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Abstract: This paper focuses on reducing the computational cost of a GNC Algorithm for deblurring
images when dealing with full symmetric Toeplitz block matrices composed of Toeplitz blocks. Such
a case is widespread in real cases when the PSF has a vast range. The analysis in this paper centers
around the class of gamma matrices, which can perform vector multiplications quickly. The paper
presents a theoretical and experimental analysis of how γ-matrices can accurately approximate
symmetric Toeplitz matrices. The proposed approach involves adding a minimization step for
a new approximation of the energy function to the GNC technique. Specifically, we replace the
Toeplitz matrices found in the blocks of the blur operator with γ-matrices in this approximation.
The experimental results demonstrate that the new GNC algorithm proposed in this paper reduces
computation time by over 20% compared with its previous version. The image reconstruction quality,
however, remains unchanged.

Keywords: image deblurring; image denoising; GNC technique; Toeplitz matrix approximation

1. Introduction

This paper addresses the problem of reconstructing blurry and noisy images. In
particular, we consider blur operators that have a PSF (point spread function) with a vast
domain. This case is pervasive; for example, it is common in underwater images (cf. [1,2]).
Figure 1 shows the point spread function of the Hubble space telescope camera before
NASA corrections. The non-blind problem of restoring images consists of estimating the
original image, starting from the observed image and the known blur. This problem is
ill-posed in the Hadamard sense (cf. [3]). However, using various regularization techniques,
it is possible to turn this problem into a well-posed one that can be solved by minimizing
an energy function (cf. [4–6]). This function consists of two terms, one that ensures the
solution fits the observed data and another that enforces the regularity of the solution.

Figure 1. Point spread function of the Hubble space telescope camera.
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To produce more realistic restored images, we consider the discontinuities in natural
images, particularly around edges where different objects meet (cf. [7]). A possible
approach is to use an energy function, which implicitly assumes these discontinuities
(cf. [4–6,8]). This energy function has a non-convex regularization term. Moreover, to
improve the quality of the restored images, it is possible to add constraints that prevent
thick boundaries from forming between smooth areas (cf. [4,5]). Thus, the resulting
energy function is not convex and cannot be minimized using traditional gradient descent
optimization algorithms. Stochastic or deterministic techniques can minimize such a non-
convex energy function. By the former methods, it is possible to obtain very accurate
results; however, their computational cost is very high (cf. [7]). Deterministic algorithms
do not ensure convergence to the ideal solution but allow to obtain adequate reconstruction
in lower computational times (cf. [9,10]). The GNC (Graduated Non-Convexity) is one of the
most widely used deterministic methods for edge-preserving reconstruction. This technique
approximates the energy function using a sequence of approximations that converge to the
original one and then solves each approximation using a classical optimization algorithm
using the minimum found in the previous approximation as a starting point.

In [8], Blake and Zisserman propose the first GNC algorithm dealing with the denoising
problem. Bedini, Gerace, and Tonazzini in [11] present an extension of GNC to restore
noisy images, considering the discontinuities’ geometry. Nikolova in [12] proposes a GNC
technique to restore noisy blurred images. Boccuto, Gerace, and Pucci in [5] present a
GNC algorithm for the deblurring and the denoising imposing the constraint of the line
continuation or the non-parallelism constraint alternatively; such an algorithm is referred
to as CATILED (Convex Approximation Technique for Interacting Line Elements Deblurring). In
this paper, we extend the CATILED technique, in the case of the non-parallelism constraint,
to deal with PSFs with a large domain.

The GNC technique has recently been applied to solve many other applications,
such as solving the combinatorial data analysis problem of seriation (cf. [13]), stochastic
problems (cf. [14]), solving the combinatorial optimization problems defined on the set of
partial permutation matrices (cf. [15]), solving the maximum a posteriori inference problem
(cf. [16]), pose estimation (cf. [17]), and spatial perception (cf. [18]).

When the blur matrix is full, the computational cost of a GNC algorithm increases
considerably; however, this technique remains a good compromise between non-edge-
preserving techniques that yield low-accuracy results in a low computational time and
stochastic techniques that give qualitatively accurate results with much higher
computational cost. Experimental evidence suggests that the most computationally
expensive minimization is the first energy function approximation since subsequent
minimizations start from a good solution approximation. In this paper, we propose a
method to minimize the first convex approximation by approximating each block of the
blur operator using matrices that can be efficiently treated using a fast discrete transform.
Since each block of the blur operator is a symmetric Toeplitz matrix, we here focus on
finding a class of matrices that is easy to handle computationally while providing a
good approximation of the Toeplitz matrices. Specifically, we approximate each Toeplitz
matrix as the sum of a symmetric circulant and a reverse circulant matrix (cf. [19]).
Symmetric circulant matrices have several applications in ordinary and partial differential
equations (cf. [20–24]), images and signal restoration (cf. [25,26]), and graph theory
(cf. [27–32]). Reverse circulant matrices have different applications, such as
exponential data fitting and signal processing (cf. [33–37]).

By theoretical and experimental results, we choose a suitable subclass of matrices to
use for our approximations. This subclass of matrices is the set of the γ-matrices presented
in [38]. We tested the proposed algorithm in reconstructing artificially blurred images and
those affected by natural blurring. These experiments show how using such approximations
reduces about a fifth of the CATILED algorithm’s computational costs without affecting the
result’s quality. We refer to the technique here proposed as E–CATILED (Extended Convex
Approximation Technique for Interacting Line Elements Deblurring).
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The paper is structured as follows: in Section 2, we present the problem of image
deblurring and the related regularization technique; in Section 3, we recall the CATILED
algorithm for the minimization of the energy function; in Section 4, we present the proposed
E–CATILED technique; in Section 5, we report our experimental results.

2. Regularization of the Problem

The formulation of the image generation direct problem is

y = Âx + n,

where the n2-dimensional vectors x, y are, respectively, the original and the observed
image. We assume that all intensity values are in one column in lexicographic order. The
n2-dimensional vector n expresses the additive noise on the image, which we assume to be
independent and identically distributed Gaussian, with zero mean and known variance σ̂2.

The n2 × n2 matrix Â represents a translation-invariant blur operation on an image.
This operation involves computing a light-intensity weighted average of the neighboring
pixels of each pixel in the original image and assigning the result to that pixel in the blurred
image. To define the matrix Â, we use a matrix M ∈ R(2ĥ+1)×(2ĥ+1) called blur mask, and
we compute the entries of matrix Â as

a(i,j),(i+w,j+v) =


mĥ+1+w,ĥ+1+v, if |w|, |v| ≤ ĥ,

0, otherwise.

Here, in lexicographic notation, the generic index ((i, j), (k, l)) of matrix Â is supposed
to be equal to ((j− 1)n + i, (l − 1)n + k). Namely, the blur mask determines the weighting
factors used in the weighted averaging operation. Thus, the matrix Â becomes a block
Toeplitz matrix with Toeplitz blocks (cf. [39]). Note that the size of the blur mask 2ĥ + 1
corresponds to the size of the domain of the PSF (point spread function). If we assume that
the blur operator is symmetric in the horizontal and in the vertical direction and the domain
of the PSF is vast (that is 2ĥ + 1 ≈ n), then the full matrix Â is symmetric.

The image restoration problem consists of finding an estimation x of the unknown
original image given the blurred image y, the matrix Â, and the variance of the noise σ2.
This problem is ill-posed in the Hadamard sense; therefore, to solve the problem, some
regularization techniques are necessary. Using the second-order difference operators in
a regularization technique allows for significantly better results than those obtained by
first-order difference operators (cf. [5]). On the other hand, using third-order difference
operators yields slightly better results than those obtained with second-order difference
operators to the detriment of an excessive increase in computational costs. Therefore, we
use second-order difference operators.

