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Featured Application: A sliding mode variable structure control algorithm based on fuzzy switch-
ing gain adjustment was adopted to achieve real-time dynamic auto-leveling control of a hillside
tractor body. The tractor can remain within a ±2◦ tilting angle range during the leveling process,
and can return to 0◦ after leveling, demonstrating good dynamic stability. High leveling accura-
cies can provide assistance with or in reference to obtaining solutions to the problems of tractor
body leveling in hilly and mountainous areas.

Abstract: To address the issues that arise when auto-leveling the vehicle body of a hillside tractor
under complex working conditions, an auto-leveling control system was developed based on a
newly developed hillside tractor and four-point body leveling mechanism. In this approach, leveling
accuracy and stability were improved by adopting a sliding mode variable structure control algorithm
based on fuzzy switching gain adjustment to achieve real-time dynamic auto-leveling control. To
obtain curves of front and rear axle leveling displacement, speed, flow, pressure and body tilting angle
during the leveling process, AMEsim/Simulink co-simulation was used to simulate and analyze
the control system. The simulation results revealed that the tractor achieves a good leveling effect
under complex working conditions in hilly and mountainous areas; the tractor can remain within
a±2◦ tilting angle range during the leveling process and can return to 0◦ after leveling, demonstrating
good dynamic stability. To further assess the algorithm, a model of the system was submitted to
live-testing on a custom-built auto-leveling test bench. Comparison of the test and simulation results
revealed a close agreement between the two, indicating that the self-leveling control system and
control algorithm developed in this study have high leveling accuracies. The results reported in this
paper could provide assistance with or in reference to obtaining solutions to the problems of tractor
body leveling in hilly and mountainous areas.

Keywords: hillside tractor; vehicle body auto-leveling; fuzzy adjustment; sliding mode variable
structure control

1. Introduction

China is a large agricultural country with a total of 1.22× 108 ha of cultivated land,
of which hilly and mountainous areas account for approximately 63.2% [1]. Owing to
the complex terrain and diversified agricultural operations carried out in such regions [2],
the tractor is a typical piece of agricultural machinery and equipment, which can be used
for the field operation or transportation of other agricultural machinery, thereby forming
a vital component of agricultural production. Maintaining the level of the tractor body
during operation in hilly and mountainous areas is difficult, and it is easy to overturn [3].
Therefore, conventional agricultural tractors are not widely used in agricultural production
in hilly and mountainous areas. At present, several, new four-wheel or crawler tractors
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have the ability to work safely in hilly and mountainous areas with small slopes. The main
leveling methods include reducing the center of gravity, manual leveling and automatic
leveling. The hillside tractors with automatic leveling have the best working performance.
Automatic leveling can maintain the level of the body in real time, and improve the stability
of hillside tractors during operation. However, the rapidity, stability and accuracy of
leveling continues to require improvement [4]. Therefore, hillside tractors require a fast
acting and high-precision self-leveling system to adjust vehicle body posture in a timely
and effective manner to ensure that the vehicle level remains within an allowable range [5].

In recent years, vehicle body self-leveling systems have begun to be developed.
Pijuan et al. designed a height-adjustable suspension mechanism that could level a chassis
during vehicle movement to improve the obstacle-surmounting ability of the overall ve-
hicle [6]; however, the system had a low leveling accuracy, which limited its application
in tractors operating in hilly regions. In 2014, Alleyne and John Deere jointly developed
a two-degree-of-freedom (2DOF) controller for combine harvester header height control
based on the optimization of the control system. Simulation and test results revealed that a
2DOF controller mounted on a harvester header outperformed an independent feedback
controller in terms of leveling, but that the leveling actuator had a delay, which lead to
limitations in the application of the feedback control of header height [7]. Northwest
Agriculture and Forestry University developed a hillside crawler tractor with an automatic
leveling function; however, random noise generated by body vibration resulted in a less-
than-ideal filtering effect, resulting in a body automatic leveling accuracy of only 40% [8].
Xu Feng et al. of Jilin Agricultural Machinery Research Institute studied a hillside tractor
leveling system whose dynamic stability needed to be improved [9]. Shanghai Jiaotong
University and Shandong Wuzheng Group jointly developed a four-wheel drive tractor
with leveling functionality, in which a swing mechanism was installed between the rear
drive axle and wheels to enable the horizontal leveling of the vehicle body through the
height difference generated by the side-to-side swing of the mechanism; however, the
actual operational effect of this assembly awaits verification [10].

