
Citation: Oujana, S.; Amodeo, L.;

Yalaoui, F.; Brodart, D. Mixed-Integer

Linear Programming, Constraint

Programming and a Novel Dedicated

Heuristic for Production Scheduling

in a Packaging Plant. Appl. Sci. 2023,

13, 6003. https://doi.org/10.3390/

app13106003

Academic Editors: Zoran Jurković,
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Abstract: In this paper, we are discussing a research project aiming to optimize the scheduling
of production orders within a real application in the packaging field. As a first approach, we
model the problem as an extended version of the hybrid and flexible flowshop scheduling problem
with precedence constraints, parallel machines, and sequence-dependent setups. The optimization
objective considered is the minimization of the total tardiness. To tackle this problem, we use two
methodologies: mixed-integer linear programming (MILP) and constraint programming (CP). These
two models were further extended by adding resource calendar constraints named also availability
constraints; this implies that the tasks should be scheduled only when the machine is available.
The different proposed models were compared to each other on a set of generated benchmarks that
reflect the specific properties of the industrial partner. Finally, as the studied configuration relies on
practical real-world application, where thousands of orders are produced monthly, a novel dedicated
heuristic was designed to address the need for quick solutions. The latter outperforms the other
proposed algorithms for expected total tardiness minimization. The proposed problem can be readily
modified to suit a wide range of real-world situations involving the scheduling of activities that share
similar characteristics.

Keywords: scheduling; optimization; mixed-integer linear programming; constraint programming;
dedicated heuristic; tardiness

1. Introduction

Effective production planning and scheduling attract continuous interest from man-
ufacturing companies, which is a good way to add flexibility to the business, to meet
the deadlines promised to the customer, and to ensure the best production efficiency by
balancing production needs with available resources, all at minimal cost. From this point
of view, the use of robust tools for production scheduling remains a strategic issue because
they enable optimizing production and meeting market challenges.

Scheduling is the operational organization of production in the workshop by decid-
ing the order in which tasks pass through the machines, respecting a certain number of
constraints to which the workshop is subjected, and according to optimization criteria
considered for decision making. In other words, the schedule can be defined as follows:
assign the task ‘i’ to the machine ‘k’ at a given time ‘t’ while considering, for example, the
operator ‘p’ equipped with the tool ‘o’ and the mater ‘m’.

Among different workshop configurations, a flowshop scheduling problem (FS) arises
in the context of repeated production, where jobs are required to visit the stages in the
same order and undergo identical processing operations; in other words, all operations
of all tasks go through the machines in the same order. In order to cope with real-world
problems, improve the overall capacity, add additional flexibility to the production, and
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avoid bottlenecks if some operations are too long, it is possible to multiply the number
of machines that can perform the same operation. The resulting model is known in the
literature as hybrid flowshop (HFS), also called flowshop with parallel machines; it consists
of a set of processing stages, in which each stage may have several identical or non-
identical machines, with at least one stage having two or more parallel machines. The
classical hybrid flowshop assumes that all jobs need to visit all stages in the same order.
However, in practice, each job might miss out or skip some stages, which can improve the
performance of the model and make it better suited for real-world industrial settings. HFS
scheduling problem with stage skipping is also called hybrid flexible flowshop scheduling
problem. The configuration under study is described in Figure 1.
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Figure 1. Studied configuration.

In hybrid and flexible flowshop (HFFS) scheduling problems, two decisions should be
taken: the assignment of jobs to the parallel machines as well as the sequencing of the jobs
allocated to each machine. This problem is known to be NPhard in its simple version and
in most of its extensions. As an example, Hoogever et al. [1] demonstrated that preemptive
scheduling in a two-stage flowshop with at least two identical parallel machines in one
of the stages so as to minimize makespan is NP-hard in the strong sense. Gupta et al. [2]
considered a non-preemptive two-stage hybrid flowshop problem in which the first stage
contains several identical machines and the second stage contains a single machine; they
demonstrated that the problem is NP-hard in the strong sense even when there are only
two machines at the first stage. HFFS scheduling problem has been widely applied in
various manufacturing environments, and several realistic constraints were considered.
A fair amount of research has focused on a variety of realistic constraints, ranging from
sequence-dependent setup times, constraint calendar, transportation time, due dates, and
so on. Furthermore, several optimization criteria were considered, covering the commonly
used makespan, costs, transportation, maximum tardiness and earliness, and the total of
tardy job.

In this paper, we make three significant contributions. Firstly, we introduce novel
CP and MILP models that take into account specific constraints, including sequence-
dependent setups and resource calendar constraints. Secondly, we assess the performance
of both models using real industrial benchmarks. Lastly, we propose a dedicated heuristic
that effectively addresses the need for fast computation times in practical real-world
applications, such as the one studied in this paper, where thousands of orders are produced
each month.

The remainder of this paper is organized as follows: Section 2 reviews the state of
the art regarding the related papers. The problem description is presented in Section 3.
In Section 4, we formulate all the proposed resolution models (MILP, CP, and a novel
dedicated heuristic). The computational experiments, allowing to evaluate the performance
of the proposed models, are presented in Section 5. Finally, in Section 6, we present the
conclusions of our work.
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2. State of the Art

The area of flowshop scheduling has been a very active field of research. It was first pro-
posed by Johnson in 1954. Since then, several approaches have been proposed and numerous
optimization objectives were considered. The current trends that attracted researchers during
the last decade in scheduling problems are toward integrating practical constraints. Among
all, we can point out setup time, resource calendar, and machine flexibility.

2.1. Constraints
2.1.1. Setup Constraints

Setup time, also called changeover, is a very important factor in the packaging industry
because it may have a significant impact on the overall production cycle. It denotes the
required time interval to prepare the necessary material resources. In many real-life
situations, a setup often occurs while shifting from one operation to another. Setup time is
classified into two categories: sequence-independent setup time and sequence-dependent
setup time. Sequence-independent setup time depends solely on the current task regardless
of its previous task. Sequence-dependent setup time depends on both the current and
immediately preceding task [3,4].

