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Abstract: The Integrity Measurement Architecture subsystem on the Linux platform is a critical
security component in the kernel to ensure the integrity of the running system. However, the default
Integrity Measurement Architecture policy mechanisms based on options such as file owner and
FSMAGIC cannot achieve a file-level configuration. Although Integrity Measurement Architecture
supports the Linux Security Module policy rules to be close to the goal of fine-grained configuration, it
is not easy to be managed because the Linux Security Module was not originally designed for integrity
measurement. Moreover, the Linux Security Module-based policy does not apply in some use cases
considering the type of Mandatory Access Control tools chosen by users. This paper presents a new
policy configuration option, named XFilter, that achieves a fine-grained policy configuration method.
The XFilter includes two policy matching mechanisms, XLabel and XList, which share the same policy
token created for XFilter exclusively. XLabel marks the files for measurement using a label in the file’s
extended attribute (xattr). By contrast, XList stores the measurement information in a list of file paths.
To simplify the deployment, an automatic configuration process is implemented for integrating into
the package management system. The evaluation results suggest that both mechanisms satisfy the
requirements of file-level IMA policy control and create a performance burden for system operation
in the acceptable range. They also reveal a positive correlation between the increment of the system
latency and the growth of the length of file paths list for the XList mechanism.

Keywords: X-filter; integrity measurement architecture; linux security module; mandatory access
control; XLabel; XList

1. Introduction

Critical to protecting a system from malicious software and remote exploitation is
ensuring the integrity of the operating system. To meet threats to system integrity, we
consider the vulnerability of system security components where hardware with crypto-
graphic processing capabilities are deployed increasingly. To meet this trend, the Trusted
Computing Group (TCG) provides the Trusted Platform Module (TPM) as an open industry
standard for hardware-based trust mechanism [1].

The technology delivered by the TPM specification is an enabler of remote attestation
and is integrated into many network authorisation solutions. Remote attestation is a
technique for verifying the status of a remote client through a trust mechanism over a
network [2,3]. On the Linux platform, the Integrity Measurement Architecture (IMA)
measurement module was developed in the kernel to work with the TPM devices, thereby
achieving the system integrity verification. As a subsystem in the Linux kernel, IMA
proves to both remote and local systems that the files in a running system are not altered
intentionally or accidentally [4]. As the focus of this study, the IMA policy mechanism
identifies specific files that should be assessed by the measurement functions.

By default, the IMA subsystem in the Linux kernel carries a built-in policy to determine
what files are to be measured. IMA covers a large range of file operations in the system,
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such as file execution, library mmap, and file opening by the root user for reading [4]. The
default policy settings rely on factors such as FSMAGIC and file owners, which are overly
coarse-grained and may not be suitable for every use case. Usually, according to the threat
models and application scenarios, only a few sensitive files need to be measured in many
remote attestation solutions. The strategy of measuring a large number of files creates a
nondeterminism problem [5], such that even though all file measurement operations are
acceptable, the system status may not always be maintained or consistent.

The IMA policy supports the policy system of some Linux Security Modules (LSM),
such as SELinux and Simple Mandatory Access Control Kernel (SMACK), as a mechanism
for refining measurement levels. However, this method is impractical because SELinux
and SMACK are Mandatory Access Control (MAC) tools used within the system and not
available in all use cases. Linux distributions such as SUSE Linux Enterprise are shipped
with AppArmor as the default MAC application, whose support on SELinux is at a fairly
early stage [6]. SMACK may also be absent from the support list. Additionally, due to their
lower impact on the file loading overhead, many system installations choose AppArmor
or TOMOYO instead of SELinux [7,8]. Additionally, SELinux implements MAC policies
by means of contexts composed of users, roles, and types [9]. It means SELinux cannot
apply a policy to individual files and is not sufficiently fine-grained. However, increasing
the level of granularity will increase complexity and make security maintenance more
difficult. SMACK supports a labelling mechanism for fine-grained control, but it requires
that a specific pseudo-filesystem be mounted for SMACK use only [10], thereby increasing
complexity and maintenance costs.

Therefore, the implementation of an LSM-independent fine-grained policy, especially
at the file level, can bring multiple benefits. Such an approach can help lower Central
Processing Unit (CPU) time spent on hash processing. Additionally, limiting the number
of binaries to be measured can reduce the size of the Measurement List (ML), which is
critical for constrained devices [11]. Moreover, this approach addresses the nondeterminism
problem, enabling the verification of the integrity of critical executables without the need
to obtain an ML. Thus, by avoiding the transmission and evaluation of each ML [12], the
computational cost of record processing is lowered. Furthermore, independence from
the other LSM subsystems improves flexibility and efficiency for system maintenance
because more relations between IMA and MAC tools in the security service deployment
are possible.

To achieve a fine-grained level of measurement control without relying on LSM objects,
this paper presents the implementation of a built-in filtering system called XFilter. The
system provides two mechanisms, XLabel and XList, to implement file-level measurement
control. XLabel marks the files covered by the IMA measurement as labels in its extended
attribute (xattr). XList records the file paths in a list loaded by the kernel during IMA
initialisation.

2. Prior Research

IMA is built on Trusted Computing Group (TCG) standards and TPM hardware [12,13].
Similar solutions based on TCG/TPM have been proposed, such as the Next Generation
Secure Computing Base (NGSCB) framework [14]. NGSCB provides the measurement
function by dividing a disk into trusted and untrusted partitions, each running independent
operating systems. However, due to a lack of flexibility and the incomplete coverage of
measurement, NGSCB is limited in its use. Another trust computing architecture that
implements integrity measurement in partition blocks on a hard disk is Terra [15]. However,
Terra requires a large amount of measurement data to be stored and the consequential
difficulty in processing the stored data. By implementing measurement functions at the
kernel level, IMA overcomes these issues with a simpler approach.

