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Abstract: For large rotating machinery with low speed and heavy load, the incipient fault charac-
teristics of rolling bearings are particularly weak, making it difficult to identify them effectively
by direct signal processing methods. To resolve this issue, we propose a novel approach to detect-
ing incipient fault features that combines signal energy enhancement and signal decomposition.
First, the structure of a conventional Teager algorithm is modified to further increase the energy of
the micro-impact component and hence the impact amplitude. Then, a kind of composite chaotic
mapping is constructed to extend the original fruit fly optimization algorithm (FOA) framework,
improving the FOA’s randomness and search power. The effective intrinsic mode functions (IMFs) are
determined by searching for the optimal combination values of the key parameters of the variational
mode decomposition (VMD) with the improved chaotic FOA (ICFOA). The kurtosis index is then
used to select the IMFs that are most relevant to the fault characteristics information. Finally, the
sensitive components are analyzed to identify multiple early fault characteristics and determine
detailed information about the faults. Moreover, the approach is evaluated by a simulation signal and
a measured signal. The comprehensive evaluation indicates that the approach has clear advantages
over other excellent methods in extracting the incipient fault feature information of the equipment
and has great potential for application in engineering.

Keywords: incipient fault detection; feature extraction; complete Teager operator; variational mode
decomposition; intrinsic mode functions; composite chaotic mapping; fruit fly optimization algorithm

1. Introduction

Large rotating machines with a low speed and heavy load, such as blast furnace rotary
distributors, conticaster steel ladle revolving tables, converter rotary support mechanisms,
and other metallurgical equipment used by large metallurgical enterprises, are a special
type of mechanical equipment in rotary machinery. Their distinctive features are their
complex transmission structure, large load-carrying capacity, and low operating speed.
Once a fault occurs, it requires a long maintenance period and may cause personal safety
problems and huge economic losses. Thus, an early fault detection method is essential
to avoid unexpected accidents. However, the early fault signals of such devices have
low energy and a long duration and are mixed with strong background noise. Sparsity
and weakness are the significant characteristics of the corresponding fault representation.
Therefore, effective early feature information extraction is nontrivial due to compound
interference.

The collected signal of rotating equipment has distinct non-linear and non-stationary
features [1]. Currently, modern signal analysis technologies are mainly used for time-
domain and frequency-domain processing of mechanical fault vibrational signals and
to extract the fault signal features hidden in complex signals [2]. The commonly used
deterministic methods are usually related to signal time-frequency analysis. STFT is
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an efficient time-frequency analysis method, but its resolution of time and frequency is
fixed [3]. The wavelet transform (WT) is suitable for frequency localization analysis but
is limited by choosing the appropriate wavelet basis function [4]. The S transform has
excellent adaptive time-frequency analysis capability, but it is affected by the degree of
identification [5,6]. The Wigner–Ville distribution method represents the instantaneous
time-frequency relationship of the signal, but it is constrained by the resolution in both the
time and frequency domains [7,8]. The high-order statistics method effectively eliminates
the influence of symmetric distribution noise but tends to cause interference with the higher-
order spectrum [9]. Empirical mode decomposition (EMD) suffers from fundamental
problems such as mode mixing, fitting overshoot, and end effect, which limit its application
in engineering to a great extent [10–13]. Local mean decomposition (LMD) trends produce
signal mutations during demodulation [14,15]. Intrinsic time-scale decomposition (ITD)
has shortcomings such as waveform distortion and false components [16,17]. Scholars
have made many improvements to the above methods; however, limited by the theoretical
framework, these improvements make it difficult to eliminate their own problems.

Fortunately, an effective non-recursive method, termed VMD, was proposed in 2014 [18].
In contrast to recursive mode decomposition methods, VMD can decompose a signal into
intrinsic mode functions with an estimated center frequency and limited bandwidth. Thus,
the problem of solving mode bandwidth is transformed into a constrained optimization
problem, and each mode is solved. Moreover, it effectively overcomes the defects of
EMD, LMD, and ITD, and it has been widely studied and applied in electromechanical
equipment fault diagnosis [19–22]. However, the critical parameters of VMD, such as the
total mode number K and mode frequency bandwidth control parameter (quadratic penalty
term α), must be set in advance, which is highly empirical and blind. Therefore, VMD
is not a model-adaptive method in the actual application process. Several recent studies
have focused on VMD parameter setting. Based on personal experience and convenience,
Zhang et al. solved the difficult problem of milling chatter detection by combining VMD
with energy entropy [23]. In [24], a kind of FFT method was introduced to determine
the optimal parameters of VMD, but FFT has essential defects in processing nonlinear
and non-stationary information [25]. Long et al. [26] used a PSO algorithm to realize the
optimization of adaptive values K and α. Wang et al. [27] proposed a PSO-based VMD
approach for the self-selection of the intrinsic parameters and set the minimum mean
envelope entropy as the optimality function. The method improves the function of the
original VMD and makes it self-adaptive. To avoid the PSO algorithm falling into the
local optimal solution, some scholars have proposed corresponding optimized algorithms,
referred to as quantum particle swarm optimization (QPSO) [28]. As the classical improved
algorithm of standard PSO, QPSO can enhance the global searching ability significantly.
However, the tendency toward precocity still occurs.

