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Abstract: Mobile CrowdSensing (MCS) has become a convenient method for many Internet of Things
(IoT) applications in urban scenarios due to the full utilization of the mobility of people and the
powerful capabilities of their intelligent devices. Nowadays, edge computing has been introduced
into MCS to reduce the time delays and computational complexity in cloud platforms. To improve task
completion and coverage rates, how to design a reasonable user recruitment algorithm to find suitable
users and take full advantage of edge nodes has raised huge challenges for Mobile CrowdSensing.
In this study, we propose a Reputation-based Collaborative User Recruitment algorithm (RCUR)
under a certain budget in an edge-aided Mobile CrowdSensing system. We first introduce edge
computing into MCS and build an edge-aided MCS system in urban scenarios. Moreover, we
analyze the influence of user reputation on user recruitment. Then we establish a user reputation
module to deduce the user reputation equation by combining the user’s past reputation score with
an instantaneous reputation score. Finally, we utilize the sensing ability of edge nodes and design a
collaborative sensing method. We use the greedy method to help choose the appropriate users for the
tasks. Simulation results compared with the other three algorithms prove that our RCUR approach
can significantly achieve better performance in task completion rate and task coverage rate.

Keywords: mobile crowdsensing; edge computing; user reputation; collaborative sensing; user
recruitment algorithm

1. Introduction

With the rapid development of sensing, computing, and communicating technologies,
intelligent devices equipped with multifarious sensors, for example, mobile phones, iPads,
and wearable devices have already played a crucial role in human life, which makes
the people who take these intelligent devices to become powerful sensing nodes [1–3].
The inherent mobility nature of people has empowered and inspired the people to take
part in ubiquitous sensing, and the rich sensing capabilities of sensor-enhanced devices
make pervasive computing possible, which stimulates the emergence and promotes the
development of an appealing paradigm named Mobile CrowdSensing (MCS) [4]. MCS
enables and inspires a vast number of people to sense and contribute data; therefore, it has
become a convenient method for many Internet of Things (IoT) applications, such as smart
cities [5–7], environmental monitoring [8–12], smart transportation [13,14] and intelligent
medicine [15,16], which improves work efficiency and quality of our life.

Compared with traditional sensing technology, the core idea of MCS is to utilize
people’s mobility and recruit people with intelligent devices to meet the requirements
and complete sensing tasks. There is no need to deploy massive static nodes in the
sensing areas, which can largely reduce installation costs [17]. Moreover, the widespread
popularity of intelligent devices can provide strong guarantees for spatial coverage and task
completion quality, even when facing emergencies and unpredictable tasks. Meanwhile,
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the outstanding computing capabilities of mobile devices can conduct the computation
for the cloud platform, which has been widely used in many real-time scenarios, such as
autonomous driving [18–20]. However, the inadequate resources of mobile devices are
unable to execute the complex computation of large amounts of real-time information,
which would lead to the latency of data and information propagation [21]. To address the
issues, some researchers introduced Edge Computing into the MCS system, whose basic
idea is to add edge nodes, such as smart lampposts [22,23] and base stations [24], with
sufficient energy, excellent storage, and computing capabilities at the edge of the network.
So sensing data are computed and processed by the closest edge nodes instead of the
cloud platform, which is promising to effectively reduce the time delays and computational
complexity in cloud platforms. However, how to take full advantage of the edge nodes
more reasonably has aroused great interest from researchers [25,26].

Although MCS is an appealing sensing paradigm and shows great potential, it has
raised plenty of challenging issues, for example, user recruitment algorithms [27,28], in-
centive mechanisms [29,30], task allocations [31–33], and data fusion [34,35]. As one of
the most vital challenges in MCS, the user recruitment algorithm refers to the problem
of how to recruit appropriate participants from extensive potential users to meet the var-
ious requirements and complete the tasks under some constraints [36]. More and more
researchers have devoted plenty of effort to finding optimal methods to solve this problem
by comprehensively considering various factors. In [37], Wu D et al. jointly considered the
effects of users’ willingness, reputation, and activity, then proposed a user characteristics
aware participant selection (UCPS) mechanism to improve the task completion rate and
ensure the quality of sensing data in different regions. The results showed that the mecha-
nism could improve the task completion rate and data quality. However, they ignored the
situation of potential users in the task area. Taking into account the requirements of both
quantity and quality of users’ participation, Li Q et al. introduced the reputation evaluation
model and proposed a crowdsensing task selection algorithm to encourage participants
to make the greatest contributions [38]. Experimental results indicated that the method
could effectively ensure the quantity and the quality of users’ participation. However,
the complex computation would lead to time delays and information propagation. To
guarantee the coverage quality of the tasks, from the perspective of the tasks, authors in [39]
focused on the task attributes, and divided the whole sensing region by a weighted Voronoi
diagram, then proposed a novel willingness-aware user recruitment strategy (WAUR) for
MCS. Simulations revealed that the approach could significantly improve the performance
compared with other algorithms. While these studies above integrated and interweaved
many different variables, however, they ignored the most important part of MCS—the
uncertainty of mobile users. The users’ random mobility and uneven distribution could not
enable the cloud platform to have enough users to perform the tasks, but also would bring
about a shortage of users for the tasks when facing emergencies and unpredictable tasks,
which leads to an unnecessary accuracy loss. More seriously, some users may upload fake
data for compensation which would critically decrease the quality of tasks. Furthermore,
although numerous mobile devices can replace traditional sensors, the instability and
uncertainty of these mobile users may affect the completion and quality of tasks. Selecting
reliable users and completing tasks more effectively has become a huge challenge in MCS.