However, identifying IMA function security vulnerabilities reveals a potential attack
surface where a block device with malicious firmware can subvert the protection mecha-
nism [16]. By manipulating a disk cache at the firmware level, an attacker can deceive the
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IMA such that a measured file is incorrectly reported as not modified when it has been. The
exploitation surface is limited to the firmware and so the means of exploiting a vulnerability
may be limited to vendor channels or the supply chain.

To provide a high-integrity Android operating system for mobile phones, a small
set of SELinux policies and the PRIMA mechanism are combined [17,18]. Depending on
the IMA framework and the application of the class-level attestation, the measurement is
implemented in both low-level system files and the binaries on top of the Android’s Dalvik
Virtual Machine (VM). This design may satisfy the requirement of fine-grained attestation.
However, the absence of a root-of-trust device such as TPM may limit how the technique is
applied in production.

It has been claimed that a weakness is exposed in IMA if a large number of files need
to be checked, resulting in the ML consuming too much storage space [19]. However, the
assertion about storing ML in TPM does not recognise that it is only the aggregated value
of ML that is stored in TPM, which takes very little space. However, the issue may exist
for storage- and processing-constrained devices that may store ML, such as those on the
Internet of Things (IoT).

The IMA framework is often deployed as a stage in remote attestation. For example,
Trusted Platform Service (TPS) is a policy-driven architecture that is a part of the general
authorisation mechanism. TPS utilises IMA-based remote attestation to provide verification
for system-wide integrity by combining IMA, TPM, Trusted Boot, and TPS [20]. To meet
integrity requirements for VM environments such as Virtual Network Functions (VNF)
and the underlying hypervisor, an IMA-based remote attestation solution may prove that
the environment is trustworthy [21], but while a demonstration shows this may work, the
approach has yet to be deployed in common hypervisors such as Xen and KVM. Similarly, a
concern related to malware infiltration in a multi-tenanted cloud environment that puts the
whole infrastructure at risk may be addressed through the application of a Tenant-Attested
Trusted Cloud Service (Ta-TCS) [22]. Ta-TCS applies the IMA approach to address the
needs of the trust mechanism for service consumers and providers in a way that provides
minimal performance loss.

Targeting performance, the scalability of remote attestation that relies on the IMA
framework is influenced by time cost, recognised file coverage for executable code-diversity
and configuration files, and unrecognised files, because they cannot be addressed by
the file measurement database found on the remote party [23]. The influence of code
diversity can be managed effectively, but system processes such as bootstrapping provide a
significant time cost impact. Additionally, while bootstrapping, configuration files may not
be recognised.

In addition to the security concerns expressed in conventional hypervisor-based
virtualisation, container-based virtualisation techniques also provide reason for concern.
For example, the potential for data leakage from containers and between tenants needs to
be controlled. A possibility for controlling this is to apply the IMA technique to the field of
the container [24]. For example, applying a container IMA and container-PCR (cPCR) to
Docker adapts the mean of the ML partition to prevent data leakage from a container.

Extending the IMA approach to other architectures, network security consistently
provides areas of concern and the IMA approach offers opportunities to strengthen trust, for
example, as a way to collect proofs in the Network Endpoint Assessment (NEA) protocol
supported by strongSwan VPN and strengthen the overall trust mechanism of the host
machine [25]. The IMA technique is also involved in security strategies of embedded
systems deployed in the IoT networks. As an example, we can mention an architecture
that applies IMA as its critical subsystem to assure the security of device authentication
in the smart grid [26], where authentication of trusted programs is guaranteed via Public
Key Infrastructure (PKI). In manufacturing and power generation plants, the Supervisory
Control and Data Acquisition (SCADA) system includes constrained devices that may
see negative performance impacts from a verification mechanism. Application of IMA-
based remote attestation provides trust with less performance impact [11,27], but IMA
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measurement lists are large and storage in constrained prover devices can be an issue. The
potential solution is the incremental update approach in measurement maintenance.

Over time, any security tool will demonstrate weaknesses and the likely issues that
affect the feasibility of the IMA application are performance impact in the system where
it is deployed and nondeterminism. Any definition of nondeterminism is related to its
context. For instance, in the modern computer system, nondeterminism may refer to
the phenomenon that the running result of a program is affected by external physical
influences, such as energy fluctuations [28], or from the uncertainty of input generated by
external programs. It is this latter scenario where IMA measurement is related such that in
a complex operating system environment, the system files to be measured in one round
of operation may not be measured in another round. This can lead to inconsistency in the
aggregated value produced by TPM between each run of the system. Thus, it is infeasible
to check integrity by simply comparing aggregated values between the prover and remote
verifier. In addition, measurement list transmission and processing introduces computation
and network overhead and reaching storage limits [19]. Furthermore, depending on the
hash method used, the extra processing of hash functions may result in a decline in system
performance after IMA is enabled [12].

Performance and nondeterminism can be addressed through the application of batch
extend and core measurement, where in batch extend, hashes of multiple files are aggre-
gated into a single hash entry before they are pushed into PCR-10. The core measurement
method evaluates the integrity of critical system files in a task [5]. Both methods reduce
computational cost on cryptographic processing but the batch extend function is limited
to the system booting process, whereas core measurement is limited to the evaluation
of the contents of /etc, /bin, /usr/bin, /sbin, /usr/sbin, and /lib/modules and lacks
sufficient granularity. However, there ought to be a limit to the number of systems files
to be measured, and this can be achieved by enhancing existing policy functions through
adaptation of the rules set.

In the Unix universe, most application issues can be divided into two categories,
the mechanism and policy. Mechanism refers to the capabilities delivered by a program,
whereas policy is defined as the application of capabilities [29]. Policy is usually developed
as a separate part of a program. An efficient or fine-grained policy offers improved
operating system performance, for example the Control Flow Integrity (CFI) process in the
MINIX and FreeBSD kernels [30] and the Linux kernel [31]. However, the latter study found
that Linux kernel design has resulted in existing CFI policy functions that are excessively
coarse-grained.