A clique c of order 2 is the subset of points of a square grid on which the second-order
finite difference is defined. We denote by C the set of all cliques of order 2. More precisely,
we consider

C = {c = {(i, j), (h, l), (r, q)} : i = h = r, j = l + 1 = q + 2, or i = h + 1 = r + 2, j = l = q}.

We denote by Dcx the second-order finite difference operator of the vector x associated
with the clique c, that is, if c = {(i, j), (h, l), (r, q)} ∈ C, then

Dcx = xi,j − 2xh,l + xr,q.

Let us introduce the concept of adjacent clique of order 2, used to define the non-
parallelism constraint, whose importance is apparent in Figure 2. The blurred image
appears in (a); (b) is reconstructed from (a) without imposing the non-parallelism constraint,
while the image in (d) is obtained by enforcing it. Although the reconstructions of
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Figure 2b,d appear similar to the human eye, the underlying quality for the latter is higher,
as visible in the corresponding line process plots (c) and (e).

(a) (b) (d)

(c) (e)

Figure 2. The blurred image is in (a); the image reconstructed without (respectively, with) non-
parallelism constraint is given in (b) (respectively, (d)), with line elements drawn in (c) (resp., (e)).

Given a vertical clique

c = {(i, j), (i + 1, j), (i + 2, j)}, i = 3, . . . , n− 2, j = 1, . . . , n,

we define its preceding clique c− 1 as follows:

c− 1 = {(i− 2, j), (i− 1, j), (i, j)}.

If c is a horizontal clique,

c = {(i, j), (i, j + 1), (i, j + 2)}, i = 1, . . . , n, j = 3, . . . , n− 2,

then its preceding clique c− 1 is defined by setting

c− 1 = {(i, j− 2), (i, j− 1), (i, j)}.

A regularized solution x̃ is defined as a minimizer of the following energy function
(cf. [5]).

E(x) = ‖y− Âx‖2 + ∑
c∈C

ψ(Dc(x), Dc−1(x)), (1)

where

ψ(t1, t2) =


g(t1, 0), if |t2| < s =

√
α̂

λ̂
,

g(t1, ε̂), if |t2| ≥ s,
(2)
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and

g(t, k) =


λ̂2t2, if |t| <

√
α̂+k
λ̂

,

α̂ + k, if |t| ≥
√

α̂+k
λ̂

.

The first term of the energy function E in (1) is the so-called data consistency term, while
the second additive term in (1) is the smoothness term.

Note that the free parameters in the energy function in (1) are λ̂, α̂, and ε̂. The parameter
λ̂ plays the role of adjusting the degree of smoothness of the solution; α̂ represents the cost to
add a discontinuity to the estimated solution, while ε̂ is an extra cost for an adjacent parallel
discontinuity. A correct value of these parameters allows for more accurate reconstructions
(cf. [40]). Figure 3c presents the function ψ considering λ̂ = 1, α̂ = 80, and ε̂ = 80.

(a) (b) (c)

Figure 3. (a) ψ(2); (b) ψ(1); (c) ψ(0) ≡ ψ.

3. CATILED Technique

This section presents the CATILED (Convex Approximation Technique for Interacting Line
Elements Deblurring) algorithm presented in [5]. Such an algorithm is a GNC (Graduated
Non-Convexity) technique (cf. [4,5,8,41–43]) that allows minimization of the energy function
E given in (1). It is simple to verify that such a function is non-convex. In order to use
a gradient descent technique, it is necessary to determine an appropriate initial point
near the globular optimum. For this purpose, a GNC technique constructs a family of
approximations of the energy function {E(p)}p such that the first approximation is convex
and the last corresponds to the non-convex function. Then, the following algorithm finds
an approximation of the global minimum using the family {E(p)}p.

initialize x;
while E(p) 6= E do

find the minimum of the function E(p) starting from the initial point x;
x = arg min E(p);
update the parameter p.

It is immediate to verify that the first term of the energy function E in (1), called the
data consistency term, is convex. Then, finding a first convex approximation of the function
E reduces to determining a convex approximation of the second additive term in (1), called
the smoothness term.
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In [5], the authors first determine a C1(R2) family of approximation of the function ψ
in (2). Namely, ψ(0) ≡ ψ, and for p ∈ (0, 1],

ψ(p)(t1, t2) =



g(p)(t1, 0), if | t2 |≤ s,

a(p)(t1)(| t2 | −s)2 + g(p)(t1, 0), if s <| t2 |≤
u(p) + s

2
,

−a(p)(t1)(| t2 | −u(p))2 + g(p)(t1, ε̂), if
u(p) + s

2
<| t2 |< u(p),

g(p)(t1, ε̂), otherwise,

(3)

where u(p) = s + pz, with an arbitrary z > 0.
The function g(p)(t, k) is

g(p)(t, k) =



λ̂2t2 if |t| < qp(k),

α̂ + k− τ(p)

2
(|t| − rp(k))2 if qp(k) ≤ |t| ≤ rp(k),

α̂ + k if |t| > rp(k),

where

qp(k) =
√

α̂ + k
λ̂2

(
2

τ(p)
+

1
λ̂2

)−1/2
,

with τ(p) = τ∗/p, where τ∗ > 0 is an arbitrary constant, and

rp(k) =
α̂ + k

λ̂2 qp(k)
.

The function a(p)(t) is

a(p)(t) = 2
g(p)(t, ε̂)− g(p)(t, 0)

[u(p)− s]2
.

Thus, the first convex approximation of ψ of class C1(R2) in the CATILED technique is

ψ(2)(t1, t2) ==


λ̂2t2

1, if | t1 |< q1(0),

2 λ̂2q1(0) |t1| − λ̂2q2
1(0), if | t1 |≥ q1(0).

(4)

For p ∈ [1, 2],

ψ(p) = (p− 1)ψ(2) + (2− p)ψ(1),

where ψ(1) and ψ(2) are given in (3) and (4) respectively. In the CATILED algorithm, the
parameter p varies from 2 to 0 with a fixed step h.

Note that all variables used in this section are necessary to make all approximations
ψ(p) of the function ψ, for p ∈ (0, 2], of class C1(R2) (see [5] for details). In order to obtain a
graphical view, Figure 3a–c show the graphs of the functions ψ(2), ψ(1), and ψ(0) ≡ ψ when
λ̂ = 1, α̂ = 80 and ε̂ = 80.

The different approximations are minimized by the NL-SOR (Non-Linear Successive
Over Relation) algorithm (cf. [5,8]). In this algorithm, in each iteration, the solution is
updated along the opposite direction of the gradient of the energy function. Thus, the
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current solution should be multiplied by ÂT Â in the computation of the data consistency
term component of the gradient. Since Â is a full matrix, this operation is extremely costly.

4. E–CATILED Technique

It is possible to verify experimentally that the more expensive minimization is the
first since the others start from a good solution approximation. Hence, in this paper, when
we minimize the first convex approximation, we propose to approximate every block
of the operator Â through matrices whose products can be computed by a suitable fast
discrete transform.

Since every block of Â is a symmetric Toeplitz matrix, we now deal with determining
a class of matrices that is easy to handle from the computational point of view that
provide a good approximation of the Toeplitz matrices. In particular, in this paper, we
approximate each Toeplitz matrix by the sum between a symmetric circulant and a reverse
circulant matrix.