Hence, to avoid the fraud of users and ensure the task coverage quality and improve
the task completion rate, by jointly considering the user reputation and edge computing, we
present a reputation-based collaborative user recruitment algorithm (RCUR) for edge-aided
Mobile Crowdsensing with the goal of improving the completion rate and maximizing the
spatial coverage of tasks under temporal and budget constraints. The main contributions
of our work are summarized as follows:

(1) Existing MCS systems in urban scenarios suffer from high delay and limited storage
space, which negatively affect task completion rate and spatial coverage. To address
these issues, we introduce edge computing into MCS and develop an edge-aided MCS
system in urban scenarios. Our system adds an edge layer that efficiently handles the
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computing pressure and storage needs while leveraging the powerful sensing abilities
of edge nodes. Moreover, the user recruitment problem is formulated with spatial
and budget constraints to improve completion rates and maximize spatial coverage.

(2) Prior methods for user selection in MCS systems fail to consider user reliability and
credibility adequately. To address this gap, we establish a user reputation module to
evaluate the user’s past reputation score based on previous performance. Then we
jointly consider the distance and coverage ability of the user to calculate the instanta-
neous reputation score, which is combined with the user’s past reputation score to
generate an overall reputation equation. Our cloud platform selects the proper users
according to their reputation scores to complete the tasks efficiently and qualitatively.

(3) In order to achieve a better task completion rate and maximum spatial coverage, we
propose a reputation-based collaborative user recruitment algorithm (RCUR) in an
edge-aided Mobile CrowdSensing system under certain budgets. Our innovative ap-
proach leverages the user reputation method to identify suitable participants who can
guarantee the coverage quality of the tasks. Additionally, we use collaborative sensing
to select the edge nodes to finish the tasks and ensure coverage when lacking potential
users. Moreover, we design a greedy method to recruit the optimal participant for
each task. Our simulations and experimental results verify that our proposed RCUR
algorithm is outstanding compared with other methods in terms of task completion
rate and spatial coverage.

The rest of the paper is organized as follows. In Section 2, we review and summarize
related work. Section 3 presents our system model and problem formulation. In Section 4,
we propose a reputation-based collaborative user recruitment algorithm (RCUR) under
budget constraints. Simulation results compared with other methods are shown in Section 5.
Finally, we conclude our work in Section 6.

2. Related Work

Recently, user recruitment algorithms have attracted the attention of many scholars,
who have proposed extensive promising studies in MCS systems. Most of them are
devoted to finding the optimal solutions to recruit the most appropriate participant to
complete the tasks. Guo B et al. [40] focused on data diversity and proposed a unified
visual crowdsensing framework called UtiPay based on the microscopic and macroscopic
visual task types to improve the quality of group sensing data. In [41], to complete the
task with the minimum cost, Zhou et al. defined the “t-sweep k-coverage” crowdsensing
tasks and designed a user recruitment algorithm based on the theory of greedy strategy.
After simulation experiments on real data sets, the superiority and effectiveness of this
method were proved. Wang et al. [42] fully exploited the content information together
with the context information to model workers’ preferences on tasks accurately. Then they
proposed a novel personalized task-oriented worker recruitment mechanism for mobile
crowdsensing based on a careful characterization of workers’ preferences.

One of the most important challenges in MCS is the coverage quality for some applica-
tions. Especially in urban scenarios, coverage has become one of the criteria to measure
the completion quality of tasks. In [43], Zhang et al. proposed a novel user recruitment
that only selected a subset of mobile participants to achieve the maximum spatial coverage
with a constrained budget. The results revealed that the algorithm achieved a near-optimal
solution compared with the brute-force search results. However, this method would spend
too much running time and cost a lot for the platform. Alagha A et al. [44] jointly consid-
ered the parameters, such as user localization, mobility traces, and reputation, to design
a two-steps novel Stable Data-based Recruitment System (SDRS) for localization tasks.
Meanwhile, they took into account the range-free sensors and the mobility of workers to
improve the coverage quality of tasks. The results indicated that the proposed method
could attain a speedy localization with better quality compared with other benchmarks.
Yucel F et al. [45] tried to tackle the issues of finding task assignments that could make the
optimal tradeoff between coverage-aware preferences of service requesters and profit-based
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preferences of workers under the budget constraints in MCS. The simulations showed that
the proposed algorithms mostly provided substantially better task assignments in terms of
user happiness and coverage quality.

With the continuous development and maturity of edge computing technology, to
further improve the task completion rate and reduce the load of the cloud platform,
many researchers have introduced edge computing into MCS. Ma L et al. [46] proposed
two privacy-preserving reputation management schemes for edge computing enhanced
MCS to preserve privacy and deal with malicious participants simultaneously. The experi-
ments demonstrated that both schemes achieved high-cost efficiency. In [47], Zhang Y et al.
studied dynamic user recruitment under the scenarios for different sensing tasks. For the
long-duration task and short-duration tasks, they presented two different user recruitment
algorithms with edge-aided MobileCrowdsensing. The experiments showed the proposed
user recruitment could achieve better validity and reliability. To solve the problem that
user recruitment failed to effectively address the task requirements or the relevant max-
imization and diversification, Xiong J et al. [48] designed a task-oriented user selection
incentive mechanism (TRIM) in an effort toward a task-centered design framework in
edge-aided MCS. The simulation results indicated that TRIM could achieve feasible and
efficient user selection.