3. Method

The study applied the Design Science Research Methodology (DSRM) [32] to produce
a practicable implementation as an artefact that may be a model, method, build, or instanti-
ation. The framework provided by DSRM allows for the inclusion of relevant methods to
define the problem, design a solution, and to construct an artefact. Thus, in this instance the
artefact is a method that extends existing IMA functions to achieve a built-in fine-grained
measurement policy. The DSRM process in this research is illustrated as Figure 1.

To provide an interference-free running platform, the libvirt virtual environment [33]
was deployed, which relies on the Qemu emulator and Kernel Virtualization Module (KVM)
hypervisor as the backend. A guest VM was configured with two CPU cores, 1024 MB
memory, and other specifications matching the host machine. In addition, TPM emulation
was enabled to simulate a complete IMA measurement function in the guest system.

The openSUSE Leap 15.2 [34] (July 2) Linux distribution, which includes core packages
and security patches with SUSE Linux Enterprise (SLE15) [35], was selected as the operating
system for development. The robustness [36] of regular-release distribution and the using
of enterprise-targeting packages provides a stable environment for kernel development.
Regarding kernel version, upstream Long-Term Support (LTS) release 5.4 [37] was used in
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this research because it reflects the standard functions for general IMA features and its ease
of migration to other platforms.

Literature Review
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Program Designs Evaluation

Researh
Goals

Solutions
(XFilter)

Discussion

Performance
Test

Function
Test

XLabel

XList

Problem identification &
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Function
Discussion

Performance
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Figure 1. DSRM processing.

The code in this development was built with kernel-provided configurations, such as
makefile and Kbuild [38], and the GNU Compiler Collection (GCC) (Version 7.5.0). The
requirement of default settings in Kconfig means that the IMA subsystem is not built as a
kernel module. Debugging was conducted using the kernel built-in ftrace function with
trace-cmd as a front-end command-line tool. In addition, reliance was placed upon the
ring buffer generated by the Linux kernel, which is called using the dmesg command.

The evaluation has two phases—the function test and performance evaluation. The
function test targets workability and functionality and verifies the basic working process of
new XFilter-based IMA policies. The performance evaluation collects performance data
that include execution latency and memory consumption in the kernel space for statistical
analysis. Evaluation data collection and processing is handled with bash shell scripts,
which call multiple external tools. Rather than commonly used benchmarking applica-
tions, low-level tracers, strace and ftrace, are applied in the performance evaluation.
These have been applied for I/O latency evaluation of the function call interfaces in spe-
cific file operations [39]. Apache2 (Version 2.4.43) was chosen as the target application
because it is widely deployed [40] and involves a large number of dynamic libraries or
configuration files.

The measurement target is introduced to simulate the workload in the evaluation.
GNU tar (Version 1.30) is a suitable candidate as a target for the time command to capture
observable latency values based on the compression operation, whereas the ls command
(GNU coreutils version 8.29) is sufficient for strace for system call measurement from
the userspace. Regarding the measurement of kernel function using ftrace, a minimal
program developed specifically is involved as the target for controlling overall complicities.

Since the IMA functions are implemented in the kernel space, kernel memory allo-
cation needs to be examined. In this project, overall memory consumption in the kernel
space, reflected by slabs allocation counts, was captured inside the running kernel via
/proc/meminfo [41].

For the data analysis, applications of IMA policy scenarios for the built-in policy
in XLabel and XList were compared. Multiple measurement runs were conducted to
provide a sufficient sample size, to derive a representative value or central tendency, and
to balance efficiency against sample space size. The data collected present distributions
of variables that range from extremely large to small. In this case, the basic mean is not
suitable as a measurement approach. Outliers may affect the accuracy of the measurement
result [42]. Therefore, a trimmed mean, in which a percentage of extreme variables are
discarded as outliers [43], was applied in some scenarios as the method of central tendency
measurement where the application of a trimmed mean was determined according to the
distribution pattern.
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4. XFilter Design

To achieve a fine-grained policy without the involvement of LSM, XFilter provides
two approaches, XLabel and XList. XLabel labels a single file to be measured using the
xattr attribute, where files with a specific attribute are measured when they are opened or
executed. XList relies on a configuration file that contains a list of file paths, which are to
be measured during file operations.

4.1. Features Review

This development introduces xfltr as a new policy token that provides user-configurable
options for XF_XLABEL and XF_XLIST to compose policy rules. When the xfltr token
appears in a rule, the rule is applied to files that meet the token requirements only. For
example, the rule below reads as “measure the files running the mmap operation only if they
are executable and labeled for XFilter”.

measure func=MMAP_CHECK mask=MAY_EXEC xfltr=XF_XLABEL

The label name for XLabel in xattr is security.xlabel, which is written into IMA
policy functions. security.xlabel is provided when the setfattr command is applied
and while security.xlabel exists, and then a file shall be labeled by XFilter.

However, a potential vulnerability emerges when using xattr for labelling. While
it is assumed that system administrators will not act maliciously, an attacker may exploit
XLabel if they already have root permissions and may change attributes without needing to
execute the file itself. The XList policy filtering method is not affected because the list with
files to be measured is initialised during system bootstrapping and cannot be modified,
even by root.

Regarding the XF_XLIST option used by XList, the interpretation of the policy rule is
similar to XLabel. For example, the following rule is read by the IMA as “if files running
the bprm check operation are executable and their paths are in the XList configuration file,
then measure them”.

measure func=BPRM_CHECK mask=MAY_EXEC xfltr=XF_XLIST

The XList configuration file is in /etc/sysconfig/ima-xlist and includes a list of
file paths to be appended to the token file=. The configuration file can be edited by the
user with a text editor. The following extract illustrates the file data structure.