There has been a growth in interest in incorporating setup times in many studies. The
main reason why researchers have been motivated to utilize this assumption is to solve
scheduling problems in a real manner [5] Liu and Chang [6] addressed the problem of
Fm|Stsd, Csd, ri|∑ STi, Ci . They first formulated the problem as an integer programming
problem. Then, they employed a Lagrangian relaxation approach and finally developed
a search heuristic. Three major types of heuristics were proposed by Kurz and Askin [7],
who explored the Fm|Stsd, Csd, ri|∑ Ci problem, namely insertion heuristics (based on
insertion heuristics for the traveling salesman problem), Johnson’s algorithm, and a set of
naïve greedy heuristics. They investigated these three patterns and identified the range
of conditions under which each method performs well. Salmasi et al. [8] proposed a
mathematical programming model for Fm|fmls, Stsd|∑ Ci as the problem is proven to
be strongly NP-hard; two heuristic algorithms, tabu search (TS) and hybrid ant colony
optimization (HACO), were developed to solve the problem. In addition, a lower bounding
method based on the branch and price algorithm was developed to assess the performance
of the metaheuristic algorithms. An et al. [9] considered the F2|wt, Stsd|Cmax problem; they
developed several dominance properties, lower bounds, and heuristic algorithms and used
the latter to develop an efficient branch and bound algorithm. Cheng et al. [10] tackled
the Fp

∣∣Stsd
∣∣Cmax problem; they proposed a mixed-integer linear programming model to

solve small-sized instances. Due to the strong NP hardness of the research problem, an
effective metaheuristic, called pairwise iterated greedy (PIG) algorithm, was proposed
to solve medium- and large-sized problems. Rossi and Nagano [11] proposed a mixed-
integer linear programming (MILP) model for Fm|Stsd|∑ Ti problem. They proposed a
method to evaluate the total tardiness of a permutation sequence and also introduced a
partial acceleration method to calculate the total tardiness in an insertion neighborhood. In
addition, they developed a new heuristic to solve the problem efficiently. This heuristic
was then integrated into the best metaheuristics available in the literature. Kare and
Agrawal [12] studied the Fm|Stsd|∑ wTi, wEi problem. Three evolutionary metaheuristics
were proposed.

2.1.2. Resource Calendar Constraints

Another common and practical constraint found in real environments is to consider
the resource calendar. The traditional scheduling problem assumes that machines are
continuously available. However, in reality, this is often not the case due to non-availability
periods, such as maintenance, vacations, leaves, and so on. Considering these time-off
periods for resources is crucial for accurate and realistic scheduling. This helps to deter-
mine when resources are available to work on assigned tasks, ensuring that work is only
scheduled during available times.
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Machine availability constraints encountered in real-world environments can be clas-
sified as either fixed or non-fixed [13]. For fixed constraints, the intervals of unavailability
are predetermined, whereas they are unknown for the non-fixed constraints. Unavailability
periods can also be categorized based on operation preemption as non-preemptive [14],
crossable or non-crossable [15], or resumable, semi-resumable, or non-resumable [16]. An
operation is known as non-preemptive when its processing on a machine cannot be in-
terrupted until it is totally completed, and after that the concerning machine switches
to another operation. An operation interrupted by an unavailability period is called re-
sumable when its processing can continue during the next availability period. It is called
non-resumable if it has to restart from the beginning when the performing machine is avail-
able again. An operation is known as semi-resumable if it has to partially restart during
the next available period. There is other terminology introduced by Mauguière et al. [15].
It concerns unavailability periods allowing interruption of operations: crossable and non-
crossable unavailability periods. An unavailability period that allows an operation to
be interrupted and resumed after the unavailability period is called crossable, while an
unavailability period that does not allow the interruption of any operation is known as
non-crossable. Figure 2 gives a description for the notation used for interruptible and
non-interruptible operations.
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Bentalleb et al. [17] consider a deterministic case where unavailability periods are
known in advance and fixed and correspond to preventive maintenance tasks. They tackled
a two-machine job shop scheduling problem with an availability constraint on one machine
under makespan minimization. First, two mixed-integer programming (MIP) models were
proposed and then some heuristics were performed to solve the problem. Azem et al. [18]
investigate the job shop problem where operations can be interrupted by resource unavail-
ability periods. They propose approximation methods based on construction heuristics.

Surprisingly, the literature on the flowshop scheduling problems with resource calen-
dar or fixed machine availability is not abundant. Aggoune et al. [14] address the flowshop
scheduling problem with limited machine availability under the makespan criterion and un-
der the assumption that the machines are not available during the whole planning horizon.
They propose a heuristic approach based on the geometric approach to approximately solve
the problem. Figealska [19] studied the problem of preemptive scheduling in a two-stage
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flowshop with parallel unrelated machines under makespan minimization. Heuristic algo-
rithms were proposed based on combined linear programming procedures and a genetic
algorithm. Laribi et al. [20] investigate an extension of the classical flowshop scheduling
problem to the case where jobs processing requires additional nonrenewable resources; the
goal is to minimize the makespan. They propose an efficient mathematical model.

2.1.3. Machine Flexibility Constraints

In a modern manufacturing unit, machine flexibility is a very important feature that
enables increasing the overall workshop capacities, reducing or eliminating the impact of
bottleneck stages and balancing the capacities of the stages for the overall workshop. Such a
production unit is characterized by several stages. Each stage is made up of a set of parallel
machines. At some stages, the machines are duplicated and a job can be processed on any
machine. A flowshop with parallel machines is also known as a multiprocessor flowshop,
flexible flowshop, or hybrid flowshop. Machine flexibility has attracted much attention
from researchers in recent years. There are several examples provided in the literature,
including steelmaking [21,22], industry [23], as well as the semiconductor industry [24,25].
Odugawa et al. [26] provide a survey on several real-world applications, ranging from the
metal forming industry to the paper industry to the chemical industry. Some researchers
address real-world problems in their papers.

Kochhar et al. [27] exhibit a local search approach to solve highly realistic flexible flow
line scheduling with setups, buffer capacities, as well as blocking and breakdowns. Several
heuristics are provided by Botta-Genoulaz [28] for the flowshop scheduling problem with
multiple identical machines per stage, precedence constraints and time lags, and setups.
Ruiz and Maroto [29] provide a metaheuristic, in the form of a genetic algorithm, to
a complex generalized flowshop scheduling problem that results from the addition of
unrelated parallel machines at each stage, sequence-dependent setup times, as well as
machine eligibility. Naderi et al. [30] investigate the problem of hybrid flexible flowshop
(HFFS) with sequence-dependent setups, where the objective is to minimize the makespan.
They put forward two advanced algorithms that effectively handle the flexible and setup
features of this problem. Chen [31] proposed an integer hybrid metaheuristic based on
the principles of variable-neighborhood descent and TS for unrelated parallel machines
problems with ready times and sequence- and machine-dependent setup times to minimize
the weighted number of tardy jobs.

While many papers in the literature have tackled various realistic considerations and
constraints, to the best of our knowledge, there has been no effort to jointly address the set
of realistic constraints incorporated in the problem formulation of our paper, which include
sequence-dependent setups, machine flexibility, and resource calendar constraints.