However, the previous works have presented outstanding simulation results, and there
are several shortcomings related to user recruitment in mobile crowdsensing (MCS) systems.
Many studies focus on finding optimal solutions to recruit appropriate participants to
complete tasks but do not consider the suitability of users’ characteristics or the potential of
edge computing resources. Users’ historical performance usually indicates enthusiasm and
reliability for the tasks, which will directly affect the completion and coverage quality. Some
studies aim to improve coverage quality in urban scenarios, but their methods are time-
consuming or costly. Others introduce edge computing but do not fully utilize its sensing
and communicating capabilities. They ignore the abundant resources such as sensing, and
communicating capabilities, which can also be used as a powerful static sensing node.
Hence, the edge-aided MCS has significant potential space to improve the flexibility and
efficiency of the MCS system. To address all aforementioned issues, we propose an edge-
aided MCS system in urban scenarios with a user reputation module to evaluate historical
performance and a reputation-based collaborative user recruitment algorithm (RCUR) that
efficiently improves task completion rate and achieves optimal coverage under budget
constraints, which is promising in addressing the identified shortcomings and utilizing the
potential of edge computing resources.

3. System Model and Problem Formulation
3.1. System Model

The MCS system generally is comprised of mobile users U and the cloud platform
P. However, in a dynamically changing environment, especially an urban environment,
except for a large number of mobile people, there are still quite a few pre-deployed static
nodes with powerful sensing, collecting, computing, and communicating capabilities, such
as smart lampposts, signal base stations, smart camera and so on, which also can collect
the sensing information. Hence, we not only utilize the mobile users to gather relevant
information and complete the tasks; furthermore, we take advantage of these edge nodes
as a supplement to build a new CrowdSensing system. As shown in Figure 1, our system
consists of a three-layer hierarchical network.
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platform will establish a user reputation module to select the proper users based on 
their historical performance to complete the tasks efficiently and qualitatively. Addi-
tionally, the cloud layer is also a data processing center that will analyze and sum-
marize these sensed data, then package it to the applications and requesters.  

(ii) Edge layer. As depicted in Figure 1, the edge layer is located between the cloud plat-
form and the mobile sensing end devices. Due to powerful computing and communi-
cating capabilities, the pre-deployed static nodes would be the perfect edge nodes in 
the CrowdSensing system, which can support and enhance the performance of the 
mobile end devices. In the urban environment, edge nodes can be replaced by smart 
static nodes such as smart lampposts and base stations. Heterogeneous mobile de-
vices would be connected to the cloud platform through the edge layer closer to the 
users in 5G/6G or WiFi, which can release the computing pressure on the cloud, re-
duce the delay and increase the storage space of information. 

(iii) Sensing layer. As the most important and basic layer of the CrowdSensing system, 
mobile users who take the intelligent terminals with many embedded sensors are the 
key component in the sensing layer and play a fundamental role in sensing and col-
lecting various data at a certain time in specific locations. We assume that all users 
volunteer to participate in tasks and that sensed data are accurate. The random mo-
bility of mobile users greatly enhances the flexibility of ubiquitous sensing, and the 
static nodes can ensure the coverage of the sensing network. The collaboration and 
interaction between mobile and static sensors could promote the performance and 
quality of sensing and data processing. 

Figure 1. Edge-aided MCS system.

(i) Cloud layer. The Cloud layer is responsible for the publication of the tasks, and it
provides computing and analyzing resources for collecting data. As a centralized
controller, the cloud platform gets the tasks from some applications or requesters,
then publishes these tasks to the users. Meanwhile, the cloud platform will enable
interactions with the other two layers and manage the user’s personal information,
including historical information, locations, and reputations. In our system, the cloud
platform will establish a user reputation module to select the proper users based
on their historical performance to complete the tasks efficiently and qualitatively.
Additionally, the cloud layer is also a data processing center that will analyze and
summarize these sensed data, then package it to the applications and requesters.

(ii) Edge layer. As depicted in Figure 1, the edge layer is located between the cloud
platform and the mobile sensing end devices. Due to powerful computing and
communicating capabilities, the pre-deployed static nodes would be the perfect edge
nodes in the CrowdSensing system, which can support and enhance the performance
of the mobile end devices. In the urban environment, edge nodes can be replaced by
smart static nodes such as smart lampposts and base stations. Heterogeneous mobile
devices would be connected to the cloud platform through the edge layer closer to
the users in 5G/6G or WiFi, which can release the computing pressure on the cloud,
reduce the delay and increase the storage space of information.

(iii) Sensing layer. As the most important and basic layer of the CrowdSensing system,
mobile users who take the intelligent terminals with many embedded sensors are
the key component in the sensing layer and play a fundamental role in sensing and
collecting various data at a certain time in specific locations. We assume that all
users volunteer to participate in tasks and that sensed data are accurate. The random
mobility of mobile users greatly enhances the flexibility of ubiquitous sensing, and
the static nodes can ensure the coverage of the sensing network. The collaboration
and interaction between mobile and static sensors could promote the performance
and quality of sensing and data processing.
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3.2. Problem Formulation

In our system, the cloud platform P gets the tasks θtotal , including some requirements
from some applications or the requesters, such as traffic monitoring, noise conditions, and
air conditions. Then the cloud platform P slices the massive tasks into several sub-tasks
θ = (θ1, θ2, . . . , θn) on the basis of the time limitations of the sensing tasks, then publishes
these sub-tasks. Usually, the detailed information about the tasks θ can be expressed by
a multi-element tuple Fθ =

(
θ

typ
j , lθj , tθj , Rθj , Rωθj

)
, which indicates the type, locations,

time limitations, coverage radius, and task reward. The time limitations of tasks tθj are
usually divided into some timeslots to be performed. Based on the detailed information
about the tasks θ, mobile users U = {u1, u2, . . . , uU} will decide whether to take part in
these tasks and choose what kinds of tasks to participate in. The relevant details of the

mobile users U = {u1, u2, . . . , uU} can be described as Fu =
(

lui , Rui , σui , C
θj
ui

)
, where lui

is the real-time location, Rui is the sensing radius, σui is the reputation scores, and C
θj
ui is

the cost for task θj. When users U accomplish a task, the reputation module will evaluate
the performance of the users and update their reputation score. Simultaneously, in the
urban environment, there are some smart static nodes Sn, such as smart lampposts and
base stations, which can replace the edge nodes. The smart static nodes generally perform
other work or just stay asleep to reduce the energy cost. In special circumstances, these
static nodes can wake up rapidly and start to work according to the requirements. Sn can

be represented as Sn =
(

lSn , RSn , C
θj
Sn

)
, where lSn denotes the location of the static node.