With the vigorous development of intelligent optimization technology, Pan et al. [29]
introduced an original bionic intelligent optimization approach inspired by fruit fly foraging
behavior in 2012, called the fruit fly optimization algorithm (FOA). Recently, it has been
extensively studied in many areas of engineering optimization [30]. Compared with the
PSO algorithm, the FOA algorithm is easy to program and implement with few control
parameters and is convenient for embedding specific search links for the problem [31].
However, FOA is also a heuristic optimization algorithm, and there is still the challenge of
falling into the local optimal solution. Ref. [32] proposed a three-dimensional underwater
sensor network coverage enhancement optimization algorithm based on an improved
fruit fly optimization algorithm (UFOA). Zhang et al. [33] developed a method of adding
mutation strategies to a chaotic FOA algorithm, which improves the premature problem to
some extent. However, the proposed mutation strategy does not have a strict mathematical
definition or detailed comparative analysis.

The weak nature of the vibration impulse represents an early defect of the device,
making direct analysis in both the time and frequency domains difficult [34]. The Teager
operator improves the shock energy in the vibrational signal and is characterized by
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excellent real-time performance, high resolution, and low computational complexity. Fault
feature identification requires that the input data be stable and can reliably represent
this type of signal. Consequently, screening of sensitive signals is particularly important.
The minimum permutation entropy criterion was explored to select the basis function
to compute the statistical properties of the signal [35]. The correlation coefficient and
variance contribution rate between the reconstructed signal and the original signal are used
to determine the optimal choice from the obtained stability criterion [36]. Based on the
aforementioned introduction, this work introduces an adaptive CTeager-VMD for early
fault feature extraction methods. The main highlights are summarized below: (1) The
original vibrational signal is enhanced using the complete Teager operator. (2) A three-
dimensional logistic–sine composite chaotic map (LSCCM) is constructed to promote the
global search capability and convergence rate of the FOA. (3) The improved FOA is used
to seek the optimal parameters K and α of the VMD, and it makes the VMD adaptive to
achieve the best processing power. (4) The enhanced vibrational signal is decomposed into
several IMFs using the optimized VMD. According to the mean kurtosis criterion, sensitive
IMFs with impact components are selected and used to reconstruct a fresh signal. Next, the
envelope spectrum of the fresh signal is calculated, and the characteristic information of the
incipient fault is obtained. Finally, the proposed method is evaluated using synthetic and
measured signals and compared with other excellent methods. The proposed CTeager-VMD
method is able to unambiguously identify the characteristic frequency of the micro-impact.
The evaluation and comparison results sufficiently verify the superiority and stability of
the proposed method.

The subsequent sections of this paper are organized as follows. Section 2 introduces
the proposed adaptive VMD method in detail. In Section 3, the performances are compared
by simulated experiments. In Section 4, the performance of the proposed method is verified
and evaluated. Finally, the conclusions are summarized in Section 5.

2. Proposed Methods
2.1. Complete Teager Operator

The linear harmonic oscillator with no decaying free oscillations can be defined as
follows:

m
..
y + p

.
y = 0. (1)

Its general solution can be described as y(t) = Acos(ω ∗ t + θ). The trend change of
the narrowband signal can be analyzed and tracked by simple mathematics. The discrete
expression of the energy track operator ψ is defined as:

ψc[y(n)] = [y(n)]2 − y(n− 1)y(n + 1) (2)

ψc[y(n)] = A2sin2ω can be obtained by substituting y(n) into Equation (2) and it can
localize the change in impact energy. The complete Teager energy operator (CTEO) is
defined as T:

T[y(n)] =
ψc[y(n)]

sin2(ω)
ω2

=
ψc[y(n)]
sinc2(ω)

= A2 ·ω2 (3)

Obviously, T is the square product of the instantaneous amplitude of the vibration
and its instantaneous frequency. Given that sinc2(ω) < 1(ω 6= 0), so T is larger than
the original Teager ψ. In contrast to the traditional definition of energy, it increases the
product of the frequency square. Because of the high vibration frequency of the transient
component, the modulation results of CTEO have the ability to effectively characterize
the transient impact component. It should be noted that the energy operator used in all
subsequent experiments is CTEO.
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y(t) = y1(t) + yn(t)
y1(t) = ∑j Aj p(t− jT − τj)

p(t) = e−Ctsin(2π fnt)

Aj = 1 + Aisin(2π frt)

 (4)

Equation (4) describes the simulation bearing fault-induced signal. Here, Ai denotes
the initial amplitude. Aj represents the signal modulation amplitude. τj represents a slight
time shift for each period. C is the damping coefficient of signal oscillation. fn denotes the
resonance frequency and fr is the rotation frequency. T stands for cycle period. By choosing
appropriate values of the parameters, it is possible to simulate the bearing fault signal at
low speed. In this test, the detail parameters are selected as C = 750, fr = 1 Hz, fn = 3000 Hz,
and A0 = 0.5. Moreover, the signal sampling rate fs is 12 kHz and the acquired data points
are L = 12,000. The time-domain waveform of simulated fault signals is shown in Figure 1.
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Figure 1. SNR enhancement experiment of Teager energy operator. (a) Pure shock signal, (b) Impulse
signal with white noise, (c) Original TEO signal, and (d) Complete TEO signal.

Figure 1a shows the simulation bearing a fault-induced signal. The repetition period is
20 Hz, maximum amplitude is 0.5 V, sampling frequency is 12 kHz, and the data points are
24,000. Figure 1b shows the impulse signal with white noise; its SNR = 10.1260 dB. Figure 1c
shows the signal enhanced by the TEO with SNR = −16.3939 dB. The experimental results
show that the TEO can enhance the impulse magnitude and effectively improve the SNR of
the impact component in the signal.

2.2. Theory of VMD

As a novel signal variational modulation method, the decomposition process of VMD
is essentially an iterative solution process of variational problems. From the process, it can
be divided into the construction and solution of the variational model.

