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Abstract: Wearable thermoelectric generators (w-TEGs) convert thermal energy into electrical energy
to realize self-powering of intelligent electronic devices, thus reducing the burden of battery replace-
ment and charging, and improving the usage time and efficiency of electronic devices. Through finite
element simulation, this study successfully designed high-performance thermoelectric generator
and made it into wearable thermoelectric module by adopting “rigid device—flexible connection”
method. It was found that higher convective heat transfer coefficient (h) on cold-end leads to larger
effective temperature difference (∆Teff) and better power generation performance of device in typical
wearable scenario. Meanwhile, at same h on the cold-end, longer TE leg length leads to larger ∆Teff

established at both ends of device, larger device output power (Pout) and open-circuit voltage (Uoc).
However, when the h increases to a certain level, optimization effect of increasing TE leg length on
device power generation performance will gradually diminish. For devices with fixed temperature
difference between two ends, longer TE leg length leads to higher resistance of TEGs, resulting in
lower device Pout but slight increase in Uoc. Finally, sixteen 16 × 4 × 2 mm2 TEGs (L = 1.38 mm,
W = 0.6 mm) and two modules were fabricated and tested. At hot end temperature Th = 33 ◦C
and cold end temperature Tc = 30 ◦C, the actual maximum Pout of the TEG was about 0.2 mW, and
the actual maximum Pout of the TEG module was about 1.602 mW, which is highly consistent with
the simulated value. This work brings great convenience to research and development of wearable
thermoelectric modules and provides new, environmentally friendly and efficient power solution for
wearable devices.

Keywords: wearable thermoelectric generator; Bi2Te3; finite element simulation; power generation

1. Introduction

With the improvement of people’s living standards, wearable devices have become
an indispensable part of people’s lives, including smart watches, smart glasses, smart
wristbands, etc. [1–4]. However, the battery capacity and energy density of wearable
devices limit their service life and stability, which has become a major obstacle limiting
their development and application [5–8]. Therefore, it has become a global consensus to
develop and apply green energy technologies [9,10].

As an emerging green energy technology, thermoelectric (TE) power generation can
harvest energy from temperature differences in the environment to drive electronic devices
by using the Seebeck effect (Figure 1A), which effectively solves problems such as the insuf-
ficient battery capacity of traditional wearable devices [11–13]. A thermoelectric generator
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(TEG) is a solid-state device that contains no mechanical moving parts, thus requiring
no maintenance, high reliability, and noiseless operation, while being lightweight, com-
pact, and taking up little space [14–17]. Furthermore, wearable thermoelectric generators
(w-TEGs) have been studied by many scholars [18–22].
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Figure 1. Flexible design of wearable thermoelectric generator. (A) Schematic diagram of Seebeck
effect; (B) model of w-TEG on the arm and its equivalent thermal resistance; (C) physical image of
the w-TEG modules 1# and 2#.

Fan et al. [23] used a simple cutting and gluing method to fabricate a w-TEG containing
48 pairs of P/N thermoelectric legs without a ceramic substrate. The w-TEG can be
easily attached to the human body, and the maximum power density of the w-TEG was
7.9 µWcm−2 and 43.6 µWcm−2 under windless and normal walking conditions, respectively.
Liu et al. [24] used a radiative cooling coating on the w-TEG. Compared with the original
device without the radiation cooling coating, its output power was increased by 128%
in an exposed environment and 96% in a non-exposed environment. Its output power
density was about 5.5 µWcm−2 when the room temperature was 295 K. Zhang et al. [4]
prepared a flexible micro-TEG with high power density and light mass using a pulse plating
technique and effectively reduced the contact resistance between the thermoelectric leg
and the electrode by adjusting the plating conditions. The optimized flexible micro-TEG
had a maximum area power density and mass power density as high as 14.3 mWcm−2 and
189 mWg−1, respectively, at a temperature difference of 29.9 ◦C. Liang et al. [6] designed
a non-planar π-type flexible TEG with passive radiation cooling and a wave-shaped heat
sink instead of a metal heat sink. The output power density of 12.36 µWcm−2 and voltage
density of 4.04 mVcm−2 at 23 ◦C when worn on the human body is sufficient to drive some
microwatt and sub-microwatt wearable electronics.

W-TEGs can be flexible using three approaches: fabrication of thin-film type TEGs,
TEGs using conductive polymers as thermoelectric units, and TEGs using flexible organic
substrates connected to rigid inorganic thermoelectric units [25–31]. However, thin-film
type thermoelectric units have difficulty in establishing a large enough temperature differ-
ence, and their power generation performance is usually poor [32–35]. Although conductive
polymers are flexible, and thus fit the skin well, their low power factor largely limits the
power generation performance of the corresponding TEG [36–39]. While the TE properties
of inorganic semiconductors are excellent, by using flexible connections, the resulting TEGs
not only have high Pout, but also good flexibility [40–44]. By using rigid thermoelectric legs
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in the flexible design of the “strap”, such a TEG can generate enough power and still fit
well on the human body.