...
file=/usr/bin/yes
file=/usr/bin/date
file=/usr/bin/zcat
...

During system bootstrapping, the XList configuration file list is parsed and writ-
ten to a pseudo-file in /sys/kernel/security/integrity/ima/xlist. The extract below
illustrates the file data structure.

...
/usr/bin/yes
/usr/bin/date
/usr/bin/zcat
...

The token xfltr can be integrated into any rule that belongs to the measure action
and acts as a filter to reduce existing policy rules. Both XLabel and XList target the policy
matching for a single file, allowing a user to limit the files to be measured at a fine-grained
level.
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4.2. The Implementation of XLabel

In order to measure labelled files, IMA functions need to be capable of both pars-
ing policy rules that contain XLabel options and obtain the xattr value (Figure 2). The
conditions determine if the target file should be measured, and if so, the measurement is
processed by calling the related function.

process_measurement

ima_write_policy()

ima_parse_add_rule()

ima_parse_rule()
...
case Opt_xfltr:
  ...

ima_parse_add_rule()

struct
ima_rule_entry

ima_rules

ima_match_rules

ima_match_policy

ima_get_action

xfltr

&xfltr

&xfltr

&xfltr

ima_read_xattr_only

vfs_getxattr_alloc

xattr_len_xlabel

xfltr = XF_XLABEL?

ima_store_measurement

Yes

Yes

function call

functions

structure list

data flow

logic flow

pointer

variable

function return

xattr_len_xlabel > 0?

exit if statement end of processing

No No

Figure 2. The general processing of XLabel.

The parsing process occurs during the initialisation phase when a new condition
Opt_xfltr in ima_parse_rule is added to parse options related to XFilter. The result is
stored as an aggregated bitmask in the entry of the structure list pointed to by ima_rules.

After initialisation, IMA examines whether XFilter is enabled and which XFilter
methods should be applied in the policy. The XFilter method selects an alternative to XFilter
from either XLabel or XList and relies on an enumerate type xfltr that is passed between
functions, and the variable is matched with the structure list pointed to by ima_rules.

Subsequently, the XFilter method is kept in the variable xfltr, making it immedi-
ately available to process_measurement. Another input condition is the extended attribute
security.xlabel of the target file and is obtained by retrieving the xattr value from the
file’s dentry structure. This process is performed by a newl function, ima_read_xattr_only.
The length of the value returned by newl verifies the existence of security.xlabel. The
completion of the measurement on the target file is determined with security.xlabel and
the variable xflter.

4.3. The Implementation of XList

The XList filtering method relies on two conditions to establish the order of file
measurement (Figure 3). Similar to XLabel, the first condition is met when XList options are
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found by checking IMA policy rules. The policy parsing and processing for XList utilises
the same process previously described for XLabel (Section 4.2). The second condition
establishes whether a list of file paths already exists as the stored pseudo-file /sys/kernel/
security/integrity/ima/xlist. If so, the file is examined and then used to decide if
measurement is needed. As the file path matching interface, the introduction of the pseudo-
file in securityfs provides security for integrity measurement. Once the XList pseudo-file
is created, the list of file paths cannot be modified through the interface, and not even
by root.

process_measurement

ima_write_policy()

ima_parse_add_rule()

ima_parse_rule()
...
case Opt_xfltr:
  ...

ima_parse_add_rule()

struct
ima_rule_entry

ima_rules

ima_match_rules

ima_match_policy

ima_get_action

xfltr

&xfltr

&xfltr

&xfltr

ima_search_fpath

ima_match_xlist

xfltr = XF_XLIST?

ima_store_measurement

Yes

Yes

function call

functions

structure list

data flow

logic flow

pointer

variable

ima_search_fpath
return = 1?

exit if statement end of processing

No
No

struct
ima_xlist_entry

ima_xlist_fpaths

Figure 3. The general processing of XList.

As described earlier (Section 4.1), the policy is initialised during system bootstrapping
in accordance with the XList configuration file in /etc/sysconfig/ima-xlist. Parsing
ima-xlist takes the previously described process for handling the IMA policy file as a
reference but due to the involvement of the pseudo-file operation, the steps illustrated in
Figures 3 and 4 are more complicated than for XLabel (Figure 2).

For a new structure in file_operations, a prerequisite is defined, ima_xlist_ops
(Figure 4). To call file operation functions, five function pointers are involved: .open,
.write, .read, .release, and .llseek. Subsquently, the address of the structure is passed
to other functions that create the pseudo-file in securityfs.

The new functions ima_write_xlist, ima_release_xlist, and ima_open_xlist are
created as file operations. During system startup, a specially developed Dracut script runs
through a process in which ima_write_xlist prepares the XList pseudo-file, retrieving
input through the write operation in the initiramfs process. The goal of the function
ima_release_xlist is to handle additional tasks after the XList pseudo-file is created, for
example dmesg message printing. Additionally, to protect the file from further modification,
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the process sets bit S_IWUSR for the i_mode object in the inode structure. The function
ima_open_xlist defines user operations targeting the pseudo-file such as file reading. The
operations rely on ima_xlist_seqops, which is a seq_operations-type structure that is
subsequently passed to the seq_open function.

ima_fs_init

securityfs_
create_file

struct
file_operations
&ima_xlist_ops

.open
.release
.write

ima_open_xlist

ima_release_xlist

ima_write_xlist

seq_open

struct
seq_operations

&ima_xlist_seqops

ima_read_xlist

ima_parse_add_xlist_entry

struct
ima_xlist_entry

ima_xlist_fpaths

ima_init

init_ima

.read

.llseek

.start

.next

.stop

.show

ima_delete_xlist

ima_check_xlist

ima_xlist_start

ima_xlist_next

ima_xlist_stop

ima_xlist_show

list_add_tail

function callfunction

structure list pass as argumentpointer

structure

Figure 4. The initialisation of XList pseudo-file.