4.1. Spectral Characterization of β-Matrices

Given A ∈ Cn×n, we below denote by A∗ the transpose conjugate of A. In this and
the following subsection, for simplicity of notation, we consider the indices of the n× n-
matrices and n-vectors to vary between 0 and n− 1. We begin with presenting a class of
simultaneously diagonalizable matrices recently proposed in [38]. Let n be a fixed positive
integer, and Qn = (qk,j)k,j ∈ Rn×n, where

qk,j =


αj cos

(2π k j
n

)
if 0 ≤ j ≤ bn/2c,

αj sin
(2π k (n− j)

n

)
if bn/2c ≤ j ≤ n− 1,

(5)

and

αj =


1√
n
= α if j = 0, or j = n/2 if n is even,

√
2
n
= α̃ otherwise.

Set

Qn =
(

q(0)
∣∣∣q(1)

∣∣∣ · · · ∣∣∣q(b n
2 c)
∣∣∣q(b n+1

2 c)
∣∣∣ · · · ∣∣∣q(n−2)

∣∣∣q(n−1)
)

,

with

q(0) =
1√
n

(
1 1 · · · 1

)T
=

1√
n

u(0), (6)

q(j) =

√
2
n

(
1 cos

(
2π j

n

)
· · · cos

(
2π j(n− 1)

n

))T
=

√
2
n

u(j),

q(n−j) =

√
2
n

(
0 sin

(
2π j

n

)
· · · sin

(
2π j(n− 1)

n

))T
=

√
2
n

v(j), (7)

j = 1, 2, . . . , b n−1
2 c. If n is even, we have

q(n/2) =
1√
n

(
1 − 1 1 − 1 · · · − 1

)T
=

1√
n

u(n/2). (8)

Note that Qn is an orthonormal matrix (cf. [44]).
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Given a vector λ ∈ Cn, λ = (λ0 λ1 · · · λn−1)
T , we define

diag(λ) = Λ =



λ0 0 0 . . . 0 0
0 λ1 0 . . . 0 0
0 0 λ2 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . λn−2 0
0 0 0 . . . 0 λn−1


∈ Cn×n.

We recall that a vector λ ∈ Rn, λ = (λ0 λ1 · · · λn−1)
T is said to be symmetric if

λj = λn−j for j = 0, 1, . . . , bn/2c; otherwise, λ is said to be asymmetric if λj = −λn−j for
j = 0, 1, . . . , bn/2c.

Let Gn be the space of the following simultaneously diagonalizable matrices

Gn = sd(Qn) = {QnΛQT
n : Λ = diag(λ), λ ∈ Rn}.

The elements of such a class are called γ–matrices. Moreover, in [38], the following
classes are presented

Cn = {QnΛQT
n : Λ = diag(λ), λ ∈ Rn, λ is symmetric},

Bn = {QnΛQT
n : Λ = diag(λ), λ ∈ Rn, λ is asymmetric},

It is possible to see that Gn is a matrix algebra of dimension n, Cn is a subalgebra of Gn
of dimension b n

2 c+ 1, and Bn is a linear subspace of Gn of dimension b n−1
2 c (see [45]). The

following results hold.

Proposition 1 ([45]). One has

Gn = Cn ⊕Bn,

where ⊕ is the orthogonal sum and 〈·, ·〉 denotes the Frobenius product, defined by

〈G1, G2〉 = tr(GT
1 G2), G1, G2 ∈ Gn,

where tr(G) is the trace of the matrix G.

We recall the definition of the classical Hartley matrix (see also [19] and the references
therein). If n is odd, we have

Hn =
1√
n

(
u(0) u(1) + v(1) . . . u(

n−1
2 ) + v(

n−1
2 ) u(

n−1
2 ) − v(

n−1
2 ) . . . u(1) − v(1)

)
.

When n is even, we obtain

Hn =
1√
n

(
u(0) u(1) + v(1) . . . u(

n
2−1) + v(

n
2−1) u(

n
2 ) u(

n
2−1) − v(

n
2−1) . . . u(1) − v(1)

)
.

It is not difficult to see that

Hn = Qn Yn,
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where Yn = (yk,j)k,j ∈ Rn×n, is a diagonal matrix with

yk,j =



1 if k = j = 0,
1√
2

if k = j and 1 ≤ k ≤ n−1
2 ,

1√
2

if k + j = n and 1 ≤ k ≤ n− 1,

− 1√
2

if k = j and n+1
2 ≤ k ≤ n− 1,

0 otherwise

if n is odd, and

yk,j =



1 if k = j = 0 or k = j = n
2 ,

1√
2

if k = j and 1 ≤ k ≤ n
2 − 1,

1√
2

if k + j = n and 1 ≤ k ≤ n− 1,

− 1√
2

if k = j and n
2 + 1 ≤ k ≤ n− 1,

0 otherwise

if n is even. Now, set

Hn = sd(Hn) = {HnΛHT
n : Λ = diag(λ), λ ∈ Rn}. (9)

It is not difficult to see that

Cn = {QnΛQT
n : Λ = diag(λ), λ ∈ Rn, λ is symmetric}0 (10)

= {HnΛHT
n : Λ = diag(λ), λ ∈ Rn, λ is symmetric}.

From (9) and (10), it follows that

Hn = Cn ⊕Fn,

where

Fn = {HnΛHT
n : Λ = diag(λ), λ ∈ Rn, λ is asymmetric}.

The Fourier matrix is defined by Fn = ( fk,l)k,l ∈ Cn×n, where

fk,l =
1√
n

ωkl
n , k, l = 0, 1, . . . , n− 1,

with ωn = e
2πi
n . LetWn be the space of all real matrices simultaneously diagonalizable by Fn,

that is,

Wn = sd(Fn) = {FnΛF∗n ∈ Rn×n : Λ = diag(λ), λ ∈ Cn}.

It is not difficult to see thatWn is a commutative matrix algebra. Moreover, we define
the following class:

An = {FnΛF∗n : Λ = diag(λ), λ ∈ (iR)n, λ is asymmetric}.

Finally, we define the β-matrices as the matrices belonging to the following set:

Vn = Cn ⊕Bn ⊕Fn ⊕An.

4.2. Structural Characterizations of β-Matrices

In this subsection, we show that Vn coincides with the direct sum of the sets of all real
circulant matrices and of all reverse circulant matrices.
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We consider the set of families

Ln,k = {A ∈ Rn×n : there is a = (a0 . . . an−1)
T ∈ Rn with al,j = a(j+kl) mod n},

Kn,k = {A ∈ Rn×n : there is a symmetric a = (a0 . . . an−1)
T ∈ Rn

with al,j = a(j+kl) mod n},

Jn,k =
{

A ∈ Rn×n : there is a symmetric a = (a0 . . . an−1)
T ∈ Rn

with
n−1

∑
t=0

at = 0,
n−1

∑
t=0

(−1)tat = 0 when n is even, and al,j = a(j+kl) mod n

}
,

where k ∈ {1, 2, . . . , n− 1}.
When k = n − 1, Ln,n−1 is the class of all real circulant matrices, that is, the family

of those matrices C ∈ Rn×n such that every row, after the first, has the elements of the
previous one shifted cyclically one place right (see, e.g., [46]).

Given a vector c ∈ Rn, c = (c0 c1 · · · cn−1)
T , let us define

circ(c) = C =



c0 c1 c2 . . . cn−2 cn−1
cn−1 c0 c1 . . . cn−3 cn−2

cn−2 cn−1 c0
. . . cn−4 cn−3

...
...