In view of the facts that the current generation of hillside tractor auto-leveling systems
have low leveling accuracy under complex working conditions and most of them can
only function in a static state, this paper uses key national research and development
plans to propose an auto-leveling system based on a new type of hillside tractor and
four-point leveling mechanism. The proposed mechanism adopts a sliding mode variable
structure control algorithm, based on fuzzy switching gain adjustment, to effectively
improve leveling accuracy and stability. To assess the proposed system, joint performance
simulation calculation and analysis of the control system were carried out. In addition, a
custom-built leveling test bench was used to live-test a model of the real system with the
results used to compare and verify the performance accuracy of the control system with
the theoretical analysis.

2. Leveling System Design and Control Strategy
2.1. Leveling System Design

Here, we explain the designed hillside tractor body four-point leveling system to
clarify our method, process, and control system results.

The tractor motion model subjected to a non-horizontal road surface is established as
shown in Figure 1a. In this figure, the body wheelspan is a, the body wheelbase is b, λ, µ
are the distance coefficients from the center of mass to the origin of the coordinate system,
the horizontal plane coordinate system of the body in the initial position is O-X0Y0Z0, the
coordinate system of the body in the non-horizontal position becomes O-XYZ, the rotation
angle of the coordinate axis X is α, and the rotation angle of the coordinate axis Y is β.



Appl. Sci. 2023, 13, 6066 3 of 18Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 19 
 

 
  

(a) (b) (c) 
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Figure 1. Principle, structure and hydraulic system of leveling drive axle: (a) The motion model on
non-horizontal road surface; (b) Three-dimensional structure; and (c) Hydraulic system. 1 central
transmission assembly; 2 leveling cylinder assembly; 3 steering knuckle assembly; 4 wheel trans-
mission assembly; 5 tire; 6 steering rod; 7 guide pillar; 8 overflow valve; 9 pressure measuring joint;
10 pressure gauge; 11 gear oil pump; 12 hydraulic air filter; 13 liquid level thermometer; 14 oil suction
filter; 15 oil tank; 16 electromagnetic proportional directional valve; 17 hydraulic operated check
valve; 18 leveling cylinder.

For the non-horizontal state, the functional relationship between the force F of the
rodless cavity of each hydraulic cylinder and the load gravity G is,

A · FT = B, (1)

where,

A =


1 1 1 1
a⁄2 a⁄2 a⁄2 a⁄2
b⁄2 b⁄2 b⁄2 b⁄2
l1 −l2 l3 −l4

, F =
[
F1 F2 F3 F4

]T , B =


G

λa · G
µb · G

0

.

Because the initial state of the leveling hydraulic cylinder is the complete recovery
state of the cylinder rod, the highest level of the body support point is the target point after
excitation from the hilly slope road surface. After analysis and calculation, the displacement
of each support point of the tractor is obtained.

l1 = b · sin β cos α
l2 = a sin α + b sin β cos α
l3 = a sin α
l4 = 0

(2)

Figure 1b shows the working principle of the rear axle. The structure of the front axle
is altered so that it has a kingpin tilting angle of 3◦ relative to the rear axle to obtain a front
axle hydraulic cylinder stroke 5 mm larger than that of the rear axle hydraulic cylinder;
otherwise, the leveling principle is the same for both.

