the movement of the dingo,

→
x i(t) shows existing

search agents,
→
x ∗(t) means best possible search agent obtained from the previous iteration,

r1 represents randomly produced numbers from the interval 1 to the size of maximal of the
search agent, and

→
x r1(t) shows the r1 − th selected search agent, where i 6= r1.

Scavenger is characterized as a dingo finding meat to eat if they get a random walk in
the habitat.

→
x i(t + 1) =

1
2
[eβ2 ∗→x r1(t)−

(
−1)σ ∗→x i(t)

]
(12)

In Equation (12),
→
x (t + 1) denotes the dingo progress, β2 has equivalent value as

in Equation (12), r1 represents the randomly generated number within [1, max_size of
searching agent] interval,

→
x r1(t) indicates the rth

1 selected search agent,
→
x i(t) denotes the

existing search agent, where i 6= r1, and σ signifies the arbitrarily created binary number.
Finally, the survival rate of the dingoes is expressed as follows:

survival (i) =
f itness max − f itness(i)

f itness max − f itness min
(13)

In Equation (13), f itness max and f itness min correspondingly represent poor and
optimum fitness values in the present round. f itness(i) signifies existing fitness value of
i-th searching agent. The survival vector in Equation (13) encompasses the normalizing
fitness value within [0, 1]. Equation (14) is used for attaining lower survival rate.
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→
x i(t) =

→
x ∗(t) +

1
2
[
→
x r1(t)−

(
−1)σ ∗→x r2(t)

]
(14)

In Equation (14),
→
x i(t) represents that search agent with minimal survival rate is up-

graded. In addition, r1 and r2 denote the randomly produced numbers within [1, max_size
of searching agent] interval,

→
x ∗(t) specifies best possible searching agent accomplished

from previous iteration, and σ showing binary number of agents, with r1 6= r2,
→
x r1(t) and

→
x r2(t), describes r1, r2 selected searching agent,

→
x ∗(t) indicates the best possible searching

agent accomplished from previous iteration, and σ shows the randomly generated number.
The set of keys is preferred by considering the “fitness function” as a max key using

peak signal-to-noise ratio (PSNR) for scrambling and unscrambling data from medical
images. With the help of hybrid optimization, the organization has been developed, and it
is given in the following:

Fitness = max{PSNR} (15)

3.3. Blockchain Technology

The proposed BSHS-EODL technique used BC technology for secure data transmission
in the medical field. A BC is distributed data where a novel time-stamped transaction
is grouped and appended to a hash-chain of blocks [25]. The BSHS-EODL technique
comprises a data processing section, application server for data transmission and reception,
BC enabled decentralized databases, application programming interface (API) management
element, and data analytics unit. A few processes which take place in the system are
Create_Patient_Data, Grant_Access_ToHCP, and Revoke_Access. The structured data of the
patient gets saved in the classical dataset and the unstructured data gets stored in the data
warehouse. The encrypted data gets saved in the distributed BC using preferrable smart
contract. After the storage of data in the allotted BC, BSHS-EODL technique uses VELM
classifier for classification process. The medical image is loaded into the decentralized BC,
and the BSHS-EODL technique can be employed to the data fetched from the decentralized
network. The BSHS-EODL technique operates in the following way. Ethereum BC network
can be employed for patient data distribution. Each individual actor carries out various
activities in the network and has access to the data for which they received access. The
patients can generate the information and commit the transaction. When the transactions
are committed in the BC, the altered transaction is dispersed over the Internet, verifying that
each data existing in the network can be accessed by every actor in the network and cannot
be changed by unintentional persons. The medical personnel can access the data only
when the respective user provides access permissions. Healthcare professionals can access
the patient data and perform disease diagnostic processes. If the healthcare professional
receives a request from the patient, they can accept it and send a request to access the data
to the specific person. Upon the acceptance of the request, they investigate the medical
data for disease detection purposes.

3.4. Disease Classification Model

In this work, the BSHS-EODL technique performs disease diagnosis comprising
SqueezeNet, BO based parameter tuning, and VELM.