. . . . . . . . .
...

c2 c3 c4
. . . c0 c1

c1 c2 c3 . . . cn−1 c0


,

where C ∈ Ln,n−1.

Theorem 1 (Theorems 3.2.2 and 3.2.3 in [46]). The following result holds:

Wn = Ln,n−1.

As a consequence of this theorem, we obtain that the n eigenvectors of every circulant
matrix C ∈ Rn×n are given by

w(j) = (1 ω
j
n ω

2j
n · · · ω

(n−1)j
n )T ,

and the eigenvalues of a matrix C =circ(c) ∈ Fn are expressed by

λj = cTw(j) =
n−1

∑
k=0

ckω
jk
n , j = 0, 1, . . . , n− 1.

Now, we present some results about symmetric circulant real matrices. Observe that if
C = circ(c), with c ∈ Rn, then C is symmetric if and only if c is symmetric. Thus, the class
of all real symmetric circulant matrices coincides with Kn,n−1 and has dimension b n

2 c+ 1
over R.

Theorem 2 (see, e.g., (§4 in [27]), (Lemma 3 in [44])). Let C ∈ Kn,n−1. Then, the set of all
eigenvectors of C can be expressed as {q(0), q(1), . . ., q(n−1)}, where q(j), j = 0, 1, . . . , n− 1, is
as in (6)–(8).

Note that from Theorem 2 it follows that the set of all real symmetric circulant matrices
is contained in Gn. The next result holds.
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Theorem 3 (see, e.g., (§1.2 in [47]), (§4 in [27]), (Theorem 1 in [48])). Let C = circ(c) ∈
Kn,n−1. Then, the eigenvalues λj of C are given by

λj = cTu(j), j = 0, 1, . . . , bn
2
c, (11)

where the u(j)’s are as in (7). Moreover, for j = 1, 2, . . . , b n−1
2 c it is

λj = λn−j.

From Theorem 3, it follows that, if C is a real symmetric circulant matrix and λ(C) is
the set of its eigenvalues, then λ(C) is symmetric, thanks to (11). Hence, Kn,n−1 ⊂ Cn. Thus,
Cn coincides with the class of symmetric circulant matrices Kn,n−1 since these two vector
spaces have the same dimension.

If k = 1, then Ln,1 is the set of all real reverse circulant (or real anti-circulant) matrices,
which is the class of all matrices B ∈ Rn×n such that every row, after the first, has the
elements of the previous one shifted cyclically one place left (see, e.g., [46]). Given a vector
b = (b0 b1 · · · bn−1)

T ∈ Rn, set

rcirc(b) = B =



b0 b1 b2 . . . bn−2 bn−1
b1 b2 b3 . . . bn−1 b0
b2 b3 b4 . . . b0 b1
...

...
... . . .

...
...

bn−2 bn−1 b0 . . . bn−4 bn−3
bn−1 b0 b1 . . . bn−3 bn−2


,

with B ∈ Ln,1.
Observe that every matrix B ∈ Bn,1 is symmetric, and the set Ln,1 is a linear space

over R, but not an algebra. Note that, if B1, B2 ∈ Ln,1, then B1 B2, B2 B1 ∈ Ln,n−1 (see
Theorem 5.1.2 in [46]). In Appendix A, we prove that

Bn = Jn,1.

Proposition 2. Let B = rcirc(b) ∈ Bn. Then, the eigenvalues λ
(B)
j of B, can be expressed as

λ
(B)
j = bTu(j), j = 0, 1, . . . , bn

2
c, (12)

where the u(j)’s are as in (7). Moreover, for j = 1, 2, . . . b n−1
2 c, we obtain

λ
(B)
n−j = −λ

(B)
j .

Furthermore, it is λ
(B)
0 = 0, and λ

(B)
n/2 = 0 if n is even.

Proof. See [45].

We note that

Fn = {A ∈ Ln,1 : there is an asymmetric a ∈ Rn with A = rcirc(a)}

(see also [19]).

Proposition 3. One has

An = {A ∈ Ln,n−1 : there is an asymmetric a ∈ Rn with A = circ(a)}.
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Proof. See [49].

From Proposition 3, it follows that

Ln,n−1 = Cn ⊕An.

Hence, we obtain

Vn = Cn ⊕Bn ⊕Fn ⊕An = Ln,1 ⊕Ln,n−1.

At each iteration of NL–SOR, we have to multiply a vector by ÂT Â, where Â is the
blur matrix. Since Â is a Toeplitz block matrix with Toeplitz blocks, each block of the ÂT Â
matrix is composed of symmetric Toeplitz matrices added and multiplied together. Since
we approximate every symmetric Toeplitz matrix with a matrix belonging to Vn, we now
observe that Vn is closed under the operations of addition and multiplication. Indeed,
it is not difficult to see that Vn is closed under the operation of sum between matrices.
Moreover, Ln,1 is closed under the operation of multiplication, and if V1, V2 ∈ Ln,1, then
V1V2 ∈ Ln,n−1, if V1 ∈ Ln,n−1 and V2 ∈ Ln,1, then V1V2 ∈ Ln,1 (see, e.g., [46]).

4.3. Inversion of β-Matrices

We now analyze the conditions under which a β-matrix admits inverse.

Proposition 4. The eigenvalues λ
(F)
j of F = rcirc(f) ∈ Fn, are given by

λ
(F)
j = fTv(j), j = 0, 1, . . . , bn

2
c,

where the v(j)’s are as in (7). Moreover, for j = 1, 2, . . . b n−1
2 c, we obtain

λ
(F)
n−j = −λ

(F)
j .

Proof. See [45].

Proposition 5. The eigenvalues λ
(A)
j of A = circ(a) ∈ An, are given by

λ
(A)
j = i aTv(j), j = 0, 1, . . . , bn

2
c,

where the v(j)’s are as in (7), and for j = 1, 2, . . . b n−1
2 c, we obtain

λ
(A)
n−j = −λ

(A)
j .

Proof. See [45].

It is not difficult to see that, given C ∈ Cn and V ∈ Vn, the eigenvalues of CV are equal
to those of VC and are given by

λ
(CV)
j = λ

(VC)
j = λ

(C)
j λ

(V)
j , j = 0, 1, . . . , n− 1.

Now, we present the next lemma.

Lemma 1. The following properties hold.
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(i) Let B ∈ Bn, B = rcirc(b), and F ∈ Fn, F = rcirc(f). Then, BF ∈ An, and the eigenvalues
of BF are expressed by

λ
(BF)
j = i λ

(B)
j λ

(F)
j , j = 0, 1, . . . , d n−1

2 e;

λ
(BF)
n−j = −λ

(BF)
j , j = 1, 2, . . . b n−1

2 c.

(ii) Let B ∈ Bn, B = rcirc(b), and F ∈ Fn, F = rcirc(f). Then, FB ∈ An, and the eigenvalues
of FB are expressed by

λ
(FB)
j = −i λ

(B)
j λ

(F)
j , j = 0, 1, . . . , d n−1

2 e;

λ
(FB)
n−j = −λ

(FB)
j , j = 1, 2, . . . b n−1

2 c.

(iii) Let A ∈ An, A = circ(a) and B ∈ Bn, B = rcirc(b). Then, AB ∈ Fn, and the eigenvalues
of AB are expressed by

λ
(AB)
j = −i λ

(A)
j λ

(B)
j , j = 0, 1, . . . , d n−1

2 e;

λ
(AB)
n−j = −λ

(AB)
j , j = 1, 2, . . . b n−1

2 c.