Figure 1c shows the leveling hydraulic system, which supplies oil through a gear oil
pump and stabilizes pressure through a relief valve. By changing the working state of
the electromagnetic proportional valve, the corresponding leveling hydraulic cylinder can
be extended or retracted [11–13]. When the tractor encounters a transverse slope during
operation, the rodless cavity of the hydraulic cylinder on the lower side of the drive axle
begins to charge, causing the hydraulic rod to stretch out to raise the lower side of the
tractor and return the posture of the body to a horizontal state to ensure the safety and
comfort of the ride.
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2.2. Leveling Control Strategy

To improve the service life of the leveling system, no leveling is performed when
the absolute value of the vehicle body tilting angle is less than 2◦. When the tilting angle
exceeds 2◦, leveling is required to compensate for the displacement difference and ensure
leveling accuracy. The specific leveling control strategy is shown in Figure 2.
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Figure 2. Leveling system control strategy.

Under actual conditions, a hillside tractor has two primary types of working state,
that is, operation on transverse or longitudinal slopes, or on pits or bulges. The working
condition should be comprehensively judged from the signals obtained from current body
tilting and cylinder pressure data and a corresponding control strategy should be automat-
ically selected. If one of the pressure values of the rodless chambers of the four leveling
hydraulic cylinders suddenly drops or rises sharply, then the working condition can be
determined to be a pit or a bulge; conversely, if the pressure values of the four leveling
hydraulic cylinders show no obvious changes, but the absolute value of the tilting angle
of the vehicle body is greater than 2◦, then the working condition can be determined to
be a transverse or longitudinal slope. Considering that the primary safety hazard facing
a tractor working in hilly and mountainous environments is rollover, the control strategy
involves leveling the vehicle body on horizontal slopes but not on longitudinal slopes.

A virtual leg compensation control strategy is adopted for pits and bulges. In this
approach, an angle and displacement double deviation control strategy is applied for
transverse slope leveling, as shown in Figure 3. The leveling control system takes an
expected value of the tilting angle of the vehicle body of zero (that is, the attitude of the
vehicle body is horizontal) as the input signal and the real-time tilting angle of the vehicle
body; additionally, it takes the pressure of the rodless chambers of hydraulic cylinders and
the displacement of the hydraulic cylinders as feedback signals. It controls the action of
the hydraulic cylinders of the vehicle through the application of a leveling strategy and
algorithm to compensate for the tilting angle of the vehicle body and maintain a level
vehicle attitude.
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3. Leveling System Model and Controller Design
3.1. Construction of Mathematical Model of Body Leveling Hydraulic System

The electro-hydraulic servo system of the proposed hillside tractor auto-leveling
mechanism is a four-way-valve-controlled asymmetric hydraulic-cylinder position tracking
system. Considering the internal and external leakage of the system, the control principles
of the four leveling cylinders can be set to be identical, and a power model of the left rear
leveling cylinder system can be expressed using the following three equations.

Valve flow equation,
qL = kqxv − ke pL (3)

where kq is the flow gain of the valve, m2/s; ke is the flow pressure coefficient, m3/(s·Pa);
xv is the valve core displacement, m, and pL is the load pressure, N.

Flow equation of the hydraulic cylinder,

qL = q1 = A1
.
y +

Vt

4βe

.
pL + Clp pL + C f ps (4)

where q1 is the flow rate of the rodless chamber of the hydraulic rod, m3/s, A1 is the area
of the rodless chamber of the hydraulic cylinder, m2, y is the displacement of the hydraulic
rod piston, m, βe is the equivalent elastic modulus of the oil, N/m2, Vt is the total effective
volume of the hydraulic cylinder, m3, Clp is the total effective leakage coefficient, and C f is
the total additional leakage coefficient.

Force balance equation of the hydraulic rod,

A1 p1 − A2 p2 = m
..
y + Bp

.
y + ky + FL (5)

where A2 is the rod chamber area of the hydraulic cylinder, m2, m is the mass of the piston
and the load converted to the piston, kg, Bp is the viscous damping coefficient of the piston
rod and the load, N·s/m, k is the spring stiffness for the load, N/m, and FL is an arbitrary
load force, N.