2.2. Optimization Criteria

Setting the correct optimization criteria or objectives for a scheduling problem is
not always an easy task as they are diverse, convoluted, and often conflicting. Plenty of
scheduling problems have been studied considering several criteria. The most considered
are makespan (Cmax), total flow time, total tardiness, maximum tardiness, and number of
tardy jobs. Makespan and total flow time seek the effective utilization of the manufacturing
resources by reducing the elapsed time between the start and the completion of a sequence
of operations in a set of machines, while the remaining criteria are related to job due dates.
In fact, makespan minimization is significantly important in order to upsurge the utilization
of the production system. However, in today’s competitive environment, focusing on
makespan minimization without meeting the due date is of no use for an industry since
meeting customer deadlines is crucial. According to Sen and Gupta [32], when a task is
not completed before its due date, some penalties are incurred, such as potential loss of
customers, damaged reputation, loss of market competitiveness, penalty clauses if there
are any, as well as expediting (the job is assigned quickly to the processing machine at
the possible cost of extra setups, double handling of material, inefficient use of workmen
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and machine), etc. Hence, scheduling problems with tardiness objectives have attracted
increasing attention from managers and researchers. Table 1 provides a summary of several
significant studies that focus on the tardiness objective. The “Constraints” column contains
the various constraints that were taken into account in these studies. The “//m” column
refers to parallel machines, the “STsd” column pertains to sequence-dependent setups, the
“di” column represents due date constraints, the “wi” column represents waiting time, and
finally the “ri” column represents release date constraints.

Table 1. Important studies on scheduling problems with tardiness objectives.

Objective Function Year Author Reference
Constraints

Approach
//m STsd di wi ri

Total weighted
tardiness

1997 Lee and Pinedo [33] X X X
Dispatching rule ATCS (Apparent Tardiness
Cost with Setups)

2000 Park et al. [34] X X Dispatching rule
2009 Naderi et al. [35] X X MIP and EMA metaheuristic
2013 Xi and Jang [36] X X Dispatching rules (ATCS)
2020 Diana et al. [37] X X VND metaheuristic

Total tardiness

2009 Chen [31] X X X Hybrid Approach (ATCS+SA)
2014 Herr and Goel [38] X X MIP
2015 Liang et al. [39] X ACO algorithm
2018 Lee [40] X Random iteration greedy metaheuristic
2020 Rossi and Nagano [11] X MILP, heuristics and metaheuristics

Makespan and total
tardiness/tardy jobs

2009 Naderi et al. [41] X X SA algorithm
2013 Tran et Ng [42] X A hybrid water flow algorithm
2018 Allahverdi et al. [43] X AA algorithm

2021 Wan et al. [44] A pseudo-polynomial algorithm and a dual
FPTAS

2022 Allali et al. [45] X MILP and metaheuristics (GA, ABC, MBO)

Tardy jobs

2017 Aydilek et al. [46] A DR algorithm
2019 Najat et al. [47] X Mathematical programming and heuristics
2021 Della Croce et al. [48] X Exponential time approximation algorithms
2022 Hejl et al. [49] X A decomposed ILP model

Bi-objective
Sum of weighted

earliness and
weighted tardiness

2008 Behnamian et al. [50] X
A hybrid metaheuristic algorithm that
combines ACO, SA, and VNS

2009 Behnamian et al. [51] X Three hybrid metaheuristics

2011 Behnamian et
Zandieh [52] X X X A discrete colonial competitive algorithm

2019 Otten et al. [53] X Heuristic
2020 Schaller and valente [54] X BB and heuristics
2020 Kellerer et al. [55] FPTAS

3. Problem Description

The problem under study corresponds to a real industrial problem of a packaging
company that prints, on average, 1000 jobs per month. The operations can be categorized
into four main groups, ranging from the preparation of printing materials to the printing
process and shifting process (winding, perforation, and coating) and finally shaping process
aiming to make orders into their final form. Moreover, it is important to point out that this
process is characterized by flexibility, where machines might be skipped and not all the
machines must be visited by all the jobs.

A job i consists of a number n of operations; each operation Oij can be processed
by a subset of machines and has a processing time on machine k, and it may be zero for
some jobs as the jobs are not processed in some stages (skipping). Note that pi denotes the
processing time of job i.

Before starting processing, a setup time (ST) is needed between each of two consecutive
scheduled jobs on each machine. That is to say that, to transition from the processing of
the current operation Oij to the next one Oi’j’ on machine k, some setup settings must be
implemented according to the characteristics of each operation, such as color, size, etc. An
example of setup for the printing phase consists of removing the ink colors not required for
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the next job on that printing machine to free up the ink trays for colors that are required
for the next job. Transitioning from one job to another requires to change ink colors. The
time required to set up one job for the printing phase can be divided into three steps: the
first one to empty the tray from the previous ink, the second one to clean the ink tray, and
the last one to reload the appropriate ink color. The global needed setup time depends on
the number of color changes. On average, the significant setups may contribute to 40% of
the global printing step, including processing time and setup time. However, if a job “i”
requires the same color as the previous job “i− 1”, then the setup time for this color may
be avoided because the considered printing machine is already loaded with appropriate
color and, therefore, major setups are not needed. The setup time duration is correlated to
the setup settings’ similarities between two consecutive operations. The more resemblance
the operations’ settings, the shorter the machine setup.

Another important feature of the considered problem is resource calendar constraints
(RC), which allow to set the work shifts of all machines. The work shift is a segment of
continuous available times of a machine. This means that machines are available only
during working times in the calendar. These unavailability periods are the consequence of
shift patterns or planned maintenance. On the other hand, the machine setup cannot be
interrupted by unavailable periods, and the end of the setup must be immediately followed
by the beginning of the operation processing. Furthermore, a transportation time is needed
to transport a job from the current processing machine to the next one.

Based on the key features of the considered production system, a production schedule
should be planned to maximize the production effectiveness so that the printing line
can gain as much production benefit as possible. The production effectiveness can be
represented by an objective function that should be defined based on the production targets
of the problem. In flexible manufacturing plants operating in a make-to-order environment,
the efficient utilization of manufacturing resources is typically pursued to meet delivery
deadlines. Thus, in our case, we aim to minimize the total tardiness of all jobs, meaning
that we seek to find a job sequence that minimizes the total amount of time by which all
jobs are completed after their due dates.

The production problem can be described as a hybrid and flexible flowshop with nine-
teen unrelated parallel machines, denoted using the classical Graham notation
HFF19

∣∣∣Prec, STsd, RC, di

∣∣∣∑n
j=1 ti [56]. This classification is based on the features mentioned

above, and it is commonly used to represent production systems.
As the first systematic attempt to solve this problem, we construct a mathemati-

cal model in the form of mixed-integer linear program (MILP) that considers sequence-
dependent setups; we then add waiting constraints and evaluate how it behaves, and,
finally, we added resource calendar constraints that enhanced the complexity of the prob-
lem. The objective is to both assign jobs to one machine at each stage and then sequence
jobs on machines to minimize the total tardiness.

If the completion time of a job is greater than its due date (Ci > di), then it is called
tardy and tardiness takes positive values. Otherwise, it becomes an early job with a
tardiness value equal to zero (ti = max(0, Ci − di )).