(iv) Let B ∈ Bn, B = rcirc(b), and A ∈ An, A = circ(a). Then, BA ∈ Fn, and the eigenvalues
of BA are given by

λ
(BA)
j = −i λ

(B)
j λ

(A)
j , j = 0, 1, . . . , d n−1

2 e;

λ
(BA)
n−j = −λ

(BA)
j , j = 1, 2, . . . b n−1

2 c.

(v) Let A ∈ An, A = circ(a) and F ∈ Fn, F = rcirc(f). Then, AF ∈ Bn, and the eigenvalues of
AF are expressed by

λ
(AF)
j = −i λ

(A)
j λ

(F)
j , j = 0, 1, . . . , d n−1

2 e;

λ
(AF)
n−j = −λ

(AF)
j , j = 1, 2, . . . b n−1

2 c.

(vi) Let A ∈ An, A = circ(a) and F ∈ Fn, F = rcirc(f). Then, FA ∈ Bn, and the eigenvalues of
FA are given by

λ
(FA)
j = −i λ

(F)
j λ

(A)
j , j = 0, 1, . . . , d n−1

2 e;

λ
(FA)
n−j = −λ

(FA)
j , j = 1, 2, . . . b n−1

2 c.

Proof. See [45].

Note that, given A ∈ An and B ∈ Bn, we have that λ
(AB)
j = −λ

(BA)
j , hence, AB =

−BA; if A ∈ An and F ∈ Fn, then λ
(AF)
j = −λ

(FA)
j , so, AF = −FA. Moreover, observe that,

if B1, B2 ∈ Bn, F1, F2 ∈ Fn, A1, A2 ∈ An, then B1 B2, F1 F2, A1 A2 ∈ Cn.
Now, we see when a β-matrix is invertible by another β-matrix.
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Theorem 4. Given V1 ∈ Vn, V1 = C1 + B1 + F1 + A1, with C1 ∈ Cn, B1 ∈ Bn, F1 ∈ Fn,
A1 ∈ An, set σ

(A1)
j = −i λ

(A1)
j , j = 0, 1, . . . , d n−1

2 e. If the matrices

Θj =



λ
(C1)
j λ

(B1)
j λ

(F1)
j −σ

(A1)
j

λ
(B1)
j λ

(C1)
j σ

(A1)
j −λ

(F1)
j

λ
(F1)
j −σ

(A1)
j λ

(C1)
j −λ

(B1)
j

σ
(A1)
j −λ

(F1)
j λ

(B1)
j λ

(C1)
j


∈ R4×4,

j = 0, 1, . . . , d n−1
2 e, are invertible, then there exists V2 ∈ Vn such that V1 V2 = In.

Proof. First of all, note that if V2 ∈ Vn, then V2 = C2 + B2 + F2 + A2, with C2 ∈ Cn, B2 ∈ Bn,
F2 ∈ Fn, A2 ∈ An. Observe that, by Lemma 1, V1 V2 = C3 + B3 + F3 + A3, where

C3 = C1C2 + B1B2 + F1F2 + A1 A2 ∈ Cn,

B3 = C1B2 + B1C2 + F1 A2 + A1F2 ∈ Bn,

F3 = C1F2 + F1C2 + B1 A2 + A1B2 ∈ Fn,

A3 = C1 A2 + A1C2 + B1F2 + F1B2 ∈ An.

By imposing C3 = In, we obtain

λ
(C1)
j λ

(C2)
j + λ

(B1)
j λ

(B2)
j + λ

(F1)
j λ

(F2)
j + λ

(A1)
j λ

(A2)
j = 1

for j = 0, 1, . . . , d n−1
2 e.

Moreover, by imposing B3 = On, by virtue of Lemma 1 (v) and (vi), it follows that

λ
(B1)
j λ

(C2)
j + λ

(C1)
j λ

(B2)
j − i λ

(A1)
j λ

(F2)
j + i λ

(F1)
j λ

(A2)
j = 0

for j = 0, 1, . . . , d n−1
2 e.

Furthermore, we impose F3 = On. Then, from Lemma 1 (iii) and (iv), it follows that

λ
(F1)
j λ

(C2)
j + i λ

(A1)
j λ

(B2)
j + λ

(C1)
j λ

(F2)
j + i λ

(B1)
j λ

(A2)
j = 0

for j = 0, 1, . . . , d n−1
2 e.

Finally, by imposing A3 = On, from Lemma 1 (i) and (ii), we obtain

λ
(A1)
j λ

(C2)
j − i λ

(F1)
j λ

(B2)
j + i λ

(B1)
j λ

(F2)
j + λ

(C1)
j λ

(A2)
j = 0

for j = 0, 1, . . . , d n−1
2 e.

Now, put σ
(A2)
j = −i λ

(A2)
j , j = 0, 1, . . . , d n−1

2 e, ϑj
T = (λ

(C2)
j λ

(B2)
j λ

(F2)
j σ

(A2)
j ). Since

Θj is invertible, then the system Θj ϑj = (1 0 0 0)T has a unique solution.

4.4. Approximation of Symmetric Toeplitz Matrices

For each n ∈ N, let us consider the following class:

Tn = {Tn ∈ Rn×n : tk,j = t|k−j|, k, j ∈ {0, 1, . . . , n− 1} }. (13)

Observe that the class defined in (13) coincides with the family of all real symmetric
Toeplitz matrices.



Appl. Sci. 2023, 13, 5861 15 of 28

Now, we consider the following problem: Given Tn ∈ Tn, find

Vn(Tn) = min
V∈Vn

‖V − Tn‖F,

where ‖ · ‖F denotes the Frobenius norm. It is not difficult to see that, since Tn is symmetric,
then we can assume that Vn(Tn) is symmetric. Therefore, Vn(Tn) = Cn(Tn) + Bn(Tn) +
Fn(Tn), where Cn(Tn) ∈ Cn, Bn(Tn) ∈ Bn, and Fn(Tn) ∈ Fn.

As regards γ-matrices, we prove the following:

Theorem 5. Let Ĝn = Sn +Hn,1. Given Tn ∈ Tn, one has

Gn(Tn) = Cn(Tn) + Bn(Tn) = min
G∈Ĝn

‖G− Tn‖F = min
G∈Gn

‖G− Tn‖F, (14)

where Cn(Tn) = circ(c), with

cj =
(n− j) tj + j tn−j

n
, j ∈ {1, 2, . . . , n− 1};

c0 = t0,

and Bn(Tn) = rcirc(b), where: for n even and j ∈ {1, 2, . . . , n− 1} \ {n/2},

bj =
1

2n

(
4 j− 2 n

n
(tj − tn−j) + 4

(j−3)/2

∑
k=1

2 k + 1
n

(t2k+1 − tn−2k−1)

+ 4
(n−j−3)/2

∑
k=1

2 k + 1
n

(t2k+1 − tn−2k−1)

)
,

j odd;

bj =
1

2n

(
4 j− 2 n

n
(tj − tn−j) + 4

j/2−1

∑
k=1

2 k
n
(t2k − tn−2k) + 4

(n−j)/2−1

∑
k=1

2 k
n
(t2k − tn−2k)

)
,

j even; for n even,

b0 =
2
n

(
n/2−1

∑
k=1

2 k
n
(t2k − tn−2k)

)
,

bn/2 =
4
n

(
n/4−1

∑
k=1

2 k
n
(t2k − tn−2k)

)
;

for n odd and j ∈ {1, 2, . . . , n− 1},

bj =
1

2n

(
4 j− 2 n

n
(tj − tn−j) + 4

(j−3)/2

∑
k=0

2 k + 1
n

(t2k+1 − tn−2k−1)

+ 4
(n−j)/2−1

∑
k=1

2 k
n
(t2k − tn−2k)

)
,
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j odd;

bj =
1

2n

(
4 j− 2 n

n
(tj − tn−j) + 4

j/2−1

∑
k=1

2 k
n
(t2k − tn−2k)

+ 4
(n−j−3)/2

∑
k=0

2 k + 1
n

(t2k+1 − tn−2k−1)

)
,

j even; for n odd,

b0 =
2
n

(
(n−3)/2

∑
k=0

2 k + 1
n

(t2k+1 − tn−2k−1)

)
.