2.2.1. Model Framework

In the VMD process, the input signal is estimated to consist of components with differ-
ent central frequencies and limited bandwidth [18]. Simply, The sum of the components
obtained by the constraint is equal to the original signal.
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The unconstrained variational optimization procedure is obtained by introducing
Lagrange multipliers λ and penalty terms α:

L({uk}, {ωk},λ ) := α∑
k
‖∂t[F(t)]‖2

2

+

∥∥∥∥ f (t)−∑
k

uk(t)
∥∥∥∥ 2

2
+

〈
λ(t), f (t)−∑

k
uk(t)

〉 (5)

where {uk} = {u1, u2,×××, uK} and {ωk} = {ω1, ω2,×××, ωK} represent the mode
components and center frequencies, respectively. Hence, the saddle point of Equation (5) is
obtained by updating

{
un+1

k

}
,
{

ωn+1
k

}
, and λn+1 with the alternative direction method of

multipliers (ADMM). Then, the process obtains K-independent representation items {uk}.

2.2.2. Performance Analysis of VMD

From the above description, it can be seen that the sub-mode number K and the
quadratic term α are closely related to the effectiveness of VMD. Presetting too small K
will lead to signal under-decomposition and result in mode aliasing. However, excessive K
value can easily lead to modal copying. The parameter α determines the bandwidth of the
modes. If this parameter is set too low, the limited bandwidth of each mode is too large,
which leads to mode aliasing and introduces noise. Conversely, excessive parameter α will
result in the absence of some valid information.

To illustrate the effect of inside parameters on VMD performance, the signal in
Figure 1b is decomposed using different [K, α] combinations as shown in Figure 2. There-
fore, the experiments show that the [K, α] has a great influence on the performance of VMD.
The identification characteristic of the VMD is critically affected by the combination [K, α].

2.3. Improved Chaotic FOA

The FOA is a novel swarm intelligence optimization method derived from the prin-
ciples of Drosophila foraging behavioral ecology [29]. FOA emulates Drosophila with
its keen olfactory and visual foraging processes to achieve population-optimal search in
the solution space. For improved FOA, we propose a hybrid framework considering two
different operators and LSCCM.
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2.3.1. A 3D Extension of FOA

When flies are far from a food source, they rely on olfaction to locate targets. Within
sight, flies use vision to approach food. Inspired by the original FOA operating principle,
this paper introduces an implemented model in which two different operators and a chaotic
algorithm are combined.

Smell operator: When looking for food, the fruit fly constantly adjusts its flight position
through the sense of smell. When it is close to the food source, it relies less on its sense of
smell.

Vision operator: As fruit flies approach a food source, they rely primarily on vision
to identify nearby flies and food sources. If the flies can identify a food source through
their own vision, they head directly toward it. Otherwise, they follow other flies that have
already found a food source.

First, the initial location of the fly is randomly determined. In multidimensional flying
space, the location of the individual is updated in every iteration. The initial position is
defined as follows: 

Xaxis = Value× rand(·)
Yaxis = Value× rand(·)
Zaxis = Value× rand(·)

(6)

where Zaxis is the extension of the original FOA from two to three dimensions, as shown
in Figure 3. Value ∈ [−bound, bound] represents the position boundary. Then, the current
positions of all individuals in the population are updated by Equation (7).

Xi = Xaxise−R×Ic + aX̃i − b
Yi = Yaxise−R×Ic + aỸi − b
Zi = Zaxise−R×Ic + aZ̃i − b

(7)

where Xi, Yi, and Zi indicate the three-dimensional positions corresponding to the i−th
fruit fly (i is an integer between 1 and N). R ∈ [0, 1] is smell operator. Ic denotes the current
iteration, and the parameters a and b are variables in real.
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2.3.2. Analysis of 3D Logistic-Sine Composite Chaotic Map

Chaotic maps are mathematical relations that give rise to certain chaotic evolution
over time [37]. Chaos theory is applicable to dynamic systems sensitive to initial conditions.
The evolution of the chaotic function constitutes a sequence of disordered numbers. The
chaotic features of the chaotic map are used to initialize the population of fruit flies,
ensuring path diversity among population individuals. Currently, a variety of chaotic
map functions are in use. Among them, logistic and sinusoidal maps are commonly used,
which are characterized by simple models and preeminent chaos [38]. According to the
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search mechanism of the FOA, a 3D composite map is constructed by fusing the logistic
and sinusoidal maps, and it has much better chaotic characteristics. The 3D-LSCCM is
defined as follows:

X̃i+1 = sin((4θ × X̃i(1− X̃i) + (1− θ)sin(π × Ỹi))π)

Ỹi+1 = sin((4θ × Ỹi(1− Ỹi) + (1− θ)sin(π × X̃i+1))π)

Z̃i+1 = sin((4θ × Z̃i(1− Z̃i) + (1− θ)sin(π × Ỹi+1))π)

(8)

Equation (8) represents the three-dimensional extension of LSCCM, where k ∈ [0, 1] is
the chaos regulating parameter. xn, yn, and zn denote variables for composite mapping and
they all take values between 0 and 1. Three-dimensional LSCCM expands the search space
of the original FOA from two to three dimensions and optimizes the addressing power
of the FOA for high-dimensional spaces. Figure 4a–c shows the Lyapunov exponent and
chaotic orbit of three 3D composite maps.