In the current context of environmental pollution and energy shortages, the research
and application of w-TEGs is of great significance [45–49]. This study aims to improve
the power generation performance of thermoelectric devices in a wearable scenario. The
device structure is optimized using finite element simulation, and the overall wearability of
the module is achieved by the “rigid device—flexible connection” approach. The effect of
convective heat transfer coefficient h on the effective temperature difference of the device
in a typical wearable scenario is explored, and the TE leg length L is optimized. This
study shows the direction for the performance optimization of Bi2Te3-based thermoelectric
generators in wearable scenarios.

2. Experimental Methods
2.1. Finite Element Modeling

In different environments, the human body maintains a stable temperature through its
thermoregulatory system. This process involves changes in the thermal resistance of human
skin [50]. In this study, we used a simplified human thermoregulation model for finite
element simulation and introduced virtual thermal resistance to represent heat transfer
properties in the skin. When the ambient temperature is lower than 25 ◦C, the thermal
resistance of skin remains constant; however, when the ambient temperature exceeds 25 ◦C,
thermal resistance suddenly decreases [51–53].

The model consists of three parts: skin, flexible substrate, and thermoelectric devices.
The equivalent thermal resistance of these parts is shown in Figure 1B and the finite
element model is shown in Figure S1. In this paper, we adopt the “rigid device—flexible
connection” approach. Specifically, we connect eight thermoelectric devices with equal
size of 16 × 4 mm2 in series to form a module and solder them on a silver foil to realize
the flexible design (Figure 1B). The thermoelectric materials are p-type Bi0.5Sb1.5Te3 and
n-type Bi2Te2.7Se0.3 (Table S1). The electrode and substrate materials are Cu and AlN
ceramics, respectively, and the solder is a Au–Sn alloy. The thermal conductivity and
resistivity of these materials are shown in Table S2. All simulations in this study were
performed using ANSYS Workbench finite element software, and each process was repeated
until convergence.

2.2. Setting Boundary Conditions

The corresponding thermodynamic relationships of heat flux and current density are
as follows:

∇(κ∇T) +
J2

σ
− TJ · [

(
∂α

∂T

)
∇T + (∇α)T ] = 0 (1)

∇ · J = 0 (2)

J = −σ(∇V + α∇T) (3)

q = αTJ− κ∇T (4)

where the Seebeck coefficient (α), thermal conductivity (κ), and electrical conductivity (σ)
are the intrinsic properties of TE materials, T is the absolute temperature, and V is the
electrostatic potential. The vectors J and q represent the current density and heat flux
density, respectively.

To refine the model and simplify calculations, the following reasonable assumptions
are proposed:

(1) All surfaces (except the hot and cold ends) are considered to be well thermally insulated;
(2) The simulation does not consider the heat sink (if any), and its effects are considered

in thermal boundary conditions;
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(3) The electric contact resistance (Rec) and thermal contact resistance (Rtc) between elec-
trodes and TE legs are both taken into account in the finite element model (Figure S2),
which is set to 3.0 µΩ·cm2 and 1× 10−5 m2K/W. The other interfacial contact thermal
resistances are neglected;

(4) The nonlinear temperature dependence of α, κ, and σ are considered;
(5) Thomson effect is neglected.

2.3. w-TEG Module Fabrication

According to the designed connection circuit, copper electrodes (0.025 mm) were
patterned on the AlN substrate (0.25 mm) using an adhesive-free calendering method.
The copper electrode surface was gold-plated to improve welding reliability and, thus,
reduce the Rec. The p-type Bi0.5Sb1.5Te3 and n-type Bi2Te2.7Se0.3 bulk materials were cut
into cuboid-shaped legs, of which the upper and lower surfaces were pre-plated with
nickel (~5 µm) and gold (~100 nm) film. Then, the sandwich structure composed of “AlN
substrate/TE legs/AlN substrate” was welded together with AuSn solder to make micro
thermoelectric devices. The module was formed by connecting eight thermoelectric devices
in series with copper wires and soldering them to a 0.1 mm thick silver foil using AuSn
solder to achieve a “rigid device—flexible connection”, as shown in Figure 1C. The detailed
preparation process can also be checked in our previous article [5,8,17,53].