4. Model and Notations

Job characteristics are modeled as follows:
Let N be the number of jobs to be scheduled. Each job i(i = 1 . . . N) is composed of

a set of operations Ji that must be processed according the defined processing route. Let
M be the number of all available material resources “machines”. For each operation j,
let mj⊂ M be the set of operations that can perform j ∈ ji and pik be the corresponding
processing times.

To transition from executing operation Oij to operation Oi’j’ on machine k, a setup
time stiji’j’k must be incurred. In our problem, the setup time for a job is dependent on
the previous job that was processed on the same machine and thus on the job processing
sequence. For each machine K(k = 1 . . . m), let lk be the number of unavailability periods
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and
[

υl
k,
−
υ

l

k

]
the time window of unavailability of material resource k ∈ m. The processing

of each job on the latter can only be preempted by this interval
[

υl
k,
−
υ

l

k

]
and resumed once

the machine becomes available. Let di denote the due date and specify the time limit by
which job i ∈ N should be completed. The number of jobs, their respective processing
times, and due dates are predetermined and known beforehand. Each machine has a
capacity and can only process one job at a time. A machine can only process one operation
at a time. The processing of the latter can be interrupted by an unavailability period. Setups
cannot be interrupted by an unavailability period and should occur when the machine is
available during the setup interval, and, once completed, the processing of the associated
operation should start. There is no limit on the capacity of the intermediate stock (buffer)
between the production stages. Finally, the objective is to minimize the total tardiness.

The notation used in this mathematical modelling is summarized in Tables 2 and 3:

Table 2. Notation used for the problem data.

Problem Data

i, i’ Index for jobs where i, i’ ∈ {1, . . . ,N}.
j Index for operations.
O The total number of operations.
Oij The jth operation of job i ∈ N.
k Index for machines where k ∈ {1, . . . , m}.
M Number of all material resources.
N Number of jobs to be scheduled.
Ji Set of operations of job i ∈ N.
Pi Processing time job i ∈ N.
di Due date of job i ∈ N.
mj⊂ M Set of material resources that can perform the operation j ∈ ji.

Stiji’j’k
Setup time to pass from the execution of an operation Oj to
operation Oj′ on machine k.

BigM A very large number.

mij ∩mi’j’
Set of machines on which operations j of job i and j’ of job i’ can
be processed.

lk The number of unavailability periods on machine k ∈ m.

υl
k

The starting time of the lth unavailability period of material
resource k ∈ m.

−
υ

l
k

The ending time of the lth unavailability period of material
resource k ∈ m

Table 3. The notation used for the decision variables.

Decision Variables

Xijk = 1 if the operation Oij is assigned to the material resource k.
0 otherwise.

Yiji′ j′k =
1 if the operation Oij is processed before the operation Oi’j’ on the
material resource k.
0 otherwise.

Sijk = Starting time of the operation Oij on machine k.
Cijk = Completion time of the operation Oij on machine k.
Ci = Completion time of job i.

4.1. Mixed-Integer Linear Programming

In this section, the MILP formulation presented in [3] is recalled using the notation of
Section 4 and afterwards extended in Section 4.1.2 by adding resource calendar constraints.
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4.1.1. Start-Based Model

The start-based model was developed in our previous work [3], with the consideration
of sequence-dependent setups, parallel machines, and precedence constraints, and this
model is formulated as a mixed-integer linear programming model as below and called
MILPwav from now on.

Minimize T = ∑n
i=1 ti (1)

Subject to:
ti = max(Ci − di) (2)

∑me
k=1 Xijk = 1,∀i ∈ N, j ∈ Ji, k ∈ mj (3)

Cijk ≥ Sijk + Pijk − BigM
(

1− Xijk

)
, ∀i ∈ N, j ∈ Ji, k ∈ mj (4)

Sijk + Cijk ≤ BigM(X ijk

)
, ∀i ∈ N, j ∈ Ji, k ∈ mj (5)

Cijk ≥ Sijk, ∀i ∈ N, j ∈ Ji, k ∈ mj (6)

∑i∈j ∑j,j′∈oi ∑k∈mi Yiji′ j′k = 1, ∀i, i
′ ∈ N, j, j

′ ∈ Ji, Ji′k ∈ mij ∩mi′ j′ (7)

Sijk ≥ Ci′ j′k + Stiji′ j′k − BigM
(

1−Yiji′ j′k

)
, ∀i, i

′ ∈ N, j, j
′ ∈ Ji, Ji′k ∈ mij ∩mi′ j′ (8)

Si′ j′k ≥ Cijk + St
iji
′
j′ k
− BigM

(
Yiji′ j′ k

)
, ∀i, i

′ ∈ N, j, j
′
, Ji, Ji′ , k ∈ mij ∩mi′ j′ (9)

Cijk = Pijk + Sijk , ∀i ∈ N, j ∈ Ji, k ∈ mj (10)

Ci= ∑
mij
k=1 Cijk, ∀i ∈ N, j ∈ Ji, k ∈ mij (11)

ti ≥ 0, i ∈ N (12)

Xijk ∈ {0, 1}; ∀i ∈ N, j ∈ oi,∈ mij (13)

Yiji′ j′k ∈ {0, 1}, ∀i, i′ ∈ N, j ∈ Ji, j′ ∈ Ji′ , k ∈ mij ∩mi′ j′ (14)

Sijk ≥ 0, ∀i ∈ N, j ∈ Ji, k ∈ mij (15)

Cijk ≥ 0, ∀i ∈ N, j ∈ Ji, k ∈ mij (16)

The objective function (1) aims at minimizing the sum of the total tardiness of all jobs.
Constraint (2) provide us with the value of the individual tardiness of each job. Constraint
(3) states that each operation can only be assigned to one machine, where the decision
variable Xijk is non-zero if operation Oij is assigned to processing unit k and zero otherwise.
Constraint (4) ensures that a job’s completion time is no earlier than the sum of its start time
and processing time. Constraint (5) sets the end date of each job on machines that are not
processing the job to 0. Constraint set (6) controls job completion at stages that a job may
skip. Constraint set (7) enforces precedence constraints, ensuring that each operation of a
job can only begin after its preceding operation has been completed. Constraints (8) and
(9) are used together to sequence any pair of tasks (i, i′) assigned to the same processing
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unit k, preventing two jobs from being processed simultaneously on the same machine to
ensure the machine is occupied when processing an operation. Constraint set (10) specifies
that the completion time of any operation is the sum of its start time and processing time.
Constraint set (11) calculates the completion time of a job as the sum of the completion
times of all the operations in its processing route. Constraint (12) ensures that only positive
tardiness values are considered. Finally, Constraint sets (13) (14), (15), and (16) define the
decision variable domains.