The dynamic characteristics of the valve-controlled hydraulic cylinder can be com-
pletely described using these three basic equations. By applying Laplace transformation
and derivation simplification, the transfer function of the displacement of the leveling
hydraulic cylinder Y(s) and the displacement of the proportional valve spool Xv(s) is,

G4(s) =
Y(s)
Xv(s)

=

kq
A1

s( 1
w2

h
s2 + 2ζh

wh
s + 1)

(6)

where ζh is the system damping ratio and ωh is the natural frequency of the system.
The state equation of the system must be considered in designing a fuzzy sliding mode

controller. For a system with input signals r and output signals y, the deviation of the
system will be e = r− y, and the error vector of the system can be defined as,

E =
[
e1 e2 e3

]T
=
[
r− y

.
r− .

y
..
r− ..

y
]T (7)

According to the system model state space equation,
y = x1.
x1 = x2.
x2 = x3.
x3 = −w2

hx2 − 2ζhwhx3 + Khw2
hu

y = x1.
x1 = x2.
x2 = x3.
x3 = −w2

hx2 − 2ζhwhx3 + Khw2
hu

(8)
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The error state equation can be written as,

.
E =

0 1 0
0 0 1
0 −w2

h −2ζhwh

E +

 0
0

Khw2
h

u +

 0
0

...
r + 2ζhwh

..
r + w2

h
.
r

 (9)

3.2. Design of Fuzzy Sliding Mode Variable Structure Controller
3.2.1. Sliding Mode Controller Design

Sliding mode variable structure control has the advantages of high reliability and
robustness. However, chattering occurs under the influence of uncertainties, such as inter-
ference, parameter changes and unmodeled dynamics. Scholars have proposed various
weakening methods for the chattering phenomenon of the sliding mode variable struc-
ture [14,15]. The novelty of this paper lies in combining fuzzy control theory with the
sliding mode variable structure control algorithm, and by applying it to the leveling control
of tractors in hilly and mountainous areas, it can reduce the chattering phenomenon and
show a good control effect on tractor leveling in hilly and mountainous areas.

The sliding mode function is initially designed according to the displacement tracking
error, following which, the fuzzy regulator is designed to debounce the function, to replace(
e,

.
e
)

with
(
s,

.
s
)

as the input signal, and to effectively evaluate the switching gain according
to the sliding mode attainment condition and eliminate interference with the switching
gain, thereby removing the chattering [16,17]. The principle of the controller operation is
shown in Figure 4.
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Figure 4. Controller principle.

The switching function of the sliding mode surface is defined as [18]

s = c1e1 + c2e2 + e3 = c1e1 + c2
.
e1 +

..
e1 (10)

where e1 = r− y, r is the desired output signal and y is the actual output signal. By selecting
the desired pole as −34.4± 168.52i to determine c1 and c2 through the pole configuration
method, the parameters c1 = 29,582, c2 = 68.8 are obtained.

To ensure that s
.
s < 0, the law of the sliding mode controller is set as [19]

u =
1
b0
[(c1 − a2)e2 + (c2 − a3) e3 + K(t)sgn(s)] (11)

where a2 = w2
h, a3 = 2ζhwh, b0 = Khw2

h.
K(t) = max|F(t)|+ η, F(t) =

...
r + 2ζhwh

..
r + wh

.
r and η > 0.

The Lyapunov stability analysis is carried out. If the function is V = s2/2, then,

.
V = s

.
s = s(c1e2 + c2e3 + (−a3e3 − a2e2 − b0u(t) + F(t))) (12)

The control law (11) is introduced in (12) as follows,

.
V = s(−K(t)sgn(s) + F(t)) ≤ −η|s| ≤ 0 (13)

In the sliding mode control law, the switching gain value K(t) is the cause of chattering.
It is used to compensate the uncertainty F(t) to ensure that the sliding mode existence
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condition is satisfied. If F(t) is time-varying, K(t) should also be time-varying in order to
reduce chattering. Fuzzy rules can be used to achieve changes of K(t) based on experience.

3.2.2. Fuzzy Rule Design

The next step is to design the fuzzy rules of the switching gain, K(t).
The condition of existence of a sliding mode is s

.
s < 0.

When the system reaches the sliding surface, it maintains a hold on it using the gain
K(t) to ensure that the system motion can reach a sliding mode surface whose value is
sufficient to eliminate the influence of uncertain items and ensure that the sliding mode
existence condition, s

.
s < 0, is established [20,21]. The two fuzzy rules are as follows.