3. Results and Discussion
3.1. Effective Temperature Difference of TEGs under Different Convective Heat Transfer Coefficients

Figure 2 shows the temperature field of the TE devices with convective heat transfer
coefficients at the cold end of 5, 50, 100, and 200 W/(m2 ◦C), respectively. When the ambi-
ent temperature Tair is 25 ◦C, the maximum device temperature Tmax is 37 ◦C, while the
minimum device temperature Tmin decreases with the increase in convective heat transfer
coefficient. In a typical wearable scenario, the natural convection heat transfer coefficient
of air is 5 W/(m2 ◦C), the minimum temperature Tmin of the device is 36.899 ◦C at this
time, and the average temperature difference ∆T is 0.1 ◦C. In the case of forced convection
heat transfer, the air convection heat transfer coefficient is 50 W/(m2 ◦C), the minimum
temperature Tmin of the device is 36.06 ◦C, and the average temperature difference ∆T is
0.94 ◦C. When the convective heat transfer coefficient increases to 50 W/(m2 ◦C), the mini-
mum temperature Tmin of the device is 35.255 ◦C and the average temperature difference
∆T is 1.75 ◦C. When the convective heat transfer coefficient increases to 200 W/(m2 ◦C),
the minimum device temperature Tmin is 33.946 ◦C and the average temperature difference
∆T is 3.05 ◦C.
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(A) h = 5 W/(m2·◦C); (B) h = 50 W/(m2·◦C); (C) h = 100 W/(m2·◦C); (D) h = 200 W/(m2·◦C).

As shown in Figure 2, increasing convective heat transfer coefficient h at the cold end
leads to an increase in temperature difference between two ends of the device, which pro-
vides guidance for optimizing power generation performance of the device in a
wearable scenario.
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3.2. Power Generation Performance Optimization of TEGs under Different Convective Heat
Transfer Coefficients

Figure 3 shows the Pout and Uoc of a TEG with different leg lengths under h = 5, 50,
100, and 200 W/(m2 ◦C) at the cold end. The results show that the Pout increases and then
decreases as the current increases. Both the maximum Pout and Uoc increase gradually with
the increase in h and TE leg length.
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At h = 5 W/(m2 ◦C), the maximum Pout of the TEGs with leg length L of 0.48 mm,
0.88 mm, 1.38 mm, and 1.88 mm are 0.039 µW, 0.074 µW, 0.117 µW, and 0.161 µW, and the
Uoc of the TEGs is 0.583 mV, 1.07 mV, 1.67 mV, and 2.26 mV, respectively (Figure 3A). The
maximum Pout and Uoc of the TEG with a leg length of 1.88 mm are 4.1 and 3.9 times higher
than those of the L = 0.48 mm TEG, respectively.

As the convective heat transfer coefficient h increases to 50 W/(m2 ◦C), the maximum
output power Pout of the four TEGs is 3.71 µW, 6.85 µW, 10.5 µW, and 13.8 µW, and the open-
circuit voltage Uoc of the devices is 5.67 mV, 10.2 mV, 15.5 mV, and 20.6 mV (Figure 3B),
respectively. The maximum Pout and Uoc of the TEG with the longest TE leg are both
about three~four times higher than those with the shortest TE leg. As the h increases
to 100 W/(m2 ◦C), the maximum Pout of the TEGs is about 300 times higher than that
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at h = 5 W/(m2 ◦C) (Figure 3C). The Uoc of the TEGs is 16~19 times higher than that at
h = 5 W/(m2 ◦C). As h increases to 200 W/(m2 ◦C) (Figure 3D), the maximum Pout of the
TEGs is 900~1300 times higher than that at h = 5 W/(m2 ◦C) (Figure 3D). The Uoc of the
TEGs is about 30 times higher than that at h = 5 W/(m2 ◦C), respectively.

It can be obviously seen from Figure 3 that, for TEGs with any leg length, the larger
the h, the better the heat dissipation effect and the better the power generation performance
of the device. For the same cold end convective heat transfer coefficient h, the longer the
TE leg length L, the larger the effective temperature difference between the two ends of the
device, and the larger output power and open-circuit voltage of the device.

However, as h increases, increasing L to optimize device power generation perfor-
mance gradually becomes less effective. Therefore, in wearable scenarios, it is necessary to
design a reasonable heat dissipation structure and select efficient heat dissipation materials
to improve h at the cold end of the device. This will improve the ∆Teff and power generation
performance of the device.

3.3. Power Generation Performance Optimization of TEGs under Fixed Temprature
Difference Conditions

According to the results in Section 3.1, the ∆Teff between the two ends of the TEG
ranges from 0.1 ◦C to 3.05 ◦C in a typical wearable scenario. Therefore, it is necessary to
investigate how to optimize device power generation performance under fixed temperature
difference conditions.