4.1.2. Modeling Calendar Constraints

The start-based model is further extended to solve unavailability problems, which
are also addressed by incorporating resource calendar constraints. The processing of a
job should not start during the time window of unavailability of resource k. That is to say
that any operation must be carried out and finished before the arrival of an interval of
unavailability. The execution time of an operation must be outside unavailability interval.[

Sijk, Sijk + Pijk

]
∩
[

υl
k,
−
υ

l

k

]
= ∅ (17)

Constraint (18) allows to calculate the total unavailability period of a machine k that
processes job i.

ui =
m

∑
k=

lk

∑
l

Xik(
−
υ

l

k − υl
k) (18)

Constraint (19) calculates the operations completion time

Cijk = Pijk + Sijk+Stiji′ j′k + ui, ∀i ∈ N, j ∈ Ji, k ∈ mj (19)

Now, we have:

Ci =
mi

∑
k=1

Pijk + Sijk+Stiji′ j′k + ui , ∀i ∈ N (20)

From now on, we refer to the model that incorporates resource calendar constraints
into model MILPwav, MILPRC.

4.2. Constraint Programming

Constraint programming (CP) has good performance and robustness in the optimiza-
tion field. In fact, it is a strong tool for solving discrete optimization problems; it provides a
set of modeling features suitable for a very wide range of complex scheduling problems
that do not have a simple formulation. It provides an algebraic language with simple math-
ematical concepts; commonly, CP framework contains useful structural information; it has
the advantage of exposing high declarative, compact, and flexible constraint formulations,
which allow us to model the problem correctly and therefore makes it perform well for
finding optimal feasible solutions [4].

Here, we have modeled the problem in CP using IBM ILOG CP Optimizer. We will
not provide the details of the modeling language used in this paper. For those inter-
ested in learning more about this, we recommend referring to [57] and the CP Optimizer
reference manual.

4.2.1. Start-Based CP Model

A formulation of the main variables is presented in Table 4 using the concepts of CP
Optimizer. From now on, this model is called CPwav.

Minimize T = ∑n
i=1 max(0, ti) (21)
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Table 4. CP decision variables.

Decision Variables

interval β j = An interval variable for each operation j

interval αjk = An optional interval variable for each possible
assignment of operation j to machine k ∈ mj

Subject to:
ti = max(0, endOf(itvs[Ci])− di) (22)

EndBeforeStart
(

β j ,
[
αjk

]
) j ∈ Ji, k ∈ mi (23)

Alternative
(

β j , β j′) j, j′ ∈ Ji (24)

noOverlap
([

αjk

])
j ∈ J, ∀k ∈ mj (25)

di ≥ βi.end ∀i ∈ N (26)

interval αjk, opt, size = Pjk + Stjj′k, i ∈ V, k ∈ mi (27)

endAtStart
(

Stjj′k, αjk

)
j ∈ J, ∀k ∈ mj (28)

The objective function is to minimize the total tardiness (21), given by the difference
between the job’s end value and due date (22). The EndBeforeStart constraints (23) represent
the precedence constraints between interval variables. Alternative constraints (24) represent
the assignment constraints stating that each operation must be performed on exactly one
machine. Constraint (25) defines the nonoverlapping constraint; that is to say that, during
the interval

[
αjk

]
, which represents the assignment of an operation j to machine k, the latter

cannot overlap; e.g., the machine is busy during this interval.
The constraint endAtStart (α, β) is used to state that the end of a given interval variable

α, equals the start of a given interval variable β. We use this constraint (28) to ensure that
the end of a setup should be followed by the execution of the considered operation.

4.2.2. Modeling Calendar Constraints

The considered processing line is periodically submitted to calendar constraints; this
means that machines are not available during the whole planning horizon. To consider
machines’ unavailability, variable αjk should be modulated by adding an intensity step
function Fk that represents the unavailability interval of machine k. In CP optimizer,
Intensity is a stepwise function that applies a measure of usage or utility over an interval

length. The intensity is 0% during the unavailability interval
[
υl

k,
−
υ

l
k

]
and 100% outside

this interval. Therefore, modelling machines’ unavailability can simply be formulated by
constraint (29)

interval αjk, opt, size = Pjk, intesity = Fk, j ∈ J, ∀k ∈ mj (29)

An additional feature of our problem is that the setup cannot occur during an unavail-
ability period. To model this feature, we use the predefined constraint forbidExtent (a,U).
This expression prevents an interval variable from being scheduled during any time point
within the augmented horizon that is not also within one of the disjoint time windows.

forbidExtent
(

St
ii
′
k
, Fk

)
, i, i′ ∈ N, ∀k ∈ mi (30)
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Forbidden start constraint forbidStart(α, F) states that, whenever the interval is present,
it cannot start at a value t where F(t) = 0. In the same sense, Forbidden end constraint
forbidEnd(α, F) states that, whenever the interval is present, it cannot end at a value t where
F(t− 1) = 0. We use constraints (31) and (2) to ensure the respect of unavailability periods.

forbidStart
(

αjk, Fk

)
, j ∈ J, ∀k ∈ mi (31)

forbidEnd
(

αjk, Fk

)
, j ∈ J, ∀k ∈ mi

From now on, we refer to the model that incorporates resource calendar constraints
into model CPwav, CPRC.

4.3. Dedicated Heuristic

In order to meet the needs of an industrial environment, we need to be able to develop
quick and effective solutions that can be used to solve the various tasks that are involved
for a real industrial framework. Unfortunately, the exact resolution approaches presented
previously cannot sufficiently address the requirements for real industrial-size instances
(more than 100 tasks). A very common difficulty when trying to solve such large-sized
instances with the MILP model is running out of memory. The CP model reaches better
solutions in a short time, but, similarly, the solver has some issues regarding the instances’
size. In this section, we propose an effective dedicated heuristic that performs well and
finds good-quality solutions within a reasonable amount of time.

This heuristic follows the logic of a greedy algorithm, which is a type of problem solv-
ing technique that involves making a series of decisions in order to find the best solution. It
works by making the best decision at each step without considering the long-term conse-
quences of the decisions. The algorithm works by considering the most immediate benefit
of each decision and choosing the one that provides the lowest tardiness. This procedure is
repeated until all jobs have been inserted, resulting in a complete candidate solution.

The main steps of this dedicated heuristic are given below:

Step 1. Find earliest schedule
Step 2. Check machine’s busyness
Step 3. Setting operation’s schedule

This heuristic was coded on python. The detailed procedure of the heuristic is pre-
sented in Appendix A.

5. Experimental Results
5.1. Performance of MILP and CP Models

In this section, the performance of the proposed models is evaluated. We use ILOG
Cplex 12.10 software and CP Optimizer (CPO) for solving the MILP model and the CP
model, respectively, using a DELL personal computer equipped with an Intel® Core™
i5-8250U @ 1.6 1.8 GHz CPU, 8 GB RAM, and Window 10 operating system.