According to iteration, the orientations of all individuals in the population are contin-
uously checked to obtain the nearest position of the population. When the iterations reach
the set upper limit, the smell operator stops working and the visual factor starts to play a
decisive role.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 28 
 

2.3.2. Analysis of 3D Logistic-Sine Composite Chaotic Map 
Chaotic maps are mathematical relations that give rise to certain chaotic evolution 

over time [37]. Chaos theory is applicable to dynamic systems sensitive to initial condi-
tions. The evolution of the chaotic function constitutes a sequence of disordered num-
bers. The chaotic features of the chaotic map are used to initialize the population of fruit 
flies, ensuring path diversity among population individuals. Currently, a variety of cha-
otic map functions are in use. Among them, logistic and sinusoidal maps are commonly 
used, which are characterized by simple models and preeminent chaos [38]. According to 
the search mechanism of the FOA, a 3D composite map is constructed by fusing the lo-
gistic and sinusoidal maps, and it has much better chaotic characteristics. The 3D-LSCCM 
is defined as follows: 

1

1 1

1 1

sin((4 (1- ) (1- ) sin( )) )
sin((4 (1- ) (1- )sin( )) )
sin((4 (1- ) (1- )sin( )) )

i i i i

i i i i

i i i i

X X X Y

Y Y Y X

Z Z Z Y

θ θ π π
θ θ π π
θ θ π π

+

+ +

+ +

 = × + ×
 = × + ×
 = × + ×

   
   

   
 (8)

Equation (8) represents the three-dimensional extension of LSCCM, where [0,1]k∈  

is the chaos regulating parameter. nx , ny , and nz  denote variables for composite 
mapping and they all take values between 0 and 1. Three-dimensional LSCCM expands 
the search space of the original FOA from two to three dimensions and optimizes the 
addressing power of the FOA for high-dimensional spaces. Figure 4a–c shows the Lya-
punov exponent and chaotic orbit of three 3D composite maps. 

 

(a) 

 

(b) 

 L
ya

pu
no

v 
ex

po
ne

nt
 L

ya
pu

no
v 

ex
po

ne
nt

Figure 4. Cont.



Appl. Sci. 2023, 13, 6058 9 of 27
Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 28 
 

 

(c) 

Figure 4. Chaotic orbits and LEs of 3D composite mapping. (a) 3D LCCM, (b) 3D SLCM, and (c) 3D 
LSCCM. 

According to iteration, the orientations of all individuals in the population are con-
tinuously checked to obtain the nearest position of the population. When the iterations 
reach the set upper limit, the smell operator stops working and the visual factor starts to 
play a decisive role. 

In each iteration of the visual operator decision, the number of individuals will re-
main half of the current number. The individuals far from the target will be discarded. 
centreS  represents the median of the retained individuals. It is believed to be the next target 

in the search for food sources. Thus, the positions of fruit flies are updated according to 
the following equations. 

1 1 1

1 1

1 1
re

1
1

( )

( )

Ic I Ic c

c
Ic Ic

c

N
i iI i

cent NI
ii

S F S
S

N F S

− − −

− −

− =

−
=

= 
   

(9)

c
c

1

2

I
I NN

−

=
 

(10)

1 1 1( )Ic Ic Ic
i i center iS S rand S S− − −= + −   (11)

Similarly, the vision operator stops working when the above cycle reaches the upper 
limit. Figure 3 illustrates the foraging process of fruit flies. The procedure of the im-
proved chaotic FOA (ICFOA) is illustrated in Appendix A (Algorithm A1). 

2.3.3. Performance of ICFOA 
To evaluate the global optimization performance and convergence rate of the im-

proved chaotic FOA, PSO, QPSO, FOA, CFOA, and ICFOA are applied to test different 
evaluation indicators. The benchmark functions are as follows: 

( )

( )

2 2 2
1 1 1

1

2
2

1

2 2 2
1

3 2 2 2
1 1

( ) 100 ( ) (1 )

( ) 10 cos(2 pi ) 10

sin 0.5
( ) 0.5+

[1.0 0.001 ( )]

D

i i i
i
D

i i
i

D
i i

i i i

f x y y y

f x y y

y y
f x

y y

+ +
=

=

+

= +


 = ∗ − + −



= − ∗ ∗ ∗ +

  + −  =  + ∗ + 







  (12)

 L
ya

pu
no

v 
ex

po
ne

nt
Figure 4. Chaotic orbits and LEs of 3D composite mapping. (a) 3D LCCM, (b) 3D SLCM, and (c) 3D
LSCCM.

In each iteration of the visual operator decision, the number of individuals will remain
half of the current number. The individuals far from the target will be discarded. Scentre
represents the median of the retained individuals. It is believed to be the next target in
the search for food sources. Thus, the positions of fruit flies are updated according to the
following equations.

SIc−1
centre =

∑N Ic−1

i=1 S
Ic−1

i F(S
Ic−1

i )

N Ic−1∑N Ic−1

i=1 F(SIc−1

i )
. (9)

N Ic =
N Ic−1

2
(10)

Si = SIc−1
i + rand(SIc−1

center − SIc−1
i ). (11)

Similarly, the vision operator stops working when the above cycle reaches the upper
limit. Figure 3 illustrates the foraging process of fruit flies. The procedure of the improved
chaotic FOA (ICFOA) is illustrated in Appendix A (Algorithm A1).