If s
.
s > 0, K(t) will increase;

If s
.
s < 0, K(t) will decrease.

Using these fuzzy rules, a fuzzy system can be designed based on the relationship
between s

.
s and ∆K(t), where s

.
s is designated as the input and ∆K(t) as the output.

The fuzzy set of system input and output is defined as follows.
s

.
s = {NB NM ZO PM PB};

∆K = {NB NM ZO PM PB}.
where NB is a large negative value, NM is a medium-sized negative value, ZO is zero, PM
is a medium-sized positive value, and PB is a large positive value.

The input and output membership functions of the fuzzy system are shown in
Figures 5 and 6.
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Table 1. The fuzzy rule.

Number s
.
s ∆K

1 PB PB
2 PM PM
3 ZO ZO
4 NM NM
5 NB NB

The upper bound of
∧
K(t) is estimated using the integral method.

∧
K(t) = G

∫ t

0
∆Kdt (14)

where G is the proportional coefficient.

Replace K(t) in the formula (11) with a
∧
K(t), the control law becomes

u =
1
b0
[(c1 − a2)e2 + (c2 − a3) e3 +

∧
K(t)sgn(s)

]
(15)

4. Simulation Analysis

A performance simulation analysis of the control system is carried out under a joint
AMEsim and Simulink environment. The hydraulic simulation model of the self-leveling
system is established in AMEsim, and the fuzzy sliding mode variable structure control
algorithm is established in Simulink; the two parts interact through an interface block
module to achieve joint simulation [22–24].

4.1. AMEsim Hydraulic System Model Building

The hydraulic system simulation model established in AMEsim is shown in Figure 7.
The model includes four hydraulic cylinder leveling modules corresponding to the left
front, left rear, right rear, and right front cylinders, respectively; an interface block module
implemented in Simulink is used for integration. Following the establishment of the model,
a mathematical model is selected for each module according to the actual needs of the
sub-model mode, and then the parameters for each sub-model are set according to the
parameters of the hydraulic components of the hilly tractor. The primary parameters are
listed in Table 2.
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Table 2. Table of hydraulic component parameters.

Parameter Value

1 Front axle hydraulic cylinder stroke 286 mm
2 Rear axle hydraulic cylinder stroke 281 mm
3 Pump 14.6 mL/r 2000 r/min
4 The minimum used mass of the vehicle body 1260 kg
5 Mass distribution ratio (front: rear) 4:6
6 Piston diameter 63 mm
7 Oil density 880 kg/m3 (40◦)
8 Electro-hydraulic proportional directional valve 25 MPa 43 L/min

4.2. Simulink Controller Model Construction

A MATLAB/Simulink control simulation model is constructed to reflect the leveling
control strategy, as shown in Figure 8.
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Figure 8. Control system simulation model of hillside tractor.

The model contains four controllers that provide different control signals to the re-
spective hydraulic proportional valves following model computation. The controllers
incorporate control strategies and a sealed fuzzy sliding mode variable structure control
algorithm module (Figure 9a).
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Figure 9. Control system simulation program packaging module. (a) Controller packaging module.
(b) Fuzzy sliding mode variable structure arithmetic packaging module.

The specific structure of the fuzzy sliding mode variable structure control encapsula-
tion module, which is shown in Figure 9b, comprises two parts: a sliding mode variable
structure controller and a fuzzy regulator.

4.3. Simulation Result Analysis
4.3.1. Simulation Analysis of Spectrum Excited Leveling of Gravel Pavement with
Transverse Slopes

During the leveling simulation, the spectrum of a gravel road surface collected from
its transverse slope (Figure 10) is used for system excitation [25] with the left front and left
rear of the hillside tractor used as the low side, and the right front and right rear as the high
side. The simulation time is set to 80 s and the sampling frequency to 1000 Hz.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 19 
 

The specific structure of the fuzzy sliding mode variable structure control encapsu-

lation module, which is shown in Figure 9b, comprises two parts: a sliding mode variable 

structure controller and a fuzzy regulator. 