This section begins with a description of the numerical instances that were tested.
Then, the different results tables are presented and, at the end, comparisons between the
different algorithms are made.

5.1.1. Test Instances

To validate the proposed approaches in this work, we present in this section a descrip-
tion of the test instances that were used. Most of the datasets were initialized on the real
database of the studied printing company over a period of 2 weeks. We collected from the
production database all the data related to products: operations, processing times, setup
times, waiting times, and resource calendar.

To test the performance behavior of the proposed solution approaches and to investi-
gate their efficiency, it is necessary to build several sets of instances in various production
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environments and different conditions. To this end, some test problems have been applied
in a variety of conditions with inspiration from the illustrated case study. Each test set is
generated by varying the problem size. It can be characterized by N, the number of jobs, O,
the total number of operations, and M, the number of machines. The result tables will not
mention the number of machines as it remains constant at 19. The different instances are
named WOS for Workshop Scheduling followed by the number of the instance.

An extensive set of numerical experiments have been conducted by considering
different problem sizes. The aim is to investigate which jobs and operations the model is
not able to find solutions for in a reasonable resolution time.

Based on the combination of the two abovementioned factors, two categories of
instances are arranged as the small- and large-sized instances. These categories correspond
to different workload situations, respectively: low-workload situation and normal- to
high-workload situation.

5.1.2. Experimental Results

In this section, we intend to evaluate the proposed models.
We set the stopping criteria parameters as follows: the time limit CPU is equal to

30 min and the maximum iterations equal to 1000. The performances of the models are
evaluated thanks to real data of the workshop. Test results are discussed below.

Several set instance sets have been created with N ranging from

- {5, 8, 10, 13, 15 to 20} for small-sized instances.
- {30, 40, 50, 65, 70, 75, 80 to 100} for large-sized instances

For each set, at least two test instances were generated by varying the number of
operations. For each problem class, an effort measurement is completed by calculating
the associated total tardiness and the required CPU time. The optimal values that are
obtained for tardiness have been distinguished with bold numbers. When applying both
formulations to the test instances, a total of 160 experiments were carried out.

Instances without Resource Calendar Constraints

We now present some results on the solution quality obtained with the different
models that do not take into account resource calendar constraints.

1. Small-Sized Instances

In this subsection, the general performance of the MILP and CP models is evaluated by
a set of small-sized instances. Several instance sets have been created with n ranging from 5
to 20. Table 5 provides an overview of the obtained results. For each problem, the name, the
number of jobs, the number of operations and machines, the total tardiness T in minutes,
and the solution time in seconds are shown for both models (MILPwav and CPwav).

Table 5. Main characteristics of the considered small-sized instances and comparison of MILPwav

and CPwav models.

Instance Characteristics MILPwav CPwav

Instance N O TMILP CPUMILP TCP CPUCP

WOS1 5 7 0 5 0 4
WOS2 5 12 0 8 0 4
WOS3 5 20 0 12 0 4
WOS4 8 10 0 11 0 4
WOS5 8 25 0 50 0 5
WOS6 8 30 0 69 0 5
WOS7 10 17 0 58 0 5
WOS8 10 29 0 110 0 5
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Table 5. Cont.

Instance Characteristics MILPwav CPwav

Instance N O TMILP CPUMILP TCP CPUCP

WOS9 10 43 0 180 0 12
WOS10 10 49 0 270 0 12
WOS11 13 18 0 90 0 12
WOS12 13 34 0 250 0 21
WOS13 13 49 0 360 0 21
WOS14 15 20 2870 240 2870 21
WOS15 15 45 4076 300 4076 32
WOS16 15 53 5760 410 5760 32
WOS17 15 59 7120 360 7120 32
WOS18 20 29 8200 380 8200 45
WOS19 20 55 9590 520 9590 40
WOS20 20 64 14,200 730 14,200 45
Average 12 33 2591 221 2591 18

Optimal values in bold.

As the results show, the MILP model provides a great performance; it is capable
of solving to optimality all the small-sized problems up to n = 20 and o = 64 within a
reasonable time. The CP model, on the other hand, seems to be performing better regarding
the resolution time. For all the studied instances, the MILP model took longer to achieve
an optimal solution. Figure 3 provides a time comparison between the resolution of the
CP and MILP models. We can clearly see that the resolution time difference becomes more
noticeable as the number of jobs increases.
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2. Large-Sized Problems

To further validate the performance of the proposed models, larger-sized instances are
evaluated. Table 6 summarizes the corresponding computational results.

Table 6. Main characteristics of the considered large-sized instances and comparison of MILPwav and
CPwav models.

Instance Characteristics MILPwav CPwav

Instance N O TMILP CPUMILP TCP CPUCP

LWOS1 30 66 0 320 0 6
LWOS2 30 80 5760 850 5760 6
LWOS3 40 88 9852 1710 9712 6
LWOS4 40 96 _ >1800 9980 6
LWOS5 50 110 _ >1800 12,100 12
LWOS6 50 127 _ >1800 19,560 12
LWOS7 65 143 _ >1800 19,800 12
LWOS8 65 150 _ >1800 21,600 30
LWOS9 65 165 _ >1800 22,400 26

LWOS10 65 185 _ >1800 23,980 26
LWOS11 70 164 _ >1800 23,800 30
LWOS12 70 172 _ >1800 25,000 42
LWOS13 70 190 _ >1800 26,960 42
LWOS14 75 182 _ >1800 26,740 73
LWOS15 75 198 _ >1800 27,880 73
LWOS16 75 212 _ >1800 29,660 73
LWOS17 80 210 _ >1800 29,920 49
LWOS18 80 225 _ >1800 38,500 70
LWOS19 100 320 _ >1800 40,940 87
LWOS20 100 380 _ >1800 48,520 87
Average 65 173 _ _ 23,141 38

Optimal values in bold.

As can be observed, up to N = 40 and O = 88, the MIP model is unable to find
a solution within 1800 s, whereas the CP model still finds an optimal solution for all
instances in 38 s on average. The first conclusion that can be drawn is that CP is much
faster than MILP. This experimentation confirms CP’s outstanding performance for the
problem under study.

Instances with Resource Calendar Constraints

This subsection shows the results of the instances on the models that incorporate
resource calendar constraints.

1. Small-Sized Instances

The results of the computational comparison for each combination of n and m are
presented in Table 7.

Table 7. Main characteristics of the considered small-sized instances and comparison of MILPRC and
CPRC models.

Instance Characteristics MILPRC CPRC

Instance N O U TMILP CPUMILP TCP CPUCP

RCWOS1 5 7 1 0 10 0 302
RCWOS2 5 12 1 0 14 0 302
RCWOS3 5 20 2 0 18 0 302
RCWOS4 8 10 2 0 15 0 302
RCWOS5 8 25 2 0 58 0 302
RCWOS6 8 30 3 0 82 0 950
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Table 7. Cont.