Proof. Let us define

φ(c, b) = ‖Tn − circ(c)− circ(b)‖2
F

for any two symmetric vectors c, b ∈ Rn. The proof is achieved by calculating the partial
derivatives of the function φ, for details, see [45].

We prove an analogous result for generic β-matrices.

Theorem 6. Given Tn ∈ Tn, one has

Vn(Tn) = Cn(Tn) + Bn(Tn) + Fn(Tn) = min
V∈Vn

‖V − Tn‖F, (15)

where Cn(Tn) and Bn(Tn) are the same as those given in Theorem 5, and Fn(Tn) = rcirc(f), where:

f j =
tj − tn−j

n
, j ∈ {1, 2, . . . , n− 1};

f0 = 0.

Proof. Set

φ̃(c, b, f) = ‖Tn − circ(c)− rcirc(b)− rcirc(f)‖2
F

for each symmetric vector c ∈ Rn, b ∈ Rn and for every asymmetric vector f ∈ Rn.
The proof is achieved by calculating the partial derivatives of the function φ, for details,
see [49].

Note that

Cn(Tn) = min
C∈Cn
‖C− Tn‖F, Hn(Tn) = Cn(Tn) + Fn(Tn) = min

H∈Hn
‖H − Tn‖F, (16)

where Cn(Tn) is the same as the one given in Theorem 5 (see [50]), and Fn(Tn) is the one
given in Theorem 6 (see [19]).

Now, we show how the approximations found by β-matrices or γ-matrices allows
to obtain preconditioned linear symmetric Toeplitz systems with eigenvalues clustered
around 1. For every n ∈ N, set

T̂n = {t ∈ Tn : there is a function f (z) =
+∞

∑
j=−∞

tj zj, (17)

with z ∈ C, |z| = 1, and such that
+∞

∑
j=−∞

|tj| < +∞}.
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Observe that any function f defined by a power series as in the first line of (17) is
real-valued, and the set of such functions satisfying the condition ∑+∞

j=−∞ |tj| < +∞ is called
Wiener class (see, e.g., [19]). Given a function f belonging to the Wiener class and a matrix
Tn( f ) = (tk,j)k,j ∈ T̂n such that tk,j = t|k−j|, k, j ∈ {0, 1, . . . , n− 1}, and f (z) = ∑+∞

j=−∞ tj zj,
then we say that Tn( f ) is generated by f .

Theorem 7. For n ∈ N, given Tn( f ) ∈ T̂n, let Cn( f ) = Cn(Tn( f )), Bn( f ) = Bn(Tn( f )),
Fn( f ) = Fn(Tn( f )) be as in Theorems 5 and 6, and set Vn( f ) = Cn( f ) + Bn( f ) + Fn( f ), and
Gn( f ) = Cn( f ) + Bn( f ). Then, the following statements hold.

(i) For every ε > 0, there is a positive integer n0, such that for each n ≥ n0 and for every

eigenvalue λ
(Vn( f ))
j of Vn( f ), it is

λ
(Vn( f ))
j ∈ [ fmin − ε, fmax + ε], j ∈ {0, 1, . . . , n− 1},

where fmin and fmax denote the minimum and the maximum value of f , respectively.
(ii) For every ε > 0, there is a positive integer n0, such that for each n ≥ n0 and for every

eigenvalue λ
(Gn( f ))
j of Gn( f ), it is

λ
(Gn( f ))
j ∈ [ fmin − ε, fmax + ε], j ∈ {0, 1, . . . , n− 1},

where fmin and fmax denote the minimum and the maximum value of f , respectively.
(iii) If Vn( f ) is invertible, then for every ε > 0, there are k, n1 ∈ N such that for each n ≥ n1, the

number of eigenvalues λ
((Vn( f ))−1 Tn( f ))
j of V−1

n ( f ) Tn( f ) such that |λ((Vn( f ))−1 Tn( f ))
j − 1| >

ε is less than k, namely, the spectrum of (Vn( f ))−1 Tn( f ) is clustered around 1.
(iv) If Gn( f ) is invertible, then for every ε > 0 there are k, n1 ∈ N such that for each n ≥ n1 the

number of eigenvalues λ
((Gn( f ))−1 Tn( f ))
j of G−1

n ( f ) Tn( f ) such that |λ((Gn( f ))−1 Tn( f ))
j − 1| >

ε is less than k, namely, the spectrum of (Gn( f ))−1 Tn( f ) is clustered around 1.

Proof. For (i) and (iii), see [49]; for (ii) and (iv), see [45].

This result confirms how both β-matrices and γ-matrices can approximate symmetrical
Toeplitz matrices well.

4.5. Choice of the Blur Matrix Approximation

In order to test the goodness of the proposed approximations, we have proceeded as
follows: fixing the dimension n and the range of values which the entries of a considered
Toeplitz matrices can assume, we created 10,000 different instances of Toeplitz symmetric
matrices Tn, whose entries were randomly and uniformly chosen in the prefixed range.
Then, we computed Gn(Tn), Vn(Tn), Cn(Tn), and Hn(Tn), given in (14)–(16). Then, we
computed the mean of the Frobenius norm of the difference between the matrices Tn
and the approximating matrices. The considered range in Table 1 is [0, 1]. Note that the
approximations given via β-matrices are always the best since the class Vn contains the
other three classes considered. We focus on figuring out which class of matrices gives
results most similar to those obtained via β-matrices. In this case, Gn(Tn) is the second-best
approximation in the mean.

In Table 2, the considered interval is [−1, 1], and the obtained results are analogous to
the previous ones. In Table 3, we have generated the first row of the Toeplitz symmetric
matrix as follows. We set the value of the first entry equal to 1. To determine the value of
the i-th entry, we multiplied the value of the i− 1-th entry by a random constant chosen
uniformly in [0.9, 1]. Such a choice allows us to simulate better the Toeplitz matrices present
in the blur operators that, in many cases, have a Gaussian shape. The behavior of the errors
is similar to that of the previous cases. Moreover, it is possible to see in Tables 1–3 that, for
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large numbers, the Cn(Tn) and Hn(Tn) approximations give similar results, and that the
Gn(Tn) and Vn(Tn) approximations are similar too.

Table 1. Mean error obtained by the various approximations with respect to 10,000 instances of
randomly generated Toeplitz matrices Tn with entries in [0, 1].

‖Tn− Cn(Tn)‖F ‖Tn− Hn(Tn)‖F ‖Tn−Gn(Tn)‖F ‖Tn− Vn(Tn)‖F

n = 20 3.1389 3.1156 3.0770 3.0532

n = 25 4.1076 4.0885 3.9591 3.9392

n = 30 4.8062 4.7903 4.7369 4.7207

n = 35 5.7528 5.7390 5.5989 5.5847

n = 40 6.4536 6.4416 6.3811 6.3689

n = 45 7.4243 7.4135 7.2649 7.2538

n = 50 8.1211 8.1114 8.0471 8.0373

n = 100 16.46786 16.46293 16.38939 16.38444

n = 1000 166.48101 166.48051 166.39821 166.39771

Table 2. Mean error obtained by the various approximations concerning 10,000 instances of randomly
generated Toeplitz matrices Tn with entries in [−1, 1].