3.4.1. Feature Extraction Using SqueezeNet

To produce feature vectors, the SqueezeNet model is used in this work. SqueezeNet is
a small, efficient deep neural network structure [26]. It is intended to be faster and smaller
than other architectures while accomplishing higher accuracy on image classification
tasks. SqueezeNet exploits a technique named “squeeze-and-excitation” to decrease the
parameter count in the network, enabling it to be more effective in terms of memory and
computational requirements. It was specifically designed for use on embedded and mobile
devices. The SqueezeNet architecture comprises a series of layers, including the following:
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• Pooling layers, decrease the spatial dimension of the feature maps.
• The input layer takes in the image dataset.
• A sequence of FC layers categorises the image based on the extracted features through

the convolution layer.
• A sequence of convolutional layers extracts features from the image. This layer uses

“fire modules” that comprise the “expand” layer with a larger number of filters,
followed by “squeeze” layer with smaller number of filters. This enables the network
to maintain fewer parameters while still extracting relevant features from the image.

The architecture also includes a dropout layer and a softmax layer. Dropout is a
regularization technique that prevents overfitting by randomly dropping out some neurons
during training. The softmax layer creates a probability distribution over the feasible
classes used to classify the image. The SqueezeNet architecture is designed to be small and
efficient, with a total of only 1.2 million parameters. This makes it better suited for use on
embedded and mobile devices with limited computational resources.

Here, the BO is utilized for the hyperparameter selection of SqueezeNet. A proba-
bilistic method of the objective function (x) called the surrogate function can be created
using BO technique [27]. Bayes’ Theorem is the core of BO technique and computes the
conditional probability of event A given another event B, P(A|B) ,

P(A|B) = P(B|A) ∗ P(A)

P(B)
(16)

Bayes’ theorem is capable of being adjusted by neglecting the P(B) marginal probabil-
ity from the conditional probability for optimization problem using Equation (17):

P(A|B) = P(B|A) ∗ P(A) (17)

A new version of Bayes’ theorem is given as follows:

Posterior = Likelihood ∗ Prior (18)

The conditional probability is a function that estimates the objective function and
is utilized for sampling the searching space. The searching space in these problems is
the SqueezeNet hyperparameter. BO algorithm, as an informed search technique, can be
differentiated by using an acquisition function that exploits the posterior for sampling
the searching area and selecting the succeeding sample to evaluate the objective func-
tion. In this study, the objective function can be denoted as a Gaussian method with the
Matern 5/2 kernel. At first, random samples from the search space (x1, x2, . . . , xn) are
exploited for determining the F(x) objective function at these samples. The assessments
and samples are gathered in a consecutive way, which leads to a sequence of data points
S =

{
xi, F

(
xj
)
, . . . xn, F(xn)

}
, where n denotes the number of samples. The set S defines

the likelihood, and prior function can be described as follows:

P(F|S) = P(S|F) ∗ P(S) (19)

The posterior is updated afterwards with the evaluation of prior and probability.
The acquisition function, C, is enhanced over the Gaussian algorithm for selecting the
subsequent sample xn, which can be represented as follows:

xn = argmaxxC(x
∣∣S1:n−1) (20)

In this study, the acquisition function can be executed by the expected improvement
algorithm, as defined below.

C(x) = E
[
max

(
F(x)− P

(
x+
)
, 0
)]

(21)
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In Equation (21), F(x) indicates the value of objective function for the better sample,
E denotes the expectation operator, and x+ shows the better sample location in the search
range. Then, the sample selected can be assessed by the objective function, and these
processes are repeated until the objective function attains its least or minimum objective
within the given run time.

3.4.2. Image Classification Using VELM Model

Finally, the classification of medical images is performed by the VELM model. The
VELM was utilized as a classifier in this work. The VELM is a significant ML model which
enhances classification accuracy while maintaining high processing speeds and robustness
to noise and outliers in the input data. An ELM is a type of artificial neural network (ANN)
with a single hidden layer (HL) [28]. Here, the weight that connects input to the HL and
HL to biases are randomized. The weights between the output and HLs are computed
by the Moore–Penrose inverse, making the training model faster. Several ELMs can be
used for classification to increase detection accuracy. Each individual ELM is trained using
similar data. In the process of detection, the sample is used for all the ELMs and output is
computed. Based on the majority voting, the last output is computed. Assume, an ELM
with activation functions f and l hidden neurons in HL. If there is N training sample of
the form (xi, ti), where xi = [xi1, xi2, . . . , xin]

T ∈ Rn and ti = [ti1, ti2, . . . , tim]
T ∈ Rm

(m = 2) then the output can be represented as

0i =
1

∑
j=1

vj f
(
uj, bj, xi

)
(22)

for, i = 1, 2, 3, . . . , N.
Where uj ∈ Rn and bj ∈ R denote the learning parameters of jth hidden neuron.

vj = [νj1, νj2, . . . , νjm]
T indicates the weight vector that connects jth hidden neurons to

output neurons. This can be represented as follows:

O = HV (23)

where,

H =


f (u1, b1, x1) . . . f (ul , bl , x1)

...
...