Instance Characteristics MILPRC CPRC

Instance N O U TMILP CPUMILP TCP CPUCP

RCWOS7 10 17 3 0 68 0 950
RCWOS8 10 29 3 0 140 0 950
RCWOS9 10 43 3 180 240 180 950
RCWOS10 10 49 4 1330 320 1330 950
RCWOS11 13 18 4 685 40 685 950
RCWOS12 13 34 4 1258 380 1258 950
RCWOS13 13 49 4 2780 450 2780 1100
RCWOS14 15 20 4 4200 490 4200 1100
RCWOS15 15 45 5 7200 820 7200 1100
RCWOS16 15 53 5 8400 1080 8320 1100
RCWOS17 15 59 5 9600 1202 8592 1300
RCWOS18 20 29 5 10,800 1440 9987 1300
RCWOS19 20 55 6 _ >1800 12,600 1300
RCWOS20 20 64 7 _ >1800 18,600 1300
Average 12 33 4 2609 326 3783 888

Optimal values in bold.

If we analyze the results when solving the MILPRC and CPRC models with small-sized
instances that consider resource calendar constraints, the presence of a high number of
unavailability periods decreases, even more regarding the performance of the MILP model
(the model only obtains 15 out of 20 optimal solutions and 20 of 20 feasible solutions). The
CP model, on the other hand, seems to perform well and is still able to obtain optimal
solutions even when the number of unavailabilities is high.

2. Medium- and Large-Sized Instances

The computational results for the medium/large-sized problems are summarized in
the Table 8 below.

Table 8. Main characteristics of the considered large-sized instances and comparison of MILPRC and
CPRC model.

Instance Characteristics MILPRC CPRC

Instance N O U TMILP CPUMILP TCP CPUCP

LRCWOS1 30 66 1 _ >1800 0 1300
LRCWOS2 30 80 1 _ >1800 6760 1300
LRCWOS3 40 88 2 _ >1800 9900 1300
LRCWOS4 40 96 2 _ >1800 9998 1300
LRCWOS5 50 110 2 _ >1800 13,100 1300
LRCWOS6 50 127 3 _ >1800 19,760 1300
LRCWOS7 65 143 3 _ >1800 20,100 1487
LRCWOS8 65 150 3 _ >1800 21,900 1487
LRCWOS9 65 165 3 _ >1800 23,254 1487
LRCWOS10 65 185 4 _ >1800 23,978 1487
LRCWOS11 70 164 4 _ >1800 23,900 1487
LRCWOS12 70 172 4 _ >1800 26,020 1487
LRCWOS13 70 190 4 _ >1800 26,990 1580
LRCWOS14 75 182 4 _ >1800 26,840 1580
LRCWOS15 75 198 5 _ >1800 28,520 1580
LRCWOS16 75 212 5 _ >1800 29,760 1580
LRCWOS17 80 210 5 _ >1800 _ >1800
LRCWOS18 80 225 5 _ >1800 _ >1800
LRCWOS19 100 320 6 _ >1800 _ >1800
LRCWOS20 100 380 7 _ >1800 _ >1800
Average 65 173 4 _ _ 19,424 _

Optimal values in bold.
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The experimental results show that the MILPRC model is not able to solve any problem
of size up to 30 jobs, while the CPRC model solved a large number of instances up to 75 jobs.

5.1.3. Discussion

According to the results of the experiments, the CP algorithm is more efficient than
the MILP model when it comes to solving our scheduling problem for both wav (without
ressource calendar constraints) and RC formulations (with resource calendar constraints).
It can perform well in handling any size of problem and proves the optimality of a large
number of instances. Even with high-availability periods, the CP model can still find
optimal solutions. It also proves the optimality of several instances and outperforms the
MILP model when it comes to finding feasible solutions.

Summing up, we can clearly see that the computational effort required to solve our
scheduling problem depends on the size of instances and the number of unavailability peri-
ods. The difference between CP and MILP increases as the number of jobs and the number
of unavailability periods increase. CP can provide significant savings in computational
effort compared to MILP formulation and finds better solutions and is the best overall in
all instances.

5.2. Dedicated Heuristic

For testing the performance of the proposed dedicated heuristic method, we generated
a benchmark composed of several sets of instances with different problem sizes by using
the real data obtained from the manufacturing environment of the plant. Accordingly, there
are 10 groups of benchmark problems of different sizes, varying from 60 to 150 jobs.

Table 9 provides for each instance the tardiness found, denoted by TDh, as well as
the execution time (CPUs column) to reach the best value. The column denoted by Treal
recalls the real results obtained by the planner. Finally, the gap between both solutions is
calculated in the column (gap). The last row represents the average values. The values
denoted in bold indicate that the heuristic reaches the optimal value for the considered
instances, meaning that the solution found by the heuristic is equal to the one obtained by
the exact method “CP”. For instances up to 80 tasks, the results obtained with the MILP
and CP models are not provided since the solver ran out of memory before providing any
initial solution.

Table 9. Main characteristics of the considered large-sized instances and comparison of MILPRC and
CPRC models.

Instance Characteristics

N O M U Treal TDh CPUDH Gap

60 148 19 5 30,120 22,695 4 25%
70 160 19 6 48,215 27,458 4 43%
80 189 19 7 68,743 38,548 6 44%
90 210 19 9 80,471 49,895 8 38%
100 260 19 9 94,875 58,951 8 38%
110 298 19 11 100,458 64,251 8 36%
120 352 19 12 124,524 70,589 12 43%
130 397 19 15 150,427 86,758 12 42%
140 410 19 16 159,751 89,827 12 44%
150 480 19 20 180,058 118,745 19 34%
105 290 19 11 103,764 62,772 9 39%

Optimal values in bold.

According to Table 9, if we compare the results of the dedicated heuristic against the
real results obtained by the planner, we see that the tardiness obtained by the heuristic
is significantly lower than that obtained by the planner, with an average gap of 39%. On
average, the dedicated heuristic provides a better solution overall for all the tested instances
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within a reasonable time compared to the real solution proposed by the planner, which
proves the efficiency of the dedicated heuristic.