RSn denotes the sensing radius of the static node and C
θj
Sn represents the sensing cost of the

static node for task θj.
In general, the cloud platform has a certain budget B, and the tasks will have spatial

and temporal requirements. Specifically, tθj represents a certain range of the sensing time
and Rθj is denoted as the certain range of the sensing radius for the tasks. Meanwhile, there
is a reward Rωθj for the user or static node who accomplishes the task and ∑ Rωθj ≤ B. The
cloud platform P evaluates the users’ reputation scores and other information to recruit the
most appropriate user to execute the task. Aiming at maximizing the spatial and temporal
coverage for the sensing tasks, there would be two kinds of approaches to achieve the
goal. If the cloud platform P can not find the users to complete the task efficiently and
qualitatively, then it will choose a static node that meets the requirements to finish the task.
Let Acov

θj
denotes the expected sensing coverage area of the task θj. Acov

ui ,θj
and Acov

Sni ,θj
are the

coverage area which the user ui sense and the static node Sni sense, respectively, for task θj.
In certain time limitations tθj ,A

cov
ui ,θj

+ Acov
Sni ,θj

denotes the sensed area by the user and static
node for the task θj. Therefore, the task spatial coverage percentage <θj for task θjcan be
calculated by:

<θj =
Acov

ui ,θj
+ Acov

Sni ,θj

Acov
θj

. (1)

As a result, in order to achieve the goal of maximizing the sensing spatial coverage
area of the tasks, the problem of user recruitment can be expressed as:

Maximize∑<θj (2)

s.t.

(1)C
θj
ui + C

θj
Sn ≤ Rωθj (3)

(2)tui ∈ tθj (4)
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(3)tSni
∈ tθj (5)

where tui and tSni
, respectively, denote the time that the user uiand static node Sn start

to conduct the sensing work for task θj. Specifically, with the purpose of maximizing
the sensing spatial coverage area of the tasks, how to recruit the optimal user and utilize
collaborative sensing reasonably to complete the tasks will be a great challenge.

4. Reputation-Based Collaborative User Recruitment Algorithm

In this section, we try to analyze the problem of sensing spatial and temporal coverage
for tasks of MCS to ensure quality in dynamically changing environments, especially urban
scenarios. The quality of the information sensed by users is always the most important
parameter to the sensing tasks, which affects excellent quality and provides meaningful
guarantees for task completion. Therefore, how to guarantee the task completion rate and
meanwhile improve the spatial and temporal coverage rate has raised a new challenge.
First, a user reputation module is established to calculate users’ reputation scores based on
their historical performance and select the proper users according to their instantaneous
reputation scores to complete the tasks efficiently and qualitatively. Then we analyze other
recruitment indicators and propose collaborative sensing user recruitment in detail. Finally,
we design a reputation-based collaborative user recruitment algorithm to guarantee the
task completion rate and maximize the sensing spatial coverage for tasks in MCS. Table 1
contains the key symbols and interpretations used in the algorithm.

Table 1. Symbols and interpretations.

Symbols Description

P Cloud Platform
U Users
θ Tasks

Sn Static nodes
σui (t) User reputation

B Total budget
<θj Task spatial coverage percentage
D Distance factor
C Cost for task
f Fitness function

α, β, ω, λ
η, µ, ϕ

Balancing coefficients

4.1. User Reputation

Intuitively, reputation is a key indicator for tasks to track users’ historical performance
and assess the accuracy of these sensing data [49]. In MCS, because of the users’ random
mobility, users can easily choose to participate in different tasks anywhere and at any time.
However, when the cloud platform P recruits users for tasks, past reputation scores only
represent the users’ previous performance and credibility. There are other parameters
that will have an influence on recruiting the appropriate users to complete the tasks, for
instance, distance, time limitation, and so on. Therefore, the user reputation score should
be comprehensively calculated based on past performance and current characteristics.

In our system, the cloud platform P publishes nsensing tasks θ = (θ1, θ2, . . . , θn). The
detailed information can be described as Fθ =

(
θ

typ
j , lθj , tθj , Rθj , Rωθj

)
. Then the cloud

platform P collects the information of all users and establishes a user reputation module to
evaluate the historical performance of the users and calculate their reputation scores, which
aims at selecting the proper users and promoting the whole performance on sensing and
computing for tasks. With increased participation time, users would have massive records
of their historical performance. However, as the former records will diminish values over
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time, these outdated data will be worthless and no longer reflect the real situation of users
at present. Consequently, we should pay more attention to the recent records.