4.3. Simulation Result Analysis 

4.3.1. Simulation Analysis of Spectrum Excited Leveling of Gravel Pavement with  

Transverse Slopes 

During the leveling simulation, the spectrum of a gravel road surface collected from 

its transverse slope (Figure 10) is used for system excitation [25] with the left front and left 

rear of the hillside tractor used as the low side, and the right front and right rear as the 

high side. The simulation time is set to 80 s and the sampling frequency to 1000 Hz. 

  
(a) (b) 

Figure 10. Variation of tilting angles of gravel transport pavement with transverse slopes. (a) Gravel 

transport pavement with transverse slopes. (b) Tilting angles of gravel transport pavement. 

Joint simulation of the model with the sliding mode variable structure control algo-

rithm based on fuzzy switching gain adjustment is applied to reveal the simulated dis-

placement of the hydraulic cylinder leveling of the front and rear axles, as shown in Figure 

11a, which shows that the simulated displacements of the front and rear axles of the hy-

draulic cylinders are essentially synchronous, and the lateral tilting of the vehicle body 

changes by approximately ±2° (Figure 11b). As the displacement chattering generated by 

the sliding mode control of the hydraulic cylinder has been eliminated through the appli-

cation of fuzzy switching gain adjustment, the tilting of the angle of the vehicle body un-

der chattering is not evident, thereby ensuring the safety and dynamic stability of the trac-

tor during operation. 

  
(a) (b) 

Figure 10. Variation of tilting angles of gravel transport pavement with transverse slopes. (a) Gravel
transport pavement with transverse slopes. (b) Tilting angles of gravel transport pavement.

Joint simulation of the model with the sliding mode variable structure control al-
gorithm based on fuzzy switching gain adjustment is applied to reveal the simulated
displacement of the hydraulic cylinder leveling of the front and rear axles, as shown in
Figure 11a, which shows that the simulated displacements of the front and rear axles of the
hydraulic cylinders are essentially synchronous, and the lateral tilting of the vehicle body
changes by approximately ±2◦ (Figure 11b). As the displacement chattering generated
by the sliding mode control of the hydraulic cylinder has been eliminated through the
application of fuzzy switching gain adjustment, the tilting of the angle of the vehicle body
under chattering is not evident, thereby ensuring the safety and dynamic stability of the
tractor during operation.
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Figure 11. Characteristics of spectrum excitation leveling parameters on gravel pavement. (a) Level-
ing displacements of front and rear axles. (b) Body real-time angles. (c) Displacement and speed of
front axle hydraulic cylinder. (d) Displacement and speed of rear axle hydraulic cylinder. (e) Flow
rate of rodless chamber of rear axle. (f) Pressure in rodless chamber of rear axle. (g) Pressure in rod
chamber of rear axle. (h) Pressure in rod chamber of rear axle.
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Figure 11c,d, show, respectively, the characteristic curves of leveling displacement and
variation in the velocities of the front and rear axles. As the leveling displacement of the
front axle is larger than that of the rear axle, the speed of the front axle is higher than that
of the rear axle during hydraulic cylinder extension and retraction; the maximum leveling
speeds of the front and rear axles are approximately 0.2 m/s, indicating the fast leveling
speed of the vehicle and, as a result, the leveling accuracy of the overall vehicle body.

Figure 11e,f, show, respectively, the flow and pressure characteristic curves for the
rodless chamber of the rear axle hydraulic cylinder, whereas Figure 11g,h show the cor-
responding curves for the rod chamber of the rear axle hydraulic cylinder. It is seen that,
even though the flow rate of the rodless chamber is greater than that of the rod chamber,
the pressure in the former is lower than that in the latter. Nevertheless, both the flow rate
and pressure values change within the safe range of the hydraulic system, that is, they are
able to meet the requirements of the system, ensuring that the leveling is safe and reliable.