‖Tn− Cn(Tn)‖F ‖Tn− Hn(Tn)‖F ‖Tn−Gn(Tn)‖F ‖Tn− Vn(Tn)‖F

n = 20 6.2564 6.2098 6.1313 6.0838

n = 25 8.2016 8.1633 7.8982 7.8584

n = 30 9.6160 9.5842 9.4776 9.4453

n = 35 11.517 11.489 11.210 11.182

n = 40 12.915 12.891 12.771 12.747

n = 45 14.835 14.813 14.521 14.499

n = 50 16.292 16.272 16.141 16.121

n = 100 32.92819 32.91833 32.76966 32.75976

n = 1000 332.72496 332.72396 332.56154 332.56054

Table 3. Mean error obtained by the various approximations concerning 10,000 instances of randomly
generated Toeplitz matrices Tn with decreasing entries in [0, 1].

‖Tn− Cn(Tn)‖F ‖Tn− Hn(Tn)‖F ‖Tn−Gn(Tn)‖F ‖Tn− Vn(Tn)‖F

n = 20 2.28601 2.26095 2.10745 2.08025

n = 25 3.17788 3.15482 2.92053 2.89542

n = 30 4.07270 4.05158 3.73644 3.71341

n = 35 4.95798 4.93865 4.54353 4.52243

n = 40 5.79877 5.78109 5.31037 5.29105

n = 45 6.59117 6.57494 6.03320 6.01547

n = 50 7.30809 7.29317 6.68763 6.67133

n = 100 11.56697 11.55943 10.60308 10.59485

n = 1000 13.68293 13.68225 13.43137 13.43068

Furthermore, as seen in Table 4, for large numbers, the Gn(Tn) approximations are
always better than the Hn(Tn) approximations. Since the multiplication of Vn(Tn) by a
vector needs more fast discrete transforms than the multiplication of Gn(Tn) by a vector,
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we deduce that, for n very large, Gn(Tn) is the best choice considering both the quality of
the approximation and the computational cost.

Table 4. Number of times in which the Gn(Tn) approximation gives better results than the
Hn(Tn) approximation concerning 10,000 instances of randomly generated Toeplitz matrices Tn

with decreasing entries in [0, 1].

range = [−1, 1] range = [0, 1]
Decreasing Case

n = 20 8727 10,000

n = 25 9794 10,000

n = 30 9765 10,000

n = 35 9973 10,000

n = 40 9943 10,000

n = 45 9993 10,000

n = 50 9990 10,000

n = 100 10,000 10,000

n = 1000 10,000 10,000

Thus, we define the following approximation of the energy function E in (1):

E(2+h)(x) = ‖y− Ãx‖2 + ∑
c∈C

ψ(2)(Dc(x), Dc−1(x)),

where h ≥ 0 is the update step of the CATILED algorithm, and Ã is the approximation of
the blur matrix Â, where all the symmetric Toeplitz matrices in the blocks of matrix Â are
approximated using the γ-matrices given by Theorem 5. In the proposed GNC algorithm,
the parameter p varies from 2 + h to 0 with step h. We call such an algorithm E–CATILED
(Extended Convex Approximation Technique for Interacting Line Elements Deblurring).

5. Experimental Results

In this section, we show, by some experimental results, how the E–CATILED algorithm
achieves similar quantitative and qualitative results to CATILED, given in [5], in reduced
computational time. We test the algorithms by implementing them in C language and
running them in a Linux Ubuntu environment on a computer with an i5-9400F processor
at 2.90 GHz. We consider both synthetic and actual data. To obtain the synthetic data,
we apply to a test image a blur operator with Gaussian shape PSF (Point Spread Function)
of standard deviation σ̃, and sometimes, we add an uncorrelated Gaussian noise of zero
mean and variance σ̂2. We use the fast transforms proposed in [38] to multiply between
gamma-matrices and vectors. These transforms are explicitly designed to deal with gamma-
matrices and have a small number of multiplicative operations. In the examples below,
we empirically choose the involved free parameters λ̂, α̂, and ε̂. On the other hand, in the
literature, there are available algorithms for estimating the values for the free parameters
(cf. [40]).

In our first experiment, we use the ideal synthetic test image in Figure 4a. We blur this
image with a Gaussian shape PSF of standard deviation σ̃ = 1.5, and Figure 4b presents
the blurred image. Figure 4c shows the reconstruction obtained with a standard non-
edge-preserving Tikhonov regularization technique (cf. [51]), where the regularization
parameter λ̂ is fixed at 1. Whereas, Figure 4d shows the reconstruction obtained again
by Tikhonov regularization but with λ̂ = 0.05. Figure 4e,f presents the results obtained
with the CATILED and E–CATILED algorithms where λ̂ = 1, α̂ = 5, and ε̂ = 5. It is
possible to see both quantitatively, by the MSE (Mean Squared Error) from the ideal image,
and qualitatively that the images obtained with CATILED and E–CATILED are equivalent
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and better than those obtained with a Tikhonov regularization. In fact, by an implicit use
of line elements, it is possible to obtain a more accurate reconstruction of the edges of
the objects present in the ideal image. However, the computational time for determining
the solution in the case of Tikhonov regularization is about one-sixth of the time of the
CATILED technique. Moreover, it is possible to obtain more accurate results by minimizing
the energy function in (1) via a stochastic algorithm such as simulated annealing, but with
significantly longer computation times (cf. [52]).

(a) (c) (e)

(b) (d) (f)

Figure 4. (a) Ideal image; (b) Blurred data; (c) Tikhonov reconstruction with λ̂ = 1 (MSE = 106.2716);
(d) Tikhonov reconstruction with λ̂ = 0.05 (MSE = 50.9508); (e) CATILED reconstruction
(MSE = 18.6743); (f) E–CATILED reconstruction (MSE = 18.6591).

In our next experiments, we consider a Gaussian shape PSF of standard deviation
σ̃ = 3.25, and we apply the corresponding blurring operator to the two test images in
Figure 5 to obtain the starting data. In Figure 6, we present the reconstructions obtained by
CATILED and E–CATILED of the image in Figure 5a. Instead, the restorations obtained
by the two algorithms of the image in Figure 5b are shown in Figure 7. In this case, we
set λ̂ = 0.05, α̂ = 1, and ε̂ = 1. Figure 6d shows the reconstruction of the image in
Figure 5a by a Tikhonov regularization with λ̂ = 0.05. Again, one can immediately see that
the implicit use of line elements improves qualitatively and quantitatively the quality of
the reconstructions.

In the third set of experiments, we consider a Gaussian shape PSF of standard deviation
σ̃ = 10.25, and we add to the blurred data a Gaussian noise of variance σ̂2 = 4. We present
the reconstructions obtained by CATILED and E–CATILED for the two test images in
Figures 8 and 9. Here, we pose λ̂ = 0.01, α̂ = 0.1, and ε̂ = 0.1.
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(a) (b)

Figure 5. (a) First ideal image; (b) second ideal image.