Finally, to handle the file path matching operation, the function ima_match_xlist is
defined. The value returned is passed to process_measurement, where the measurement
decision is determined according to the result of file matching and policy parsing.

4.4. Definition of Kconfig Options

The Kconfig options provide flexibility when system building by assisting kernel pack-
age maintainers and system administrators to select functions as they need. Three Kconfig
options support XFilter function configuration during kernel compilation: IMA_POLICY_XFLTR,
IMA_POLICY_XFLTR_XLABEL, and IMA_POLICY_XFLTR_XLIST.

All options are of the type bool and are disabled by default. Switching of the XFilter
functions is controlled by IMA_POLICY_XFITR. The options IMA_POLICY_XFLTR_XLABEL and
IMA_POLICY_XFLTR_XLIST depend on IMA_POLICY_XFITR and are responsible for enabling
and disabling the XLabel and XList functions, respectively.

4.5. Package Management Integration

Putting system administration into practice, XLabel or XList maintenance tasks can be
simplified by introducing package management integration. Software package operations
provide automatic configuration of the file xattr for XLabel or file paths list for XList.
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In this research, two bash shell helper programs, xlabelling.sh and xlist_update.sh,
are provided. To demonstrate a simplified distribution of the solution, a customised
Apache2 RPM package was built using Rpmbuild (Version 4.14.1) [44]. The inclusion
of the helper programs facilitates IMA system management tasks. In addition, the po-
tential for security risks from user misconfiguration is reduced by transferring the re-
sponsibility of measurement file identification from the user to the software maintainer.
For each file listed in flist, xlabelling.sh sets attributes in security.xlabel, while
xlist_update.sh reads the file paths from flist and adds them to the XList configuration
file in /etc/sysconfig/ima-xlist.

5. Evaluation

Evaluation of the XFilter solution assesses effectiveness and efficiency by focussing on
the functionality (Section 5.1) and performance (Sections 5.2–5.3) of the solution implemen-
tation.

5.1. Functional Evaluation

The functional evaluation for the XFilter solution applies black-box testing, in which
the evaluation results are determined through observation and analysis of input and output
data [45]. A bash shell test script that automates the assessment is provided, wherein
bash was selected for its flexibility when calling external commands and tools. The scripts,
xlabelling.sh and xlist_update.sh, provide options to specify the XFliter methods to
be evaluated and the path of the RPM package.

The test script extracts the file flist that contains the path of all target files from the
Apache2 package (Figure 5). When the Apache2 program is launched, the script checks if
the files that appear in the runtime ML are to be measured. For XLabel, the script examines
if the extend attribute security.xlabel exists for files listed in ML. In the case of XList,
the script verifies that both the file paths in the flist file and in runtime ML are included
in /etc/sysconfig/ima-xlist. If successful, the script prints the evaluation results, and
otherwise if the evaluation fails then the output message prints the files not matched.

To confirm files to be measured, a verification routine is implemented from the software
package to the XList configuration file, and then to the runtime ML. For both XFilter
methods, the script also verifies that those files that should not be measured do not appear
in the runtime ML.

Prior to each measurement method running, the IMA policy file is re-configured
as listed in Listings 1 and 2 below. The tests are then performed during system envi-
ronment bootstrapping. Due to the volume of output, only relevant lines are shown in
Listings 3 and 4 and demonstrate that the functional tests for both the XLabel and XList
methods are successful.

Listing 1. XLabel test configuration

measure func=MMAP_CHECK mask=MAY_EXEC xfltr=XF_XLABEL
measure func=BPRM_CHECK mask=MAY_EXEC xfltr=XF_XLABEL
measure func=FILE_CHECK mask=^MAY_READ xfltr=XF_XLABEL euid=0
measure func=FILE_CHECK mask=^MAY_READ xfltr=XF_XLABEL uid=0
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Listing 2. XList test configuration

measure func=MMAP_CHECK mask=MAY_EXEC xfltr=XF_XLIST
measure func=BPRM_CHECK mask=MAY_EXEC xfltr=XF_XLIST
measure func=FILE_CHECK mask=^MAY_READ xfltr=XF_XLIST euid=0
measure func=FILE_CHECK mask=^MAY_READ xfltr=XF_XLIST uid=0

Listing 3. XLabel test output

# ./ima_xfilter_test.sh xlabel apache2-2.4.43-lp152.2.12.1.x86_64.rpm

Extracting xlist from the package ... done!
Extracted xlist file: /tmp/imatest/etc/ima_xfilter/apache2/xlist
Start testing ...
Launching apache2 ... done!
Examining the 'security.xlabel' xattr for the files have been
measured ...
Found xattr in /usr/sbin/start_apache2
Found xattr in /usr/share/apache2/script-helpers
... (omitted lines)
Checking the files not labeled ...
... (omitted lines)
Test Result: **Success**

Listing 4. XList test output

# ./ima_xfilter_test.sh xlist apache2-2.4.43-lp152.2.12.1.x86_64.rpm

Extracting xlist from the package ... done!
Extracted xlist file: /tmp/imatest/etc/ima_xfilter/apache2/xlist
Start testing ...
Lanunching apache2 ... done!
Testing extracted list against /etc/sysconfig/ima-xlist ...
Found: file=/usr/sbin/start_apache2
Found: file=/usr/share/apache2/script-helpers
... (omitted lines)
Testing runtime list against /etc/sysconfig/ima-xlist ...
Found: /usr/sbin/start_apache2
Found: /usr/share/apache2/script-helpers
... (omitted lines)
Checking the files not in xlist ...
Test Result: **Success**
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Figure 5. The workflow of functional evaluation for XFilter.