2.3.3. Performance of ICFOA

To evaluate the global optimization performance and convergence rate of the improved
chaotic FOA, PSO, QPSO, FOA, CFOA, and ICFOA are applied to test different evaluation
indicators. The benchmark functions are as follows:

f1(x) =
D
∑

i=1

(
100 ∗ (y2

i − yi+1)
2
+ (1− y2

i+1)
)

f2(x) =
D
∑

i=1

(
y2

i − 10 ∗ cos(2 ∗ pi ∗ yi) + 10
)

f3(x) =
D
∑

i=1

(
0.5 +

sin2
√

y2
i +y2

i+1−0.5

[1.0+0.001∗(y2
i +y2

i+1)]
2

) (12)

In all experiments, common parameters such as maximum iteration number, popula-
tion number were chosen the same for all algorithms. The dimension of the test function
is 10, the upper limit of iteration times of all functions and population quantity are set as
200 and 20, respectively. The remaining specifications are set by related literatures. The
experimental results are shown in Figure 5.
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For evaluation functions in Equation (12), the proposed ICFOA has the advantage of
few iterations and a rapid convergence rate. In addition, in order to verify the reliability
and stability of the compared algorithms, all algorithms were run 100 times with different
random time periods to find the global optimum solution. The experimental effects are
presented in Table 1. Significantly, the proposed ICFOA falls into the local optimum value
less than other methods in the process of searching for a global optimal solution 100 times
repeatedly. By analyzing the inherent characteristics of the FOA, it can be inferred that the
random coordinate induced by the FOA cannot traverse the entire space, and the method
may fall into the local optimum. It is worth noting that chaotic maps have the advantages
of original value sensitivity and space ergodicity, which can ameliorate such drawbacks to
some extent. Therefore, the proposed ICFOA method can effectively escape from the local
optimum and has good reliability and stability.

2.4. Optimal VMD Algorithm Based on ICFOA

The VMD is not a parameter-adaptive signal processing method, so it is necessary
to pre-set relevant parameters in practical application. The operation effect of VMD is
significantly affected by the choice of presented group [K, α]. In this work, the combined
value [K, α] of the VMD was optimized by the ICFOA, and an adaptive VMD algorithm
was constructed.
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Table 1. Statistical results of global optimal solutions on three different benchmark functions.

Function Algorithm Local Optimal
Solution

Global Optimal
Solution Iteration Number Repeat Times

f1(x)

PSO 26 74

200 100

FOA 19 81
CPSO 13 88
CFOA 12 88
ICFOA 2 98

f2(x)

PSO 34 66
FOA 32 68

CPSO 26 74
CFOA 22 78
ICFOA 7 93

f3(x)

PSO 28 72
FOA 24 76

CPSO 17 83
CFOA 14 86
ICFOA 4 96

In order to acquire the optimum VMD parameters, in this study, we applied the ICFOA
to automatically select the VMD optimization parameters. Equation (13) is used as the
objective optimization function of the ICFOA.

Fitness(ICFOA) =

K−1
∑

i=1
MI[u(i), u(i + 1)]

MI[Soriginal , Sreconstructed]
(13)

where MI[u(i), u(i + 1)] represents the mutual information (MI) between neighboring
components. A smaller cumulative sum indicates a weaker correlation between IMF com-
ponents, that is, better orthogonality. MI[Soriginal , Sreconstructed] is the mutual information
between the raw signal and the reconstructed one [39]. A larger mutual information value
indicates a smaller reconstructed error. In addition, MI can measure the nonlinear rela-
tionship between two signals. This approach is not restricted to simple linear relations
but also can be used to evaluate the non-linear relationship between variables. Therefore,
according to the above analysis, as shown in Equation (13), when ∑K−1

i=1 MI[u(i), u(i + 1)]
is the minimum and MI[Soriginal , Sreconstructed] is the maximum, their ratio is the minimum,
that is, the fitness value is the minimum. The analysis indicates that the fault signal is
correctly divided into the required components. The information coupling between IMF
components is minimal, and the signal reconstruction error is the smallest. Thus, the
corresponding optimal parameters [K, α] obtained can allow the algorithm to exert the
optimal decomposition performance.

2.5. Fault Feature Extraction

The critical component bearings of large, low-speed, and heavily loaded machinery
are vulnerable to damage. Therefore, when an early micro-fault occurs in a bearing (i.e.,
an inner ring defect and an outer ring defect), the energy in the collected vibrational
signal representing the shock component of the fault is severely inconspicuous. Effective
information is difficult to obtain using common time-frequency analysis methods from
raw vibrational signals. Therefore, CTEO was used to enhance the raw vibrational signal
in this study. Then, the optimal VMD was used to decompose it to obtain several IMF
components, and the kurtosis value of each IMF component was calculated. The mean
kurtosis criterion was then used to screen the IMF components, and the selected IMF
components were reconstructed into the current signal [40]. Finally, if the bearing of the
mechanical equipment fails (such as the inner ring or the outer ring), the vibration signal
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collected will contain a specific frequency impact component. The proposed method is then
used to decompose and reconstruct the vibration signal. Then, the envelope spectrum of
the reconstructed signal is analyzed, and the characteristic frequency of the corresponding
fault is extracted from the envelope spectrum. The fault characteristics and extraction flow
is demonstrated in Figure 6. Moreover, the specific steps are listed below:

Step 1: The impact component of the fault signal is enhanced by CTEO.
Step 2: The relevant parameters of the 3D-LSCCM are initialized and an appropriate
indicator function is designed.
Step 3: The preset values of the fruit fly population are initialized. The binding group [K, α]
of the VMD corresponds to the location of the individual fly.
Step 4: Decompose the signal by VMD under different individual positions of flies, and
calculate the fitness of each location.
Step 5: The fitness values of the individuals in the population are compared, and the
optimal evaluation values of the individuals and the population are updated.
Step 6: Update the position of the individual flies by using Equations (7) and (8).
Step 7: Repeat the iterative procedure of steps 4–6. When the iterative number reaches the
maximum set value, the optimal parameters determined by the evaluation function are
recorded.
Step 8: Use the obtained parameter combination [K, α] to construct the optimal VMD.
Step 9: Calculate the kurtosis of every independent mode and find the mean of all their
kurtosis values. Based on the mean value, IMF components with kurtosis larger than the
mean are chosen and reconstructed to obtain fresh representation.
Step 10: The envelope spectrum of the new representation is calculated and analyzed.
Afterward, it is matched to the fault feature to determine the corresponding defect type.
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3. Simulated Signal Evaluation