4.3.2. Simulation Analysis of Spectrum Excited Leveling of Transverse Slope Field Paths

A leveling simulation is carried out using collected field operation paths over trans-
verse slopes (Figure 12) as the system excitation parameters [25]. In the simulation, the
left front and left rear sides of the hillside tractor are set as the low side and the right front
and right rear are set as the high side. The simulation time is set to 100 s and the sampling
frequency to 1000 Hz.
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Figure 12. Variation of tilting angles of field pavement with transverse slopes. (a) field pavement
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The proposed sliding mode variable structure control algorithm based on fuzzy switch-
ing gain adjustment is used to carry out joint simulation to obtain leveling simulation dis-
placements of the front and rear axle low-side hydraulic cylinders. As shown in Figure 13a,
these are essentially synchronous, and as shown in Figure 13b, the tilting angle varies
continuously within a ±2◦ range. Under these conditions, the tractor is free from the
danger of rollover; in addition, no obvious chattering is presented in the lateral tilting of
the body, and dynamic stability of the leveling is illustrated.

Figure 13c,d show the characteristic curves of the leveling displacement and speed
variation of the front and rear axles of the tractor, respectively. During the process of exten-
sion and retraction of the hydraulic cylinder, the maximum operating speed is 0.08 m/s,
indicating the high precision and stability of the auto-leveling during field operations.
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spectively, and when the hydraulic cylinder retracted, the flows in the rodless and rod 

chambers become negative and positive, respectively. These results correspond with the 

Figure 13. Leveling parameter characteristics of field pavement spectrum excitation. (a) Leveling
displacement of front and rear axles. (b) Body real-time angles. (c) Displacements and speeds of front
axle hydraulic cylinders. (d) Displacements and speeds of rear axle hydraulic cylinders. (e) Flow
rates of rodless chambers of rear axles. (f) Pressures in rodless chambers of rear axles. (g) Flows in
the rod chambers of the rear axles. (h) Pressures in the rod chambers of the rear axles.
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Figure 13e,f show the flow and pressure characteristic curves of the rodless chamber of
the rear axle, respectively, whereas Figure 13g,h show the corresponding curves for the rod
chamber of the rear axle. The flow rate is 0 L/min when the hydraulic cylinder is not in ac-
tion, and upon commencement of the leveling movement and hydraulic cylinder extension,
the flows in the rodless and rod chambers become positive and negative, respectively, and
when the hydraulic cylinder retracted, the flows in the rodless and rod chambers become
negative and positive, respectively. These results correspond with the characteristics of the
model and are within the safe range of the hydraulic system, demonstrating the safe and
reliable leveling of the proposed tractor system.

5. Test Analysis

An auto-leveling test bench (Figure 14) is built to test the tractor’s body structure and
control system in hilly and mountainous conditions. The reliability and accuracy of the
fuzzy sliding mode control algorithm are also verified in this test environment.
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ing state.

5.1. Composition of Auto-Leveling Test Bench

The auto-leveling test bench comprises three parts: a road spectrum excitation system,
control system, and simulated vehicle body (Figure 14a). The spectrum excitation system
can simulate two types of collected gravel transportation and field operation slope data;
the control system utilizes an industrial computer that hosted the LABVIEW software to
compile the sliding mode variable structure control algorithm program based on fuzzy
switching gain adjustment, which in turn controls the angle of the drive axle leveling hy-
draulic cylinders. There are, in total, four leveling hydraulic cylinders on the front and rear
drive axles of the simulated vehicle body, which are used to perform auto-leveling under
the control system to verify whether the leveling capability meets the design requirements.

5.2. Auto-Leveling Tests

If the simulated vehicle body does not perform leveling motions when the road surface
spectrum excitation system is functioning, the tractor body assumes a tilted position in
which it is prone to rollover and the safety factor is low. Otherwise, if the simulated vehicle
body can perform real-time leveling, in which the control system detects the tilting angle
of the model vehicle body in real time through the tilting sensors installed on the body,
and quickly calculates the leveling displacement to control the leveling hydraulic cylinder
to perform corresponding leveling actions, then the simulated vehicle body remains in a
horizontal state (Figure 14b) and ensures the safety of the driver.