5.2. Performance Evaluation for System Latency

Stress-testing a system during latency performance evaluation plays a critical role in
nonfunctional software evaluation. A well-designed application should allow the user to
use software functions without experiencing obvious delays [46].

In this research, any increase of latency from the inclusion of the IMA XFilter feature is
assessed and recorded in an evaluation matrix (Table 1). The matrix includes the three layers
of the user-space, syscall, and IMA kernel functions. The tools used for system latency
data collection are time, strace, and ftrace. strace obtains latency data by measuring
the syscalls execve and mmap, whereas ftrace evaluates the IMA hooks ima_file_check,
ima_bprm_check, and ima_file_mmap. The three layers are closely linked such that the
user-space program that is evaluated with time involves syscalls via execve and mmap,
which are in turn evaluated with strace. During the processing of these syscalls, the IMA
hook functions are called by ftrace.

Table 1. Performance evaluation matrix for system latency.

Layers Tools Functions
Scenarios

TCB XLabel XList XList XList
(50) (550) (1050)

User-space time -

Syscall strace
execve

mmap

Kernel functions ftrace

ima_file_check

ima_bprm_check

ima_file_mmap

In addition to the evaluation layers, five policy rule sets are applied, including IMA
TCB, XLabel, and XList with 50, 550 and 1050 file paths. For XList, the processing time
spent on file path traversal depends on the length of the file list, and therefore different file
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path numbers are included. A typical number for a single application such as Apache2 is
50, while 550 and 1050 were selected to provide intervals of 500.

The MAC components, SELinux and SMACK, contribute considerable overhead to
system operations. For example, the impact of SELinux on the overall performance may
be as high as 7% [47]. Therefore, a comparison between the policies for LSM and XFilter
is likely to be inaccurate and is not covered in this research. To ensure that the results
accurately reflect any latency introduced by the new policy mechanism and given that the
evaluation targets IMA policy processing, the IMA measurement actions for the XLabel and
XList scenarios are temporarily disabled during testing. That is actioned by defining a new
Kconfig option in the code, IMA_POLICY_XFLTR_EVAL, which is set before the evaluation.

The evaluation begins with environment preparation (Figure 6), such as detecting IMA
policies and creating temporary files. The collection and processing of latency data is auto-
mated by bash scripts ima_eval_time.sh, ima_eval_strace.sh, and ima_eval_ftrace.sh,
from where the commands time, strace, and ftrace are called. The test commands are
executed 100 times while flushing system buffers and clearing memory caches between
each round. A log file formatted as Comma-Separated Values (CSV) is created to record the
time value in seconds or microseconds. The calculation results, skewness, and kurtosis are
appended to the file.

One hundred latency values are obtained for each scenario in the matrix. The central
tendencies for multiple sample sets are compared after skewness and kurtosis of the
variable distributions are determined [48]. To establish normality, the mean is used for
normal distribution [49] while the trimmed mean is used when there are outliers [42]. So
that data present a normal distribution, skewness and kurtosis should be in the range of
−2 ± 2 after trimming [50–52].

5.2.1. Time Command

In this evaluation, the bash command time is capable of millisecond measurement
precision, compared with the centisecond level provided by GNU time. Only CPU time is
collected, because it directly measures the time spent on kernel processing for a program.

start

preparation

creating temporary files/dirs,
detecting the IMA policy, ...

for ((c=0; c< 100; c++))
cache cleaning

fs buffer, memory page, 
dentry & inodes cache

  execute testing tools
time / strace / ftrace

log file

(CSV)

mean
skrewness & kurtosis (PSPP)

trimmed mean
skrewness & kurtosis (PSPP)

cleaning

finish

Figure 6. The workflow of performance evaluation for system latency.

As the target program in this measurement, GNU tar is executed in a loop of 100 iter-
ations. In each round, nine text files are created prior to them being compressed by the tar
command 128 times.
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The results indicate that the skewness and kurtosis are within range and the mean was
applied to represent the central location (tabular results in Figure 7a). Figure 7b shows that
the means of the latency value in the policies of the TCB, XLabel, and XList with 50 records
have little variation, while the XList file lists with 550 and 1050 records shows that latency
is slightly higher. The XList with 1050 records has the highest latency value among all
policy settings.

TCB XLabel XList XList XList
(50) (550) (1050)

tar
(128 times)

mean (s) 3.097 2.998 3.041 3.339 3.421
skewness −0.47 −0.72 −0.63 −0.86 −1.21
kurtosis −0.34 0.08 0.11 0.62 1.54

(a) Tabular results from time command

TCB XLabel XList (50) XList (550) XList (1050)
0.000

1.000

2.000

3.000

4.000

5.000

6.000

3.097 2.998 3.041
3.339 3.421

time: tar (128 times)

IMA Policy

means
(second)

(b) Means - time command

Figure 7. Evaluation results from time command (tar 128 times).

5.2.2. strace

strace (Version 5.3) evaluates the latency of policy processing from the userspace.
For this purpose, strace measures the time consumed while processing two syscalls,
execve and mmap, whose calling routines involve all three IMA hooks being evaluated,
ima_file_check, ima_bprm_check, and ima_file_mmap. Since both execve and mmap are
called by the ls command, the measurement can be conducted by applying strace to the
ls action that lists files in a temporary directory.