Therefore, we introduce and improve Equation (6) [37] to estimate the users’ reputation
scores based on their past behavior. We give more weight to the last five user records and
deduce the user’s ui past reputation scores σui (t

−) before time t− as follows:

σui

(
t−
)
=

min(NMax
Complete ,5)

∑
NComplete=1

(
1
2

)
σ

NComplete
ui ,score , (6)

where NComplete denotes the number of tasks completed by user ui and σ
NComplete
ui ,score is the score

the task θ calculates after user ui accomplishes it. We comprehensively consider the spatial

and temporal coverage for the tasks, so σ
NComplete
ui ,score is defined by

σ
NComplete
ui ,score = α

Acov
ui ,θj

Acov
θj

+ (1− α)
Tui ,θj

Tθj

, (7)

where α denotes the weight coefficients ranging from 0 to 1. Acov
θj

represents the expected
sensing coverage area of the task θj and Acov

ui ,θj
is the coverage area that the user ui senses for

the task θj. Tui ,θj denotes the working time of user ui for the task θj and Tθj is the sensing

duration of the task θj. A larger value of σ
NComplete
ui ,score signifies the excellent performance of the

user for the task, which also shows higher reliability and credibility.
As we know, when the cloud platform P recruits users for task θj, the user reputation

module first calculates all the participants’ past reputation scores. Although past reputation
scores play an important role in users’ reliability and credibility, the cloud platform will
also consider real-time factors, for instance, distance and time limitations. We assume
that σinst

ui
(t) denotes the user’s instantaneous reputation score, which is limited by some

restrictions, such as the locations and sensing radius. So we can attain the instantaneous
reputation score σinst

ui
(t) of user ui for task θj as follow:

σinst
ui

(t) = βDi + (1− β)
Rui

Rθj

, (8)

where β is the weight coefficients ranging from 0 to 1. Rui is the sensing radius of user ui,
and Rθj represents the coverage radius of task θj. So Rui /Rθj indicates the coverage ability
of user ui for task θj. Di is the distance factor, which can be represented by

Di = 1−
(

Dui ,θj

/
Dmax

)
, (9)

where Dui ,θj represents the distance between user ui and task θj, and Dmax equals to
Rui + Rθj , which is the maximum distance the users can provide the coverage for the task.
Through Equation (8), we know that the instantaneous reputation score σinst

ui
(t) affects

whether a user would complete the task with high coverage and quality.
In addition, we consider all the factors to deduce the user ui reputation score σui (t)

equation at time t as follows:

σui (t) = ωσui

(
t−
)
+ (1−ω)σinst

ui
(t), (10)

where ω represents the balancing parameter ranging from 0 to 1.

4.2. Cost for Tasks

Generally speaking, in MCS, for any sensing tasks, there will be different constraints.
For example, air quality sensing needs sensing data in different periods at the same loca-
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tions, and autonomous driving will arrange the route in advance based on real-time traffic
conditions. In order to meet the various requirements of the tasks, we assume that each
task in each timeslot will recruit one user to sense and collect data, which can achieve the
goal of more effective sensing and maximum coverage.

No matter what kinds of nodes, the mobile users or the edge nodes, the participants
who are recruited by the cloud platform P execute the whole sensing process and complete
the tasks, which would have a cost, such as time and energy loss. Actually, when the users
or edge nodes perform the tasks, the longer the execution time is, the more energy will cost.
If the tasks need longer sensing time, the users or edge nodes will spend more time and
energy executing the tasks. Although participants are volunteers, they will ask for a reward
to cover their costs. In our system model, we assume that when each participant acquires
the information about task θj, there will be a cost representing the loss which is proportional

to the time they will spend performing the tasks. C
θj
ui is the cost of the user ui for task θj

and C
θj
Sn represents the sensing cost of the edge node Sn for task θj. For every task, it will

have a reward for the participants to encourage their contributions when they complete the
tasks and collect these expected data. Rωθj is described as the reward of the task θj.

In order to keep the budget balanced for each task, the cloud platform P will recruit
participants whose costs are below the reward of the task. Therefore, we can attain the
relationship between the costs of the participants and the tasks as follow:

Cθj
ui
≤ Rωθj , (11)

C
θj
Sn ≤ Rωθj . (12)

4.3. Reputation-Based User Recruitment

In our MCS system, we assume that in urban scenarios, there are plentiful mobile
users with intelligent devices randomly distributed in the city. They move at a constant
speed v to roam around the task locations. After the cloud platform P publishes the tasks
θtotal from some applications or the requesters, these mobile users U volunteer to take part
in these tasks, and they will choose what kinds of tasks to participate in according to the
information of the tasks. Hence, for each task θj, the cloud platform P will select the users
who are close to the task in time and space and whose costs are less than the reward as
the candidates. Then it will form a subset of users SCan for the task θj and choose the most
appropriate user to complete the task.

Then the reputation module will evaluate the performance of the users in SCan and
update their past reputation scores σui (t

−). The higher value σui (t
−) means that the users

ui have outstanding performance in the previous tasks with higher quality, which leads to
a higher possibility of being recruited for the next task. Through Equation (6), we focus on
the performance of the last five tasks the user participates in to attain the past reputation
score. Additionally, we consider other real-time factors, spatial and temporal constraints.
We calculate the user instantaneous reputation score σinst

ui
(t), which is related to locations

and sensing radius. Finally, the cloud platform can attain the user ui reputation score σui (t)
for the task θj at time t.

In order to maximize profits, we propose a Reputation-Based User Recruitment
(RBUR). The cloud platform P prefers to recruit users who can complete the tasks ef-
ficiently and achieve the maximum coverage qualitatively but require less reward for their
costs. Therefore, we establish a fitness function that is based on the user reputation and
cost for the task, which is given as follows:

fu = λσui (t) + (1− λ)

1−
C

θj
ui

Rωθj

, (13)
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where λ represents the balancing parameter ranging from 0 to 1, and Cθj
ui
≤ Rωθj . The

fitness function fu can provide strong guarantees by adopting the user reputation method
with the goal of improving the task completion rate and achieving higher coverage qual-
ity, meanwhile maintaining the proper tradeoff between the cost to the user and the
reward of the task.