Appl. Sci. 2023, 13, 6066 15 of 18

5.3. Data Analysis of Auto-Leveling Tests
5.3.1. Simulation Analysis of Spectrum Excited Leveling of Gravel Pavement with
Transverse Slopes

The leveling tests is carried out using a sand and gravel transportation pavement
spectrum of excitation obtained from a transverse slope (Figure 10). The spectrum is formed
from the hydraulic cylinder leveling displacement, and velocity data and real-time vehicle
body tilting data is collected by the displacement sensors installed on the hydraulic cylinder
and the tilting sensors installed on the chassis of the vehicle body, respectively. The results
are compared with the simulation data produced under the same conditions. The test
and the simulation displacements exhibit the same trend (Figure 15), and the chattering is
significantly improved by the fuzzy control, where it shows the fuzzy sliding mode control
algorithm has a high-leveling accuracy. The fluctuation range of the test speed is larger than
that of the simulation speed, and the real-time angle of the test fluctuates more significantly
than that of the simulation, indicating an error in the mathematical modeling, which leads
to the deviation from the simulation data. The test angle of the vehicle body is maintained
within the ±2◦ safe range, and the tractor will not roll over. The fuzzy sliding mode control
algorithm has good leveling stability and can ensure the safety and stability of the tractor
operating on the slope.
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5.3.2. Analysis of Horizontal Slope Field Spectrum Excitation Leveling Tests

Hydraulic cylinder leveling displacement, velocity data, and real-time angle data of
the vehicle body collected from a field spectrum excitation leveling test on a transverse
slope (Figure 12) are compared with simulation data obtained under the same conditions,
as shown in Figure 16. The test and simulation displacements exhibit the same trend, and
have a higher leveling accuracy; however, some deviation is present within the range of
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10–25 s due to the errors in the mathematical modeling of the fuzzy sliding mode variable
structure control algorithm. During operation, the tractor body inclination angle is within
the ±2◦ safe range, then the chattering is not significant, the fuzzy sliding mode control
algorithm has good leveling stability, and the tractor body leveling is safe and reliable.
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A comparison of the body leveling test and simulation results obtained under the two
excitation conditions, indicates that the test displacements are essentially consistent with
the simulation displacements and that the simulated and test vehicle body angle changes
are essentially the same, which verifies the correctness, accuracy, and reliability of the auto-
leveling control system and its fuzzy sliding mode variable structure control algorithm.

6. Conclusions

This paper presented a vehicle body auto-leveling control system for hillside tractors
and presented the results of simulation and testing using a custom-built auto-leveling
test bench. The proposed fuzzy sliding mode variable structure control was simulated
using software and tested using the auto-leveling system. Our primary conclusions are
as follows:

(1) The proposed vehicle body leveling control system, which employs a fuzzy slid-
ing mode variable structure control algorithm designed and built according to the
functional requirements of the leveling system, is capable of real-time adjustment of
controller parameters, guaranteeing a vehicle leveling effect.

(2) Data curves produced by measurements of front and rear axle leveling displacement,
speed, flow, pressure, and body tilting angle during the tractor leveling process
obtained through AMEsim/Simulink simulation reveal that the tractor has a good
leveling effect under complex working conditions in hilly and mountainous areas.
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The tilting angle of the tractor is kept within a ±2◦ range during the leveling process
and can return to 0◦ after leveling, indicating good dynamic stability.

(3) The proposed control method was used to carry out functional tests on an auto-
leveling test bench, with the results confirming the correctness, accuracy, and reliability
of the vehicle body auto-leveling control system and fuzzy sliding mode variable
structure control algorithm. The test-confirmed results obtained in this study provide
a theoretical basis for the design of auto-leveling control systems for hillside tractors.

(4) The tractor body leveling control of the sliding mode variable structure control algo-
rithm, based on fuzzy switching gain adjustment, still exhibits some chattering and a
singularity under an excitation signal with a large variation amplitude. Therefore, the
control parameters can be optimized to further improve the body leveling response
speed and control accuracy. Owing to the incomplete consideration of the influencing
factors and parameters during the modeling process, a certain error is presented in the
actual condition of the tractor leveling. If the actual model of the tractor can be used
for the simulation in the follow-up study, the error of the electromechanical-hydraulic
joint simulation can be reduced further.
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