The evaluation results in the tabular results in Figure 8a are measured in milliseconds
(ms). Examination of skewness and kurtosis of latency values indicated that some of them
exceed the range of acceptance, and therefore a 5% trimmed mean was used in the analysis.
Figure 8 shows that, for execve (Figure 8b) and mmap (Figure 8c), latency maintained a
relatively constant level across all policies. The comparison for execve shows that the
trimmed mean of TCB policy setting is slightly lower than others. However, its difference
from the highest (XList with 1050 items) is only 0.023 ms.
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TCB XLabel XList XList XList
(50) (550) (1050)

execve
trimmed mean (ms) 1.218 1.236 1.235 1.222 1.241
skewness 0.67 0.30 0.25 0.67 1.05
kurtosis 0.16 −0.78 −0.89 −0.46 0.53

mmap
trimmed mean (ms) 0.011 0.012 0.011 0.011 0.011
skewness 0.89 0.69 0.73 1.23 1.21
kurtosis 0.08 −0.22 −0.01 1.30 0.70

(a) Tabular results for strace

TCB XLabel XList (50) XList (550) XList (1050)
0.000

0.400

0.800

1.200

1.600

2.000

1.218 1.236 1.235 1.222 1.241

strace: execve

IMA Policy

5%
trimmed
means
(ms)

(b) Means - strace - execve

TCB XLabel XList (50) XList (550) XList (1050)
0.000

0.005

0.010

0.015

0.020

0.025

0.011 0.012 0.011 0.011 0.011

strace: mmap

IMA Policy

5%
trimmed
means
(ms)

(c) Means - strace - mmap

Figure 8. Evaluation results for strace.

5.2.3. ftrace

The ftrace tool in kernel provides a complete interface for tracing kernel events and
functions to evaluate the IMA hooks ima_file_check, ima_bprm_check, and ima_file_mmap
(Table 1). In the evaluation process, a front-end command, namely trace-cmd (Version 2.6.1),
is applied to call the ftrace interface. To reduce the number of repeat syscalls, a specific
binary, /usr/bin/hello, is compiled as the target program. Kernel operations are simpli-
fied through the use of minimised logic, in which the main function contains only a return
statement. The result of this serves to reduce the number of debug messages produced
by the trace-cmd command. For each iteration, a report that contains the function graph
for specific IMA hook functions is generated, from which the latency values measured in
microseconds (µs) are filtered out immediately.

Due to high levels of skewness and kurtosis found in the data, a trimmed mean at 5%
was applied. The tabular data in Figure 9a indicate that across all three hook functions,
there is an upward trend in latency from the IMA TCB policy to the XList at 1050 items.
The differences are minor for the ima_file_check function (Figure 9b) and significant for
XList with 1050 items in ima_bprm_check (Figure 9c) and XList with 550 and 1050 items in
ima_file_mmap (Figure 9d).
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TCB XLabel XList XList XList
(50) (550) (1050)

ima_file_check
trimmed mean (µs) 2.523 2.679 2.738 2.789 2.805
skewness 0.79 0.20 0.40 0.65 0.41
kurtosis 1.30 -0.07 -0.44 0.40 1.08

ima_bprm_check
trimmed mean (µs) 96.790 98.876 96.471 99.744 114.613
skewness 1.17 0.81 0.70 0.77 0.30
kurtosis 1.86 0.98 −0.20 −0.20 0.33

ima_file_mmap
trimmed mean (µs) 3.492 3.865 4.376 10.149 16.527
skewness 0.62 0.62 0.72 0.67 0.35
kurtosis 0.38 0.36 −0.39 0.04 −0.01

(a) Tabular results for ftrace

TCB XLabel XList (50) XList (550) XList (1050)
0.000

1.000

2.000

3.000

4.000

5.000

2.523 2.679 2.738 2.789 2.805

ftrace: ima_file_check

IMA Policy

5%
trimmed
means
(µs)

(b) Means - ftrace - ima_file_check

TCB XLabel XList (50) XList (550) XList (1050)
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120.000

160.000

200.000

96.790 98.876 96.471 99.744
114.613

ftrace: ima_bprm_check

IMA Policy

5%
trimmed
means
(µs)

(c) Means - ftrace - ima_bprm_check

TCB XLabel XList (50) XList (550) XList (1050)
0.000

5.000

10.000

15.000

20.000

25.000

3.492 3.865 4.376

10.149

16.527

ftrace: ima_file_mmap

IMA Policy

5%
trimmed
means
(µs)

(d) Means - ftrace - ima_file_mmap

Figure 9. Evaluation results for ftrace.

5.3. Memory Use Performance Evaluation

Since the IMA XFilter functions are implemented at the kernel level, any measurement
should focus on the memory usage during kernel processes. It is possible to measure
the kernel memory usage of XFilter by identifying all allocated slabs utilised by kernel
operations. The slab is comprised of sections of contiguous virtual memory divided into
chunks of equal size [53]. This provides the allocation mechanism for kernel objects.

In this evaluation, the status of slab allocation is obtained from /proc/meminfo. Since
IMA functions are not implemented as dynamic loading modules, only total slab usage is
measured. Considering the time cost, 40 samples of slab information for each policy are
collected. Each dataset is collected in a freshly bootstrapped system environment where
the kernel and userspace applications run in a stable state.

The target system for the evaluation is deployed in the virtual machine environment.
A bash shell script running on the host system monitors and controls the measurement via
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a ssh connection (Figure 10), which restarts the guest machine after each round of data
collection. When the rounds have completed, the data are processed to calculate mean and
trimmed mean values.

start

preparation

for ((c=0; c< 40; c++)) obtain slab status 
from /proc/meminfo

  reboot guest system

log file

(CSV)

mean
skrewness & kurtosis (PSPP)

trimmed mean
skrewness & kurtosis (PSPP)

cleaning

finish

Figure 10. Memory usage performance evaluation workflow.

As shown in the tabular data in Figure 11a, skewness and kurtosis from the measure-
ment results are within the acceptable range, and therefore the mean value is applied in
the evaluation. A comparison across five policies (Figure 11b) shows that there is little
variance between total slab allocation, while the largest differential value is 87 kB, which is
insignificant when system memory provides more than 34,000 kB.