Bearings, as a key part of heavy-load mechanical equipment, are prone to pitting,
corrosion, or cracking in long-term operation. When other parts make contact with or
impact the defect location, a periodic shock signal is generated. The signals of rotating
machinery measured by acceleration sensors are analyzed. When it fails, the fault signal is
a sinusoidal signal with exponential decay. The sparsity and weakness are the significant
characteristics of early faults in vibration signals. It is particularly susceptible to interference
from strong noise or other ineffective signals, and no useful characteristic information
reflecting the fault can be identified for fault diagnosis. In order to evaluate the reliability
and superiority of our proposed method, a simulation case was used for analysis and
verification as follows:

y(t) = ys(t) + yn(t) (14)

where ys(t) A is a sinusoidal decaying signal with a pulse period of 8 Hz, which is used to
simulate the pulse response signal caused by the shock. yn(t) denotes a white Gaussian
noise. The SNR of y(t) is XSNR = −20 dB. The simulated fault impulse ys(t) of the bearing
is defined by Equation (4).

The parameters for fault simulation signal are specified as fr = 1 Hz, fn = 3000 Hz,
C = 750 and A0 = 0.2. Moreover, the fault characteristic frequency finner = 1/T = 8 Hz,
sampling frequency fs = 12 kHz and data length L = 12,000.

The original vibration signal and noise-added signal are shown in Figure 7a,b, respec-
tively. When Gaussian white noise was applied to the pure pulses shown in Figure 7a, the
simulated impulse signal was completely submerged by the interferences. The construct
signal shown in Figure 7b was simulated to evaluate the actual early fault signal of the
bearing properly. Then, the mixed signal was evaluated by CEEMD, LMD, VMD, and ITD,
separately. The operation parameters of these algorithms were set according to the corre-
sponding literature. Based on these methods, the fault characteristic frequency (theoretical
value 8 Hz, actual value f1 = 8.057 Hz) and its harmonic in the frequency domain is shown
in Figure 8.
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Figure 7. Simulated signal of bearing failure. (a) Raw impulse. (b) The impulse with noise.

As shown in Figure 8a–d, the fault representation f1 and its doubling frequency
2 f1 corresponding to CEMD, LMD, ITD, and VMD are very blurry and low amplitude.
Some larger interference frequency components are distributed in the dual frequency band.
Compared with other methods, VMD has some advantages in characteristic amplitude,
but it is also very weak. Moreover, some signal spectra are completely submerged. The
experiments show that when the SNR is low, the above methods lack the ability to extract
fault characterization directly.

According to Equation (3), the mixed simulation signal is enhanced by CTEO (shown
in Figure 9). The envelope spectrum corresponding to the enhanced signal is analyzed
using the same signal processing method as in Figure 8. From the analysis results of the
envelope spectrum in Figure 10, it can be seen that the amplitude of the envelope spectrum
of fault signal enhanced by the energy operator is obviously improved. In particular, when
the VMD method is used, the magnitudes of fundamental and double frequencies of fault
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representation are improved noticeably, and the effect is superior to other signal processing
methods. However, interference signals in the spectrum are very clear.
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Figure 8. The envelope spectrum of bearing fault simulation signals. (a) CEEMD. (b) LMD. (c) ITD.
(d) VMD.
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Figure 9. Teager energy signal of bearing fault simulation signal.

As shown by the analysis of the principle of VMD, its decomposition performance
is significantly affected by parameters K and α. However, there is some blindness and
contingency in selecting parameters by manual experience, and the performance of VMD
is not guaranteed to be optimal. Hence, in order to obtain an optimal VMD and eliminate
the invalid signal components in fault signals effectively, the proposed ICFOA is used to
optimize the parameters. The process for setting parameters is as follows:
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Step 1: CTEO is used to improve the impact component in the raw signal.
Step 2: The relevant parameters of the 3D composite chaotic map are initialized with
θ = 0.99, B = [2, 4000]. The evaluation function of the ICFOA is determined during the
optimization procedure.
Step 3: The parameters of the fruit fly population are initialized with IC1max = 120, IC2max = 80,
Ns = 30, D = 10, and S = 3D-LSCCM.
Step 4: Some combinations [K, α] corresponding to population number are induced by 3D-
LSCCM as the reference locations of individual flies. Calculate the standard deviation STD
of the simulation signal, set the updating step length of the VMD algorithm to τ = 0.003
based on STD, and set the fault tolerance threshold of convergence to ε = 1 × 10−7. Then,
the 3D-LSCCM is used to update the locations of the individuals in a global search.

Then, the five optimization algorithms in Table 2 are applied to individually select
from the optimum group [K, α] for VMD. The effects of the optimization are shown in
Figure 11 and Table 2. The proposed ICFOA outperforms other algorithms in terms of
iterations and convergence rate. Then, ICFOA is used to search for the optimum group of
VMD parameters. Finally, the VMD is reset and used to demodulate the fault signal of the
simulated bearing failure. The fundamental frequency (8 Hz) of the fault and its frequency
multiplications (2×–7×) can be distinctly detected, as shown in Figure 11b. On comparing
the envelope spectrum with Figure 10d, it shows much better clarity and distinguishability
on spectrum lines. The compared results indicate that the proposed method is effective in
extracting sensitive features.
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Table 2. Results obtained by different optimization algorithms.