4.4. Collaborative Sensing Method

Random movement by the vast number of mobile users in the city brings great
opportunity for MCS, but the significance of user mobility is two-fold. It makes ubiquitous
sensing possible, but it may lead to the uneven distribution of users in some regions.
For instance, because of the random movement of users, some sensing areas may have
insufficient or even very few users, which would prevent the cloud platform P from
recruiting a suitable user to finish the task. In this case, pre-deployed static nodes with
powerful sensing, collecting, computing, and communicating capabilities in the city can
supplement and collect the sensing information for the tasks.

In our system, there are some pre-deployed smart static nodes Sn that generally
perform other work or just stay asleep. When the cloud platform P is unable to find a
suitable user to execute the task, these static nodes can be the best substitute to sense the
expected data and achieve optimal coverage collaboratively. As these static nodes Sn usually
have more powerful sensing ability and radius than mobile users, we comprehensively
consider three factors: location, sensing radius, and cost. Hence, we deduce the fitness
function for the task to recruit the optimal static node, which is described as follows:

fSn = ηDSn + µ
RSn

Rθj

+ ϕ

1−
C

θj
Sn

Rωθj

, (14)

where DSn is the distance factor for the static node Sn similar to Di. RSn /Rθj represents
the coverage ability for Sn. η, µ and ϕ are the balancing coefficients and η + µ + ϕ = 1. In

addition, C
θj
Sn
≤ Rωθj .

4.5. Process of Reputation-Based Collaborative User Recruitment Algorithm

To help the cloud platform find the most suitable participant to accomplish the task
efficiently and qualitatively, we propose a reputation-based collaborative user recruitment
algorithm (RCUR) by introducing the user reputation method and collaborative sensing
with the purpose of achieving a higher task completion rate and bigger coverage. It is a
task-centered algorithm to improve the benefits of tasks and cloud platforms. Then we
apply the greedy algorithm to help us solve the problem. The specific process of the RCUR
algorithm is described as follows and shown in Algorithm 1.

After the cloud platform P publishes the tasks θ =
(
θ1, θ2, . . . , θj

)
from some applica-

tions or the requesters, these mobile users U volunteer to take part in these tasks, and they
will choose what kinds of tasks to participate in according to the information provided
on the tasks. According to Equation (2), in order to achieve the goal of maximizing the
sensing spatial coverage area of the tasks, the problem of user recruitment can be expressed
as Maximize∑<θj . However, it is difficult to find the optimal user set for the whole task.
Hence, the greedy algorithm is used to solve this issue. We divide the whole problem into
several sub-problems and find the optimal solution for each sub-problem. In our system,
for each task θj, the cloud platform P will select the users who are close to the task in
time and space and whose costs are less than the reward as the candidates. It will form
a subset of users SCan = (u1, u2, . . . , ux) for the task θj. Then the user reputation module
will evaluate the performance of the users in SCan and update their past reputation scores
σui (t

−). Then P calculates the user’s instantaneous reputation score σinst
ui

(t). Finally, P can
attain the user ui reputation score σui (t) for the task θj at time t.
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Algorithm 1: A reputation-based collaborative User Recruitment algorithm (RCUR) in
edge-aided MCS

Input: input U, θ

Output:
1: for u in U do
2: Dui ,θj ≤ Dmax,tui ∈ tθj

3: form the candidate set SCan = (u1, u2, . . . , ux)
4: end
5: for u in SCan do
6: Update their past reputation scores σui

(
t−
)

7: Calculate the user instantaneous reputation score σinst
ui

(t)
8: Get the user ui reputation score σui (t)
9: Calculate fu of u ∈ SCan
10: Select ui ∈ SCan who has max fu
11: end
12: if SCan = ∅
13: Calculate fSn of Sn
14: Select Sn that Maximize fSn

15: end

Next, for each task θj, we establish a fitness function fu that is based on the user
reputation and cost for the task to recruit the most suitable user to meet the requirements
of the task. However, in some areas with insufficient or very few users, we further utilize
the static nodes to supplement and replace the users to collect the sensing information for
the tasks. After that, we comprehensively consider the locations, sensing radius, and cost,
then deduce the fitness function fSn for the task to recruit the optimal static node.

In different conditions, our proposed RCUR algorithm presents two fitness functions
fu and fSn , then selects the most suitable participant based on the highest value of the fitness
function to accomplish the tasks. For all tasks, the greedy algorithm is adopted to help the
cloud platform select the most suitable user or edge node for each task. When all tasks time
end, the user or the edge node for each task will form the solution set for all tasks.

5. Simulation and Numerical Results

In this section, extensive simulations are performed to verify our proposed reputation-
based user recruitment algorithm (RBUR) and reputation-based collaborative user recruit-
ment algorithm (RCUR), then compare the performance with the other three benchmark
methods. We apply the RCUR algorithm to the custom simulator, which is called CrowdSen-
Sim [50], to help us conduct the experiments in realistic urban scenarios. In our simulation,
we select a rectangular area of 10 km × 10 km in the real city of Ottawa as the experimental
space similar to Figure 2, and there are three important components which are users, tasks,
and edge nodes. The mobile users who take the intelligent devices are randomly distributed
and wander along the streets in the city at a speed of 1m/s in this area. The number of

mobile users ranges from 5000 to 25,000, and the relevant details Fu =
(

lui , Rui , σui , C
θj
ui

)
of

the mobile users U will be set up randomly before the experiments start. In the beginning,
the users’ reputation scores are the same. As a user completes tasks, the value of their
reputation score will change based on the quality of the completed tasks. Meanwhile,
there are some edge nodes pre-deployed along the street in this area, and we set the key
parameters according to [22]. Then the cloud platform will publish a certain number of
tasks at different locations with different budgets in this area, which varies [50, 250] and
divide each task into 10 timeslots, in which the cloud platform will select the best suitable
user or edge node based on the fitness function to complete the tasks. We list the detailed
experimental settings in Table 2.
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Table 2. Experimental settings.