TCB XLabel XList XList XList
(50) (550) (1050)

slab size in /proc/meminfo
mean (kB) 34617 34612 34643 34679 34699
skewness 0.08 -0.01 -0.03 -0.08 0.01
kurtosis -0.80 -0.28 -0.75 -0.53 0.60

(a) Tabular results for slab allocation

TCB XLabel XList (50) XList (550) XList (1050)
0

10000

20000

30000

40000

50000

34617 34612 34643 34679 34699

Kernel memory - slab

IMA Policy

means
(kB)

(b) Means - slab allocation

Figure 11. Evaluation results for slab allocation.

6. Discussion and Conclusions

This research proposes a flexible and fine-grained mechanism for policy-making in
IMA measurement. Although two XFilter methods exist to address the same problem, the
mechanisms behind their implementations and the user configuration processes are quite
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different. For XLabel, the files to be measured are recorded as extended attributes in the
filesystem layer, whereas XList introduces the provision for the creation and management
of a pseudo-file in securityfs, which stores the file path of the target file. For both
methods, token matching actions in rules parsing share the same processes and variables.
Additionally, XLabel applies the command-line tools getfattr and setfattr to retrieve
and set xattr values for the files to be measured. Meanwhile, a text editor is used to
edit the XList configuration file that sets the file list to be written to the XList pseudo-file.
Additionally, to simplify the system administration package management, integration
is introduced.

The results of the functional evaluations suggest that both policy mechanisms work as
expected and meet the requirement of IMA measurement. However, performance evalua-
tions revealed advantages and shortcomings, which can be addressed in the development
of a more effective and efficient solution.

Latency evaluations measure the time used for processing tasks and reflect how much
CPU power is consumed. The evaluations measure latency for file operations through IMA
hooks, syscalls, and user-space programs. The results reveal that XLabel policy latency is
slightly higher than the default policy rule set, but with minimal difference in the trimmed
mean. This small difference indicates that the xattr retrieval function has minimal impact
on computational power. However, latencies for the XList policy rule sets show a greater
difference, and the variance depends on the length of the file list. When a file list with
50 items was applied, the latency showed minimal variance with the XLabel policy but that
variation increased markedly when the list increased to 550 and 1050 items. The variances
can be explained by the combined impact of the length of the items list and how long
it took for the list traversal period to complete, where the cumulative effect of more list
items triggers an increasing number of search operations, which then leads to more context
switching in the runtime. However, this does not explain the variation between the XList
policies in which the hook ima_file_mmap is much higher than either ima_bprm_check and
ima_file_check.

When compared to the above IMA hooks, measurement at the kernel syscall level
showed a very different scenario. For both execve and mmap function calls, the latency
values for all policies presented a stable trend. Even between the three XList policies, the
differences in latency were insignificant. This result may be due to the number of function
calls involved in the syscall interfaces, such that the overall measurement value is not
sensitive to the latency values produced by the three IMA hooks, which account for a small
number of function calls compared with other kernel functions.

The user-space evaluation performed by the time command provided a similar pattern
to the IMA hooks. Nonetheless, the three XList policy measurements reveal a greater
variance than that above. It is possible that the target program, tar, includes a large
number of file operations with combined latencies aggregating as the length of the file list
increases. This is different from the syscall level measurement, where the accumulation
happens during function execution and is unrelated to IMA hooks.

The evaluation of memory consumption addressed overall kernel processing mea-
surement rather than user-space programs because the IMA functions in the design are
implemented at the kernel level. The evaluation results show that the memory consumption
for the kernel as a whole was almost identical across all five policy mechanisms. Analysis
of the XFilter code indicates two changes that may affect memory usage, with the first
being the introduction of new variables. However, since only a few new variables are
defined in this design, their impact is minimal. The other modification is the creation of the
XList policy file list that is stored in the kernel memory space. With 1050 listed items in the
evaluation, the amount of memory consumed is around 35 kB, which is a small proportion
of the overall consumption rate of more than 34,000 kB. While Figure 11b illustrates that
there is a tiny increase in mean memory consumption from 50 to 1050 items in flist, no
evidence supports an increase in the number of file list items as a cause of this variance.
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One possible shortcoming is that XLabel offers a greater attack surface than XList
and is potentially more vulnerable. If an attacker achieves administrator privileges, then
the attacker could manipulate the xattr adopted by XLabel. The vulnerability stems
from the capacity CAP_SYS_ADMIN, originally requested by root, which has permissions
for modification and deletion over xattr [54]. This may extend to the xattr used by
LSM on SELinux and SMACK. The attack surface does not apply to XList because the
bit-setting mechanism in the inode structure prevents any privileged users (including root)
from modifying the file list through the pseudo-file interface once the IMA policy has
been initialised.

A feasible approach to mitigate the potential XLabel vulnerability is to apply the
Extended Verification Module (EVM), in which the system calculates a hash of xattr and
signs it using a private key stored in the TPM device [55]. By validating the signature with
the corresponding public key, attempted modifications can be detected early. However
there is a time cost with the application of EVM due to the complexity of the solution.

Although this research covers most of what would be expected when developing
new IMA policy mechanisms, some improvement is required. First, the performance
evaluations are limited to specific policy scenarios. Expanding the range of policies may
improve evaluation granularity, thereby highlighting the relationship between the length
of the file list and function latency. In addition, including other LSM policies in the
comparison can verify the suitability of XFilter as a replacement for the LSM-based IMA
policy mechanism. Second, the cause of the increased latency observed in ima_file_mmap
in contrast to ima_bprm_check and ima_file_check is still unknown. To explain this
phenomenon, a deep investigation of the code may suggest why there are differences in the
IMA hook implementation.

Generally, the design and evaluations suggest that the XFilter implementation in the
IMA subsystem is feasible when more evaluations and validations have been undertaken.
This research provides a reference for further in-depth development related to policy
mechanisms in system integrity measurement.
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