...
f (u1, b1, xN) . . . f

(
ul , b|, xN

)
, V =

 vT
1
...

vT
l

and O =

 oT
1
...

oT
N


The uj and bj parameters are randomly initialized for minimizing the error ||O− T||,

where T = (t1, t2, . . . , tN), that is independent of input dataset. The output weights can be
expressed by finding the least square solution,

V = H+T (24)

where the symbol “ + ” characterizes the Moore–Penrose generalized inverse of matrix. It
implies ELM is trained. In V-ELM, k-th ELM is used. The equivalent number of hidden
layers initialized this ELM. The learning parameter uj and bj of each ELM is initialized
in a random fashion. Next, each ELM is trained on a similar dataset and the results are
computed. In detection stage, a set of samples of the form yi = [yi1, yi2, . . . , yin] is used
for each ELM. The output 0i = [0, 1] or 0i = [1, 0] of every individual ELM is taken, and
majority voting receives the last output. For every i sample, a vector Ci ∈ Z2

>=0 has been
used for storing the class labels recognized by dissimilar ELMs. At first, Ci is initialized
to zero (Ci = [0, 0]) once an ELM output takes place; the value of equivalent location in
Ci can be raised by 1. For instance, assume output of ELM1 is [1, 0] now Ci become [1, 0].
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Output of ELM2 is again [1, 0], then Ci becomes [2, 0]. Output of ELM3 is [0, 1], then Ci
becomes [2, 1]. Once each k output is reached, then the concluding output is evaluated.

4. Performance Validation

In this section, the experimental outcome of the BSHS-EODL technique is well studied
on skin lesion images in the ISIC database. Figure 2 illustrates the sample images.
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Figure 3 shows the histogram analysis of the BSHS-EODL technique. Figure 3a,b
show the original images and their corresponding histogram images. Similarly, Figure 3c,d
demonstrate the encrypted images and their respective histograms.

Table 1 represents the comparative MSE and PSNR examination of the BSHS-EODL
technique with existing techniques [17,29] on different images. The results indicate that
the GWO and GO-PSO algorithms resulted in higher MSE values, while the GO-FFO
and HOCE-ECC techniques led to considerable MSE values. However, the BSHS-EODL
technique gains effective performance over other models with minimal MSE of 0.072, 0.057,
0.078, 0.102, and 0.071 under test images 1–5, respectively. The experimental outcomes
indicate that the GWO and GO-PSO algorithms represented lower PSNR values than
existing ones. Although the GO-FFO and HOCE-ECC models reach moderately improved
PSNR values, the BSHS-EODL technique outperformed the existing models with a higher
PSNR of 59.56 dB, 60.57 dB, 59.21 dB, 58.04 dB, and 59.62 dB under images 1–5 respectively.
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Table 1. MSE and PSNR analysis BSHS-EODL approach with other systems under varying images.

Sample
Images

BSHS-EODL HOCE-ECC [29] GO-FFO [17] GO-PSO [17] GWO [17]

MSE PSNR MSE PSNR MSE PSNR MSE PSNR MSE PSNR

Image 1 0.072 59.56 0.112 57.64 0.132 56.93 0.171 55.80 0.197 55.19
Image 2 0.057 60.57 0.083 58.94 0.119 57.38 0.152 56.31 0.172 55.78
Image 3 0.078 59.21 0.118 57.41 0.152 56.31 0.188 55.39 0.220 54.71
Image 4 0.102 58.04 0.13 56.99 0.157 56.17 0.184 55.48 0.210 54.91
Image 5 0.071 59.62 0.107 57.84 0.128 57.06 0.165 55.96 0.186 55.44

Table 2 shows a brief CC outcome of the BSHS-EODL system under several images. The
experimental outcome stated that the GWO and GO-PSO algorithms represented lesser CC
values over existing ones. However, the GO-FFO and HOCE-ECC models reach moderately
enhanced CC values, and the BSHS-EODL approach outperformed the existing techniques
with maximal CC of 99.42, 99.63, 99.21, 99.72, and 99.68 under images 1–5 correspondingly.
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Table 2. CC analysis of BSHS-EODL approach with other techniques under varying images.