6. Conclusions

This paper aims to apply operations research techniques to schedule activities within
a packaging company. It examines a difficult scheduling problem, which involves a hybrid
and flexible flowshop with various challenging features, such as parallel machines, prece-
dence constraints, sequence-dependent setup times, and resource calendar constraints. The
paper presents and analyzes two solutions for the problem using MILP and CP Optimizer.
MILP is a general-purpose solver, while CP Optimizer is specifically designed for schedul-
ing problems and has its own modeling language. The study compares the effectiveness of
the IBM ILOG CPLEX MILP and IBM ILOG CP Optimizer solvers based on their ability to
handle realistic problem sizes, with some showing promise on small instances but strug-
gling on larger ones. From the foregoing, MILP formulation performed well for small-sized
instances but struggled to find solutions for large-sized instances, or ones with a high
proportion of unavailability periods. The CP formulation performed better for large-sized
instances and ones with a high proportion of unavailability periods. Therefore, CP Opti-
mizer is more successful in finding optimal solutions for a greater number of instances than
MILP. To deal with large-sized instances, a dedicated heuristic was also proposed to pro-
vide good-quality solutions in reduced time. Thus, this heuristic is mainly recommended
for large-size problems. Future work should focus on improving the proposed algorithm
by adding some dispatching rules and investigating a comparable method for resolving
scheduling issues with restricted availability, where operations may be suspended due to
availability periods and resumed later, with or without incurring penalties.
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Appendix A

Table A1. Pseudo algorithm of the dedicated heuristic.

Pseudo-Algorithm

******************
SCHEDULING METHODS
******************
Determine an operation’s schedule
---------------------------------

a. initialize
- l = operation’s processing time (setup+execution)
- ls = operation’s setup time
- s = start
- ss = None, the actual start, es = None, the start of the execution, r = None, the available time
- ee = s, the end of the execution
- A = machines’ availabilities (list of int couples representing each an availability window)
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Table A1. Cont.

Pseudo-Algorithm

b. iteration
- b = 0, the availability bucket
- While l>0 and b<|A| (we still processing time and availability buckets
• B = A[b], B is the current availability bucket
• si = B[0] (interval start), ei = B[1] (interval end)
• if ei<=ee (if this intervals ends before the moving counter ee)
# continue to next interval

c. Set the availability time, r = ee + operation’s waiting time
Find earliest schedule
----------------------

a. Try to schedule at time
- determine a timing from time

timing = determineTiming()
- check if the machine is busy any time between timing.start and timing.end

busy = checkBusy()
- if not(busy)
• return timing and end

b. Else, try to schedule at each busyness interval’s end
for [si,ei] in the machine’s busyness intervals
- if ei<time => skip and continue to next interval
- timing = determine a timing from ei
- busy = check if machine is busy in that timing
- if not(busy)
• return timing and end

Check machine’s busyness
------------------------
Setting operation’s schedule
----------------------------

a. Set the operation’s attribute (start,exec,end,available,machine) to (timing[1],timing[2],timing[3],timing[4],machine.id)
b. Add the interval [timing[1],timing[3]] is the machine’s busyness and reorder the busyness intervals by increasing values
c. Find the next operation nextOp in this operation’s parent job
d. If nextOp exists, set its release time to timing[4]
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49. Hejl, L.; Šůcha, P.; Novák, A.; Hanzálek, Z. Minimizing the Weighted Number of Tardy Jobs on a Single Machine: Strongly
Correlated Instances. Eur. J. Oper. Res. 2022, 298, 413–424. [CrossRef]

50. Behnamian, J.; Zandieh, M.; Fatemi Ghomi, S.M.T. Due Window Scheduling with Sequence-Dependent Setup on Parallel Machines
Using Three Hybrid Metaheuristic Algorithms. Int. J. Adv. Manuf. Technol. 2009, 44, 795–808. [CrossRef]

51. Behnamian, J.; Fatemi Ghomi, S.M.T.; Zandieh, M. Development of a Hybrid Metaheuristic to Minimise Earliness and Tardiness
in a Hybrid Flowshop with Sequence-Dependent Setup Times. Int. J. Prod. Res. 2010, 48, 1415–1438. [CrossRef]

52. Behnamian, J.; Zandieh, M. A Discrete Colonial Competitive Algorithm for Hybrid Flowshop Scheduling to Minimize Earliness
and Quadratic Tardiness Penalties. Expert Syst. Appl. 2011, 38, 14490–14498. [CrossRef]

53. Otten, M.; Braaksma, A.; Boucherie, R.J. Minimizing Earliness/Tardiness Costs on Multiple Machines with an Application to
Surgery Scheduling. Oper. Res. Health Care 2019, 22, 100194. [CrossRef]

54. Schaller, J.; Valente, J.M.S. Minimizing Total Earliness and Tardiness in a Nowait Flow Shop. Int. J. Prod. Econ. 2020, 224, 107542.
[CrossRef]

55. Kellerer, H.; Rustogi, K.; Strusevich, V.A. A Fast FPTAS for Single Machine Scheduling Problem of Minimizing Total Weighted
Earliness and Tardiness about a Large Common Due Date. Omega 2020, 90, 101992. [CrossRef]

56. Graham, R.L.; Lawler, E.L.; Lenstra, J.K.; Kan, A.H.G.R. Optimization and Approximation in Deterministic Sequencing and
Scheduling: A Survey. In Annals of Discrete Mathematics; Discrete Optimization II; Hammer, P.L., Johnson, E.L., Korte, B.H., Eds.;
Elsevier: Amsterdam, The Netherlands, 1979; Volume 5, pp. 287–326.

57. Laborie, P.; Rogerie, J.; Shaw, P.; Vilím, P. IBM ILOG CP Optimizer for Scheduling: 20+ Years of Scheduling with Constraints at
IBM/ILOG. Constraints 2018, 23, 210–250. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/0305215X.2012.685072
https://doi.org/10.1016/j.ejor.2017.11.070
https://doi.org/10.1016/j.ejor.2020.07.064
https://doi.org/10.1016/j.simpat.2021.102455
https://doi.org/10.1016/j.apm.2017.01.039
https://doi.org/10.1016/j.promfg.2020.01.147
https://doi.org/10.1016/j.amc.2020.125888
https://doi.org/10.1016/j.ejor.2021.07.002
https://doi.org/10.1007/s00170-008-1885-7
https://doi.org/10.1080/00207540802556817
https://doi.org/10.1016/j.eswa.2011.04.241
https://doi.org/10.1016/j.orhc.2019.100194
https://doi.org/10.1016/j.ijpe.2019.107542
https://doi.org/10.1016/j.omega.2018.11.001
https://doi.org/10.1007/s10601-018-9281-x

	Introduction 
	State of the Art 
	Constraints 
	Setup Constraints 
	Resource Calendar Constraints 
	Machine Flexibility Constraints 

	Optimization Criteria 

	Problem Description 
	Model and Notations 
	Mixed-Integer Linear Programming 
	Start-Based Model 
	Modeling Calendar Constraints 

	Constraint Programming 
	Start-Based CP Model 
	Modeling Calendar Constraints 

	Dedicated Heuristic 

	Experimental Results 
	Performance of MILP and CP Models 
	Test Instances 
	Experimental Results 
	Discussion 

	Dedicated Heuristic 

	Conclusions 
	Appendix A
	References