Parameter
Method

PSO FOA CPSO CFOA ICFOA

Fitness 3.318 2.055 1.656 0.7217 0.2852
[K, α] [4, 1714] [4, 2045] [5, 2865] [5, 3065] [6, 3207]

iterations 85 38 37 44 20
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4. Fault Experiment Analysis

In this section, the feasibility of the introduced method on the actual measurement
rig is further verified. As illustrated in Figure 12a, the bench simulates the radial load by
applying different radial load forces to the rolling bearing through a hydraulic lever. In
addition, the rolling bearing operating speed is adjusted by controlling the motor speed.
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The rolling bearings are shown in Figure 12b,c. Among them, the diameter of the
rolling bearing is 39.5 mm, the diameter of the rolling element is 7.5 mm, the number of
rolling elements is 12, and the angle of the internal contact surface is 0 degrees. In order
to effectively evaluate the operating conditions of low speed and heavy load, the radial
load force applied here was set at 5000 N. The rotation speed of the inner ring is 60 r/min,
and the vibration signal sampling rate is 10 kHz. Depending on the parameter calculation
reference, the theoretical values of outer rings and inner rings can be calculated, and the
fault signatures are listed in Table 3. The measured vibration signals of the bearing inner
ring fault (BIRF) and bearing outer ring fault (BORF) are shown in Figure 13.

Table 3. Rolling bearing fault characteristic frequencies.

Speed (r/min) BIRF
(f /Hz)

BORF
(f /Hz)

60 7.14 4.86
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To evaluate the availability of our method, the signals of identical bearings with
inner and outer ring faults were analyzed using standard CEEMD, LMD, ITD, and VMD
methods. Figures 14 and 15 show the spectra of BIRF and BORF processed by these methods,
respectively. As shown in Figures 14 and 15, the spectral lines of fault characteristics (outer
ring fouter and inner ring finner are 4.88 Hz and 7.17 Hz, respectively) obtained by CEEMD,
LMD, ITD, and VMD are fully overwhelmed by additional irrelevant interference spectral
lines.
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Figure 14. Envelope spectrum of BIRF signal. (a) CEEMD. (b) LMD. (c) ITD. (d) VMD.

Due to the sparseness and weakness of bearings and early fault signals under low-
speed and heavy-load conditions, it is hard to use the above signal processing methods to
find useful information for diagnosis. In this study, CTEO was used to preprocess the early
fault signal of the bearing to increase the weak impulse component in the raw signal. From
Figure 16a,b, it can be observed that the CTEO effectively enhances the impulse components
in the fault signal. Then, standard CEEMD, LMD, ITD, and VMD were applied to analyze
the enhanced signal, and the envelope spectra are presented in Figures 17 and 18. Among
them, Figure 17a–d show the envelope spectra of the inner ring fault signal processed by
CEEMD, LMD, ITD, and VMD, respectively. As seen from the spectrum magnitude, the
amplitudes of inner ring fault characteristic frequency in Figure 17 are obviously larger
than those in Figure 14. Figure 18a–d demonstrate the envelope spectra of the outer ring
fault signal with CEEMD, LMD, ITD, and VMD, respectively. The amplitude of each outer
ring fault characteristic frequency in Figure 18 is significantly larger than that in Figure 15,
too. The experimental results show that using CTEO to preprocess raw faulty signals can
effectively enhance the impact component. Furthermore, comparing the envelope spectra
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obtained with the classical CEEMD, LMD, and ITD methods, it can be seen that the spectral
lines representing the fault feature in the envelope spectra obtained with the VMD method
are significantly larger than those obtained with the remaining three methods. Considering
the above evaluation and comparison, the VMD method outperforms mechanical vibration
signal processing compared to other commonly used methods. Moreover, these comparison
results prove that it is a feasible and effective strategy to enhance and preprocess the original
fault signal using the energy operator.
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As shown in Figure 17d, by combining CTEO and VMD methods, the fault feature of
the BIRF can be effectively identified. However, it is difficult to distinguish the fundamental
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frequency from the bi-frequency of this feature, and there is still a large amount of the
interference component mixed in the spectrum. Figure 18d shows a similar spectrum
distribution to Figure 17d. The reasons for this mainly involve two aspects: (1) The early
fault features are severely sparse and faint, nearly overwhelmed by background noise
and interference components; (2) The VMD parameters are not optimal. Therefore, in this
study, the ICFOA was used to obtain the most suitable combined values [K, α] of VMD,
following the same procedure as described in Section 3. In addition, the parameters related
to the chaotic mapping and FOA remained unchanged, except that the VMD update step
needed to be manually set based on the standard deviation of the raw fault. Firstly, the
optimal combination values of VMD searched by the ICFOA were [Ki, αi] = [13, 3175]
and [Ko, αo] = [11, 2406], and the obtained parameters were saved for each. Then, the
optimal approach was used to analyze the BIRF and BORF signals excited by the bearing in
Figure 16a and b, respectively. The BIRF signal was decomposed into 13 IMFs (Figure 19a),
and the corresponding kurtosis values of each IMF component were 20.1, 22.6, 20.8, 22.7,
22.2, 21.1, 23.1, 16.9, 18.7, 21.6, 24.2, 22.3, and 31.4. The mean kurtosis value is 22.1. The
BORF signal was decomposed into 11 IMF components (as shown in Figure 20a), and the
corresponding kurtosis values for each IMF component were 14.6, 18.7, 16.4, 20.8, 17.5,
16.2, 18.2, 16.5, 15.2, 17.2, and 24.5, with a mean kurtosis of 17.8. Then, the kurtosis of each
IMF component was calculated, the corresponding IMF component with a kurtosis larger
than the mean value was selected, and a fresh signal was reconstructed. The reconstructed
representations are shown in Figures 19b and 20b. Finally, the envelope spectra of the two
reconstructed signals were solved. The final effects are illustrated in Figures 19c and 20c.
As shown in Figure 19c, the fault representation (7.17 Hz) and its second harmonics
(14.34 Hz) of the BIRF reconstructed signal are effectively extracted, and the interference
components are obviously reduced. Similarly, from Figure 20c, the fundamental frequency
(4.88 Hz) and double frequency (9.76 Hz) of the reconstructed fault signal can be effectively
observed, and the interference spectrum is also significantly reduced. The experimental
evaluations demonstrate that the proposed approach can efficiently identify fault features
under excessive load and low-speed operation. Additionally, it offers a fruitful means for
incipient fault diagnosis of heavy-duty and low-speed rotation equipment.
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Figure 17. The envelope spectrum of BIRF enhanced by CTEO. (a) CEEMD. (b) LMD. (c) ITD.
(d) VMD.
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Figure 18. The envelope spectrum of BORF enhanced by CTEO. (a) CEEMD. (b) LMD. (c) ITD.
(d) VMD.
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5. Conclusions