Sample Images BSHS-EODL HOCE-ECC [29] GO-FFO [17] GO-PSO [17] GWO [17]

Image 1 99.42 98.93 98.49 98.16 97.7
Image 2 99.63 99.22 98.84 98.53 98.18
Image 3 99.21 98.76 98.45 97.98 97.54
Image 4 99.72 99.33 99.01 98.65 98.19
Image 5 99.68 99.37 99.04 98.54 98.22

Table 3 represents the encryption outcomes of the BSHS-EODL method with existing
models under the presence of attacks in terms of computation time (CT) and PSNR. The
outcome inferred that the GWO and GO-PSO algorithms resulted in higher CT values,
while the GO-FFO and HOCE-ECC approaches led to considerable CT values. The BSHS-
EODL algorithm attains effectual performance over other systems with minimal CT of
0.20 s, 0.13 s, 0.16 s, 0.11 s, and 0.15 s under test images 1–5 correspondingly.

Table 3. CT and PSNR outcome of BSHS-EODL approach with other techniques under varying images.

Computation Time (s)

Sample
Images BSHS-EODL HOCE-ECC [29] GO-FFO [17] GO-PSO [17] GWO [17]

Image 1 0.20 0.50 0.78 0.94 1.29
Image 2 0.13 0.31 0.51 0.70 1.05
Image 3 0.16 0.48 0.72 0.92 1.07
Image 4 0.11 0.45 0.59 0.89 1.03
Image 5 0.15 0.41 0.68 1.00 1.31

PSNR During Attacks (dB)

Sample
Images BSHS-EODL HOCE-ECC [29] GO-FFO [17] GO-PSO [17] GWO [17]

Image 1 59.21 57.08 56.47 55.29 54.66
Image 2 60.17 58.34 56.90 56.01 55.48
Image 3 58.80 57.01 55.74 54.84 54.38
Image 4 57.71 56.44 55.61 54.91 54.44
Image 5 59.31 57.43 56.59 55.42 55.09

The experimental outcomes implied that the GWO and GO-PSO algorithms repre-
sented minimal PSNR values over existing ones. However, the GO-FFO and HOCE-ECC
models reached moderately greater PSNR values, and the BSHS-EODL approach out-
performed the existing approaches with enhanced PSNR of 59.21 dB, 60.17 dB, 58.80 dB,
57.71 dB, and 59.31 dB under images 1–5 correspondingly.

The classification performance of the BSHS-EODL technique can be tested on the ISIC
2017 Dataset, comprising 318 samples with seven classes, as defined in Table 4.

Table 4. Details of dataset.

Labels Class No. of Images

C-0 Angioma 21
C-1 Nevus 46
C-2 Lentigo NOS 41
C-3 Solar Lentigo 68
C-4 Melanoma 51
C-5 Seborrheic Keratosis 54
C-6 BCC 37

Total count of Images 318
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The confusion matrices of the BSHS-EODL method are investigated under distinct
sizes of TRS and TSS in Figure 4. The results demonstrated that the BSHS-EODL technique
properly recognizes the samples under every class.
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In Table 5, the overall results of the BSHS-EODL technique are demonstrated. The results
indicate that the BSHS-EODL technique properly classified the images under all classes. For
instance, with 80% of TRS, the BSHS-EODL technique reaches average accubal of 97.30%.
In addition, with 20% of TSS, the BSHS-EODL approach attains average accubal of 97.32%.
Meanwhile, with 70% of TRS, the BSHS-EODL system attains average accubal of 97.68%.
Finally, with 30% of TSS, the BSHS-EODL algorithm obtains average accubal of 98.51%.
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Table 5. Classifier outcome of BSHS-EODL approach with different metrics.