Parameters Value

Number of users [5000, 25,000]
Number of tasks [50, 250]

Coverage radius of task [20, 50]
Number of edge nodes [30, 70]

Budget [100, 200]
Initial user reputation [0.2, 1.0]

Cost [0, 2.0]
Sensing radius of user [5, 25]

Sensing radius of edge nodes [20, 30]
Evaluation period 8:00 AM–20:00 PM

Task duration 30 min
Timeslot duration 3 min

Balancing coefficient
α, β, ω, λ

η, µ, ϕ

0.6, 0.6, 0.5, 0.7
0.3, 0.4, 0.3

In our study, we choose three benchmark algorithms, including a participant recruit-
ment method aiming at service quality (PRSQ) [51], a budget re-distribution algorithm for
edge nodes user recruitment (BRD-ENUR) [47], and a basic wireless sensor network (WSN)
sensing method (B-WSN). Then we compare them with our proposed RBUR and RCUR
algorithms to verify their effectiveness and efficiency. The PRSQ algorithm constructed
a quality of service model based on the accumulated reputation and willingness of par-
ticipants, then selected the most suitable participants to ensure the QoS. The BRD-ENUR
introduced edge computing into MCS. Then it estimated the quality of sensing data accord-
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ing to the participant’s reputation and proposed the algorithm to recruit users statically.
B-WSN was the fundamental sensing algorithm and chose the static nodes to complete
the tasks. The differences between these five algorithms are listed in Table 3. Finally, we
perform the experiments over 100 runs and obtain the average values to compare these
five algorithms in some metrics, such as the task completion rate, task coverage rate, etc.
As we know, the tasks will be divided into 10 timeslots. We assume that when more than
half of the timeslots of one task are finished by the participants, we can define the task as
completed. So we can calculate the overall task completion rate based on the completion of
the task’s timeslots. Moreover, according to Equation (1), the coverage rate of one task can
be defined as the value of the sensed coverage area by user or edge node divided by the
expected sensing coverage area of the task in certain time limitations.

Table 3. Differences between these four algorithms.

Algorithm Sensing
Participants Key Factor Advantage

RBUR Mobile users Reputation Ensure sensing task quality on
a limited budget

RCUR Mobile users,
edge nodes Reputation Mobile users and edge nodes

collaboratively sense the whole task

PRSQ Mobile users Reputation
Willingness Ensure sensing task quality

BRD-ENUR Mobile users Reputation Introduce edge nodes to reduce the time
delays and computational complexity

B-WSN edge nodes Distance Edge nodes have bigger coverage

In Figure 3, we evaluate the performance of these five algorithms under the various
number of users when we set the tasks = 100, edge nodes = 50, and budget = 150. From
Figure 3a, we compare the task completion rate and find that our proposed RCUR is more
outstanding than the other three benchmark algorithms. The RBUR is closer but better than
the PRSQ and BRD-ENUR. In contrast, B-WSN maintains a relatively low task completion
rate. Figure 3b demonstrates that our RCUR also can achieve a higher task coverage rate
than other algorithms. By taking into account multiple factors, the RBUR has a better
result than the PRSQ and BRD-ENUR. Since B-WSN depends on the sensing and cover
ability of the edge nodes, which are less numerous than mobile users, it only selects edge
nodes to sense these data and complete tasks. As the number of mobile users increases,
MCS algorithms will have a larger user pool to find the most suitable user to complete
each task. The more mobile users that participate, the higher possibility the tasks can be
completed. Even more, a more covered area can be attained. As a result, when the number
of users ranges from 5000 to 25,000, the performance of three algorithms in MCS shows an
upward trend both in the task completion rate and the task coverage rate. However, our
proposed RCUR approach not only recruits the appropriate mobile user to finish tasks but
also utilizes the edge nodes as a supplement when there are no available users in some
sensing areas. Hence, the performance of RCUR is better than others.

In Figure 4, when we set tasks = 100, users = 10,000, and budget = 150, we tried to
discuss how the task completion rate and task coverage rate change when the number
of edge nodes increases. Figure 4 illustrates that there is a huge difference between our
proposed RBUR, RCUR, and the other three algorithms. Although BRD-ENUR introduces
edge nodes into the MCS system, it only takes these nodes as edge platforms which can
reduce storage and computing load in the cloud platform. RCUR and B-WSN make full
use of the enhanced sensing ability of these edge nodes to sense the data and cover the
sensing areas. Therefore, when there are more and more edge nodes in the sensing areas,
each task will have more options to find the optional solution, which can give rise to a
great improvement in the task completion rate and task coverage rate. From Figure 4,
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we can see that when the edge nodes are equal to 30, RUCR is slightly better than PRSQ
and BRD-ENUR both in the task completion rate and task coverage rate. The RBUR
remains unchanged, while the B-WSN stays at a low value. With the number of edge
nodes growing, Figure 4a indicates that RCUR is improved from 72% to 85%, and B-WSN
has a great improvement from 38% to 66% in task completion rate. The reason is that
while our RCUR takes the edge nodes as a collaborative sensing method, it mainly recruits
mobile users to finish the tasks. Consequently, it does not attain much improvement over
the B-WSN. In Figure 4b, the task coverage rates of RCUR and B-WSN also present an
increasing trend, and our RCUR always outperforms other algorithms.
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Figure 3. Performances under various numbers of users. (a) Task Completion Rate; (b) Task
Coverage Rate.
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When we set tasks = 100, users = 10,000, and edge nodes = 50, it can be seen from
Figure 5 that the task completion rate and task coverage rate increase substantially with the
total budget growing. Since PRSQ and B-WSN do not consider the budget, as the value of
the total budget changes, the performances of the task completion rate and task coverage
rate of PRSQ and B-WSN remain constant. While our RBUR, RUCR, and BRD-ENUR take
the budget as an important consideration, the three curves remain in an upward state with
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the increasing value of the budget, and RBUR is very close to BRD-ENUR. When the budget
is equal to 100, we can find that RUCR and BRD-ENUR only achieve 45% and 39% task
completion rates in Figure 5a, meanwhile 30% and 26% task coverage rates in Figure 5b.
With the increasing budget, the performances have a rapid growth when budget = 200.
The reason is that the limited budget will reduce user enthusiasm, and the task rewards
may not cover the user costs. When the total budget expands, more users will be more
willing to take part in the tasks, so the platform will have a greater possibility to select the
suitable user for each task. Compared with the BRD-ENUR, under the same condition, our
RUCR effectively combines the capabilities of mobile users and edge nodes so that this
collaborative sensing method can provide strong guarantees for task completion and task
coverage. Therefore, our RUCR is more excellent than the BRD-ENUR approach, no matter
the value of the budget.
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In Figure 6, we verify the relationship between the performance of the task completion
rate and task coverage rate with the varying number of tasks. Through the comparison
with the other three algorithms, our RCUR displays a better performance, and all of the
algorithms show a downward trend with the number of tasks increasing. When the
number of tasks is equal to 50, it is obvious that our RCUR significantly outperforms the
other three benchmark algorithms. However, when the number of users and edge nodes
remains unchanged, more tasks mean that there are not sufficient users or edge nodes to be
candidates, which cannot guarantee the task completion rate. Furthermore, the platform
may not find the most suitable participant to complete the task and ensure coverage. From
Figure 6a, it can be seen that when the tasks increase to 250, our RCUR decreases from 87%
to 59% in terms of the task completion rate but is still far superior to other algorithms. The
results in Figure 6b are just as we expected that our RCUR takes a huge advantage in the
performance of task coverage rate.