In this work, we present a fusion algorithm based on CTEO and parameter-optimized
VMD to solve the difficulty of early fault feature extraction for low-speed and heavy-
load devices. The application of both simulated and real data shows that the proposed
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framework separates the feature components more effectively and preserves effective
feature representations more accurately than other signal approaches.

(1) CTEO is an exact value of the conventional TEO, which can further enhance the
impulse component in the signal and improve the signal-to-noise ratio of the faulty
signal. It should be noted that the early failure signals of large, low-speed, and heavy
machinery are very sparse and weak. It is easy to cause VMD to misjudge fault signals
as “noise” and fail to decompose them into corresponding IMF components accurately.
The use of CTEO to preprocess the raw vibrational signal effectively enhances the
signal energy of the impulse component in the signal, which can help VMD properly
decompose the impulse signal characterized by the fault into the corresponding IMF
components.

(2) Based on the nature of the logistic map and the sine map, we propose a 3D logistic-sine
complex chaotic mapping. It extends the two-dimensional search space of FOA to a
three-dimensional search space, which can effectively restrain FOA algorithms from
getting trapped in local optimal solutions and improve the global search power and
convergence rate.

(3) The FOA algorithm based on 3D-LSCCM was used to search for the optimal combi-
nation value of the key parameter [K, α] of VMD to ensure that the VMD algorithm
could adaptively obtain the best decomposition performance.

(4) The fault signal is decomposed using the optimal VMD method to obtain several IMF
components, which are selected to include shocks based on the mean kurtosis criterion
for the IMF components. The selected IMF components are then reconstructed to
extract fault characteristic frequencies more efficiently. Finally, the experimental
results show that the combined CTEO and optimal VMD approaches have excellent
performance and advantages in extracting early fault characteristics of mechanical
devices.

(5) In the actual operation of large, low-speed, and heavy-duty mechanical devices, in
addition to the low-speed and large load of the mechanical devices themselves, there
may be some intermittent operating characteristics. For this condition, the validity of
the proposed method needs to be further verified.
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Appendix A

Algorithm A1: Improved Chaotic FOA (ICFOA)

Input:
NS: number of individuals in fly swarm
D: dimension of the search space
S: smell factor
θ: control parameters of logistic-sine mapping
B: borders of the search space
Ic1max: maximum number of generations that the map and compass operation is carried out.
Ic2max: maximum number of generations that the landmark operation is carried out.

Initialize:
Ic1max = T1, Ic2max = T2, NS = p, D = d, θ = 0.99, S = random, B = [b1, b2]
for Ns = 1 to p by 1

do
for d = 1 to D by 1

do
XNs

axis = B× random(1, d)

YNs
axis = B× random(1, d)

ZNs
axis = B× random(1, d)

DistNs =
√
(XNs

axis)
2
+ (YNs

axis)
2
+ (ZNs

axis)
2

SNs = 1/DistNs
end for

end for
Sp = SNs, Ic = 1
f (Sp) = fitness (Sp)
Sgbest: = arg min [f (Sp)]

Smell operations:
for Ic = 1 to T1 do

for Ns = 1 to p do
while SNp > B do

XNs = Xaxise−R×Ic + aX̃Ns − b
YNs = Yaxise−R×Ic + aỸNs − b
ZNs = Zaxise−R×Ic + aZ̃Ns − b
X̃Ns+1 = sin((4θ × X̃Ns(1− X̃Ns) + sin(π × ỸNs)(1− θ))π)

ỸNs+1 = sin((4θ × ỸNs(1− ỸNs) + sin(π × X̃Ns+1)(1− θ))π)

Z̃Ns+1 = sin((4θ × Z̃Ns(1− Z̃Ns) + sin(π × ỸNs+1)(1− θ))π)

end while
end for
evaluate SNs, update Xaxis, Yaxis, Zaxis and Sgbest

end for
Vision operations:

for Ic = 1 to T2 do
while Sp > B do

N Ic = N Ic−1

2

SNs = SIc−1
Ns + random(SIc−1

center − SIc−1
Ns )

end while
evaluate SNs, update Xaxis, Yaxis, Zaxis and Sgbest

end for
Output: Sgbest.
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