Labels Accuy Sensy Specy Fscore MCC

Training Phase (80%)

C-0 98.43 85.71 99.17 85.71 84.88
C-1 96.46 79.49 99.53 87.32 85.85
C-2 98.03 90.62 99.10 92.06 90.96
C-3 97.24 96.30 97.50 93.69 91.99
C-4 96.85 93.02 97.63 90.91 89.04
C-5 96.46 91.30 97.60 90.32 88.16
C-6 97.64 92.31 98.25 88.89 87.64

Average 97.30 89.82 98.40 89.85 88.36

Testing Phase (20%)

C-0 98.44 85.71 100.00 92.31 91.78
C-1 98.44 100.00 98.25 93.33 92.72
C-2 100.00 100.00 100.00 100.00 100.00
C-3 98.44 100.00 98.00 96.55 95.64
C-4 96.88 100.00 96.43 88.89 87.83
C-5 96.88 100.00 96.43 88.89 87.83
C-6 92.19 54.55 100.00 70.59 70.60

Average 97.32 91.47 98.44 90.08 89.49

Training Phase (70%)

C-0 99.10 88.24 100.00 93.75 93.48
C-1 98.20 96.67 98.44 93.55 92.57
C-2 98.65 90.62 100.00 95.08 94.45
C-3 94.59 87.76 96.53 87.76 84.29
C-4 98.65 96.55 98.96 94.92 94.15
C-5 96.40 92.31 97.27 90.00 87.84
C-6 98.20 92.31 98.98 92.31 91.29

Average 97.68 92.06 98.60 92.48 91.15

Testing Phase (30%)

C-0 98.96 75.00 100.00 85.71 86.14
C-1 100.00 100.00 100.00 100.00 100.00
C-2 98.96 100.00 98.85 94.74 94.32
C-3 94.79 89.47 96.10 87.18 83.96
C-4 98.96 95.45 100.00 97.67 97.05
C-5 100.00 100.00 100.00 100.00 100.00
C-6 97.92 90.91 98.82 90.91 89.73

Average 98.51 92.98 99.11 93.74 93.03

The training accuracy (TACY) and validation accuracy (VACY) of the BSHS-EODL
method can be assessed in Figure 5. The figure inferred that the BSHS-EODL algorithm has
demonstrated greater results with enhanced values of TACY and VACY. It can be noted
that the BSHS-EODL system has obtained maximal TACY outcomes.

The training loss (TLOS) and validation loss (VLOS) of the BSHS-EODL approach are
tested in Figure 6. The figure stated that the BSHS-EODL approach has demonstrated higher
performance with decreasing TLOS and VLOS. Evidently, the BSHS-EODL algorithm has
resulted in lesser VLOS outcomes.
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The extensive comparative study of the BSHS-EODL technique takes place in Table 6 [17,30].
The results highlighted that the VGG-19 model shows least performance, whereas the DBN and
YOLO-GC techniques reported moderately similar outcomes. In comparison, the ResNet and
CDNN models attain a reasonable performance.
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Table 6. Comparative outcome of BSHS-EODL method with other DL techniques.

Methods Accuracy Sensitivity Specificity

BSHS-EODL 98.51 92.98 99.11
DBN [17] 94.15 91.40 90.98

YOLO-GC [17] 94.24 89.30 90.77
ResNet Model [17] 96.19 90.44 91.03

VGG-19 [30] 91.19 90.20 93.73
CDNN [17] 95.29 91.19 92.77

However, the BSHS-EODL technique gains maximum classification performance with
accuy of 98.51%, sensy of 92.98%, and specy of 99.11%. These outcomes ensured the better-
ment of the BSHS-EODL method over other existing techniques in the IoMT environment.

5. Conclusions

This article introduces a new BSHS-EODL technique for secure medical image trans-
mission and analysis in the IoMT environment. The presented BSHS-EODL technique en-
ables BC assisted secured image transmission and diagnosis models for the IoMT platform.
The proposed method includes data classification, data collection, and image encryption.
At the initial stage, the IoMT devices enable data collection processes, and the gathered
images are stored in BC for security. Subsequently, image encryption is applied to encrypt
the data and the key generation process is performed via the DOA. Finally, the BSHS-EODL
technique performs disease diagnosis comprising SqueezeNet, BO based parameter tuning,
and VELM. A comprehensive set of simulation analyses on medical datasets highlights
the supremacy of the BSHS-EODL technique. In upcoming years, the performance of the
proposed method can be tested on other disease diagnoses.
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