Figure 4 shows the Pout and Uoc of TEGs with different TE legs under a temperature
difference ∆T of 1 ◦C and 3 ◦C. It is observed that the Pout increases and then decreases
with the increase in current under these two different temperature differences, and the
maximum Pout and Uoc increase gradually with temperature difference. It should be noted,
however, that the maximum Pout decreases with increasing TE leg length.
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(C) temperature field of TEG; (D) relationship between Pout and Uoc and TE leg lengths and ∆T.
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At ∆T = 1 ◦C, the maximum Pout of devices with TE leg length L of 0.48 mm, 0.88 mm,
1.38 mm, and 1.88 mm is 49.9 µW, 32.3 µW, 22.2 µW, and 16.8 µW, and the Uoc is 16.2 mV,
16.7 mV, 17.0 mV, and 17.1 mV, respectively (Figure 4A). The maximum Pout of a device with
a TE leg length of 1.88 mm is 66.3% lower than that of an L = 0.48 mm device. Meanwhile,
the Uoc increases by 5.6%.

As ∆T increases to 3 ◦C, the maximum Pout of four TEGs with different TE leg lengths
is 0.451 mW, 0.292 mW, 0.200 mW, and 0.152 mW; the Uoc is 48.5 mV, 50.2 mV, 50.9 mV, and
51.3 mV, respectively (Figure 4B). When the hot end temperature Th is 33 ◦C and cold end
temperature Tc is 32 ◦C and 30 ◦C, the temperature field of the TEG can be displayed in
Figure 4C.

According to Figure 4D, the TEG resistance gradually increases with the increase in
TE leg length under a fixed temperature difference between two ends (Figure S3); the
maximum Pout gradually decreases, but the Uoc slightly increases. In addition, the Seebeck
effect of material is enhanced as the temperature difference between two ends increases,
thus improving the power generation performance of a device.

3.4. Power Generation Performance Verification of the TEG Module under Different
Temprature Differences

Figure 5A shows the schematic and physical diagram of a self-designed test system for
power generation performance of the TEG. The system consists of a temperature-controlled
platform, data collector, load resistor, and computer. The w-TEG to be tested is placed
between two temperature-controlled platforms. By adjusting spring-loaded knobs and
applying thermal grease to contact surfaces, the w-TEG is in close contact with upper and
lower temperature-controlled platforms to improve heat utilization. The w-TEG connects
and drives loads with different resistances. The data collector records the output voltage U
and current I, then the output power is calculated using P = UI. All tests are conducted in a
vacuum chamber.
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From Sections 3.1 and 3.2, it can be seen that a longer length of TE leg leads to better
power generation performance of a TEG in typical wearable scenarios. However, from
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industrial processing experience, the ratio of TE leg length to width, i.e., L/W, should not
exceed three; otherwise, the TE leg will easily fracture and fail.

To verify the power generation performance of thermoelectric devices in accordance
with simulated results, sixteen 16 × 4 × 2 mm2 TEGs (L = 1.38 mm, W = 0.6 mm) and
two modules were fabricated and tested. At a hot end temperature of Th = 33 ◦C and
a cold end temperature of Tc = 32 ◦C, the actual maximum Pout of 1# and 2# TEGs is
21.8 µW and 22.1 µW, respectively (Figure 5(Bi)), and the actual maximum Pout of 1# and
2# TEG modules is 0.174 mW and 0.177 mW, respectively (Figure 5(Bii)). Compared with
the simulated value, the difference is only 2.3% and 0.6%. At a hot end temperature of
Th = 33 ◦C and a cold end temperature of Tc = 30 ◦C, the actual maximum Pout of 1# and 2#
TEGs is 0.2 mW and 0.19 mW, respectively (Figure 5(Ci)), and the actual maximum Pout of
1# and 2# TEG modules is 1.602 mW and 1.52 mW, respectively (Figure 5(Cii)), which is
only 0.5% different from the simulated value. The above experimental results show that
finite element simulation successfully guides the design of w-TEGs.

4. Conclusions

Through finite element simulation, this study successfully designed a high-performance
thermoelectric generator (TEG) and made it into a wearable thermoelectric module by
adopting the “rigid device—flexible connection” method. It was found that in typical
wearable scenarios, a higher convective heat transfer coefficient (h) on the cold end leads to
larger effective temperature difference (∆Teff) and better power generation performance of
the device. Meanwhile, at the same h on the cold end, longer TE leg length leads to larger
∆Teff established at both ends of device, larger device output power (Pout), and open-circuit
voltage (Uoc). However, when the h increases to a certain level, the optimization effect of
increasing TE leg length on device power generation performance will gradually diminish.
For devices with a fixed temperature difference between two ends, longer TE leg length
leads to higher resistance of TEGs, resulting in lower Pout but a slight increase in Uoc. Finally,
sixteen 16 × 4 × 2 mm2 TEGs (L = 1.38 mm, W = 0.6 mm) and two modules were fabricated
and tested. At hot end temperature Th = 33 ◦C and cold end temperature Tc = 30 ◦C, the
actual maximum Pout of the TEG was about 0.2 mW, and the actual maximum Pout of the
TEG module was about 1.602 mW, which is highly consistent with the simulated value.
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