In Figure 7, we compare the task completion rate and task coverage rate of our RCUR
approach with the other three algorithms under the different values of the initial user
reputation. As we know, We except for the B-WSN algorithm, the other algorithms regard
the user reputation as a fundamental consideration and recruit the participant based on
the user reputation. However, our RBUR and RCUR not only evaluate the user’s past
reputation scores according to historical performance. Furthermore, it also takes account
of the instantaneous reputation score and combines them to attain the user reputation.
Figure 7a indicates that the performance of these algorithms has a slow growth with the
initial reputation increasing. However, our RBUR and RCUR occupy the leading position
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in terms of task completion rate. When the value of a user’s initial reputation increases,
it means that there will be more users who can meet the requirement of the tasks and
can be potential participants in finishing the task. In Figure 7b, we can observe that the
increasing value of the initial reputation will have a more obvious influence in terms of the
task coverage rate. This is because our RBUR and RCUR approach take the cover ability
of the user as a vital indicator of the instantaneous reputation so that the platform will
relatively select the user who may have the better cover ability to complete the task.
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Figure 8 illustrates that the values of the user sensing radius have a significant impact
on the task completion rate and task coverage rate. The user sensing radius represents
the user’s cover ability, which means that the user is able to provide a guarantee for task
coverage. From Figure 8a, we can clearly see that when the value of the user sensing
radius becomes bigger, mobile users have more powerful sensing and cover ability, so
the four algorithms in MCS have an improvement in terms of the task completion rate.
Furthermore, similar to Figure 7, the results have proven that user sensing radius is a
contributing factor to the task coverage rate in Figure 8b. When the user sensing radius is
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equal to five, the limited cover ability cannot satisfy the task’s constraints, so all algorithms
attain a relatively low task coverage rate. With the user sensing radius increasing, in some
cases, the tasks may be completely covered by the mobile users. Meanwhile, due to the
collaborative sensing by the mobile users and edge nodes, our RCUR can achieve a better
performance compared with other algorithms.
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6. Conclusions and Future Work

The emergence of the Internet of Things and the widespread popularity of intelli-
gent mobile devices enable Mobile CrowdSensing (MCS) to be a convenient platform for
many applications. Meanwhile, the introduction of edge computing has also accelerated
the development of MCS. However, how to make MCS more efficient and utilize edge
computing technology has raised huge challenges. Hence, designing a reasonable user
recruitment algorithm to find suitable users and take full advantage of edge nodes in order
to improve the task completion rate and coverage rate has become increasingly important
and urgent. In this study, we propose a reputation-based collaborative user recruitment
algorithm (RCUR) under a certain budget in an edge-aided Mobile CrowdSensing system.
We first introduce edge computing into MCS and build an edge-aided MCS system in urban
scenarios. Moreover, we analyze the influence of user reputation on user recruitment. Then
we establish a user reputation module to evaluate the user’s past reputation score based on
the previous performance, which indicates the users’ reliability and credibility. Then we
jointly consider the distance and coverage ability of the user to calculate the instantaneous
reputation score. Thus, we deduce the user reputation equation by combining the user’s
past reputation score with the instantaneous reputation score. Finally, we utilize the sensing
ability of edge nodes and design a collaborative sensing method. We use the greedy method
to help choose the appropriate users for the tasks. Simulation results compared with the
other three algorithms prove that our RCUR approach can significantly achieve better
performance in task completion rate and task coverage rate.

A dynamic user recruitment algorithm is one of our future works. Generally speaking,
user recruitment always recruits one participant to accomplish a certain task. However,
when the tasks require more users to sense these data, how to design an optimal algorithm to
select a set of users has been an important problem in MCS. Meanwhile, how to dynamically
determine the number of required users for the tasks according to the user’s characteristics,
such as cover ability, reputation, and cost, is also a tough problem. In the future, we will
concentrate on this dynamic user recruitment in MCS.
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