(a) (b) (c)

(d)

Figure 6. (a) Blurred data; (b) CATILED reconstruction (MSE = 31.4166); (c) E–CATILED
reconstruction (MSE = 31.3254); (d) Tikhonov reconstruction (MSE = 49.0748).

(a) (b) (c)

Figure 7. (a) Blurred data; (b) CATILED reconstruction (MSE = 79.5116); (c) E–CATILED
reconstruction (MSE = 79.6245).
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(a) (b) (c)

Figure 8. (a) Blurred data; (b) CATILED reconstruction (MSE = 76.7959); (c) E–CATILED
reconstruction (MSE = 76.7008).

(a) (b) (c)

Figure 9. (a) Blurred data; (b) CATILED reconstruction (MSE = 120.4875); (c) E–CATILED
reconstruction (MSE = 120.4984).

In Table 5, we report the errors, in terms of MSE, of the reconstructions obtained
by CATILED and E–CATILED. Thus, these experiments show that the results of the two
algorithms are equivalent in both quantitative and visual terms.

Table 5. Mean squared error of the reconstructions.

Figure CATILED E–CATILED

Figure 5 18.6743 18.6591

Figure 6 31.4166 31.3254

Figure 7 79.5116 79.6245

Figure 8 76.7959 76.7008

Figure 9 120.4875 120.4984

Let us now consider the real data presented in Figure 10a. Such an image is an RGB
color image. A color image version of CATILED is presented in [53]. However, in this case,
in the blurred image, there does not appear to be any loss of saturation of the original colors.
Thus, we can reconstruct each color component separately. We first assume each channel
has a PFS with standard deviation σ̃ = 5. The reconstructions obtained by CATILED and
E–CATILED are in Figure 10b,c, respectively, and the MSE between the two reconstructions
is equal to 0.1320. Then, we consider a PFS with σ̃ = 7, and the relative results are in
Figure 10d,e. Here, the MSE between the two reconstructions is 0.2615. We set for both cases
λ̂ = 0.05, α̂ = 1, and ε̂ = 1. Again, the two algorithms yield qualitatively similar results.
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(a) (b) (c)

(d) (e)

Figure 10. (a) Blurred data; (b) CATILED reconstruction considering σ̃ = 5; (c) E–CATILED
reconstruction considering σ̃ = 5; (d) CATILED reconstruction considering σ̃ = 7; (e) E–CATILED
reconstruction considering σ̃ = 7.

Finally, in Table 6, we report the ratios between the calculation times of E–CATILED
and CATILED. Note here that the average computation time of the CATILED algorithm
was about 96.35 min. The average computation time of the E–CATILED algorithm can be
easily derived from the ratios given in Table 6. Thus, in our experimental results, using
E–CATILED, we have an average computational cost gain of 22.01%. It is thus evident that
the use of E–CATILED is more cost-effective than CATILED in terms of computational time
by not affecting the quality of the reconstruction obtained.

Table 6. Ratios between the time costs of E–CATILED and CATILED.

Figure Figure 4 Figure 7 Figure 6 Figure 9 Figure 8 Figure 10b,c Figure 10d,e

Ratio 0.7356 0.8162 0.7849 0.7812 0.7598 0.7921 0.7892

6. Conclusions and Future Developments

In this paper, we were concerned about decreasing the computational cost of a GNC
Algorithm for deblurring images when the blurring matrix is a full symmetric Toeplitz block
matrix with Toeplitz blocks. We analyzed the class of γ-matrices, which are matrices for
which fast transforms can perform multiplications with vectors. We showed, theoretically
and experimentally, how, using γ-matrices, it is possible to obtain good approximations
of symmetric Toeplitz matrices. Thus, we proposed to add a minimization of a new
approximation of the energy function to the GNC technique. In that approximation, we
replaced the Toeplitz matrices present in the blocks of the blur operator with γ-matrices. The
experimental results show that the proposed new GNC algorithm reduces the computation
time by a fifth compared with its previous version, while not changing the quality of the
reconstructions. This technique could be extended in the future by considering γ-block
matrices with γ-blocks and expanding the class of approximating matrices.
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Appendix A

We prove here that Bn = Jn,1.

Lemma A1. The following inclusion holds:

Bn ⊂ Ln,1.

Proof. Let B ∈ Bn, B = (bk,l)k.l and Λ(B) = diag(λ(B)
0 λ

(B)
1 · · · λ

(B)
n−1) be such that

λ
(B)
j = −λ

(B)
(n−j) mod n for every j ∈ {0, 1, . . . , n− 1}, and B = QnΛ(B)QT

n . We have

bk,l =
n−1

∑
j=0

q(n)k,j λ
(B)
j q(n)l,j .

Observe that λ
(B)
0 = 0 and λ

(B)
n/2 = 0, if n is even. From this and (A1), we obtain

bk,l =
b(n−1)/2c

∑
j=1

λ
(B)
j ·

(
q(n)k,j q(n)l,j − q(n)k,n−jq

(n)
l,n−j

)
,

both when n is even and when n is odd. From (5) and (A1), we deduce

bk,l =
2
n

b(n−1)/2c

∑
j=1

λ
(B)
j

(
cos
(

2πkj
n

)
cos
(

2πl j
n

)
− sin

(
2πkj

n

)
sin
(

2πl j
n

))

=
2
n

b(n−1)/2c

∑
j=1

λ
(B)
j cos

(
2π(k + l)j

n

)
.

Let b = (b0 b1 · · · bn−1)
T , where

bt =
2
n

b(n−1)/2c

∑
j=1

λ
(B)
j · cos

(
2πtj

n

)
, t ∈ {0, 1, . . . , n− 1}. (A1)
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Thus, B = circ(b), because for each k, l ∈ {0, 1, . . . , n− 1} we have bk,l = b(k−l) mod n.
For any k, l ∈ {0, 1, . . . , n− 1} it is bk,l = b(k+l) mod n. Hence, Bn ⊂ Ln,1.

Lemma A2. One has

Bn ⊂ Kn,1.

Proof. We recall that

Kn,1 =
{

B ∈ Rn×n : there is a symmetric b = (b0 . . . bn−1)
T ∈ Rn with bk,j = b(j+k) mod n

}
.

By Lemma A1, we obtain Bn ⊂ Ln,1. Now, we prove the symmetry of b.

Let B ∈ Bn be such that there exists Λ(B) ∈ Rn×n, Λ(B) = diag(λ(B)
0 λ

(B)
1 · · · λ

(B)
n−1),

such that C = QnΛ(B)QT
n and λ

(B)
j = −λ

(B)
(n−j) mod n for all j ∈ {0, 1, . . . , n − 1}. By

Theorem A1, bk,j = b(j+k) mod n. Moreover, by arguing as in Lemma A1, we obtain (A1),
and hence

bt =
2
n

b(n−1)/2c

∑
j=1

λ
(B)
j · cos

(
2πtj

n

)
=

2
n

b(n−1)/2c

∑
j=1

λ
(B)
j · cos

(
2π j− 2πtj

n

)

=
2
n

b(n−1)/2c

∑
j=1

λ
(B)
j · cos

(
2π(n− t)j

n

)
= bn−t

for any t ∈ {0, 1, . . . , n− 1}. Thus, b is symmetric.

Now, we present the following:

Theorem A1. The following result holds:

Bn = Jn,1.

Proof. First of all, we recall that

Jn,1 =
{

B ∈ Rn×n : there is a symmetric b = (b0 . . . bn−1)
T ∈ Rn with

n−1

∑
t=0

bt = 0,
n−1

∑
t=0

(−1)tbt = 0 when n is even, and bk,j = b(j+k) mod n

}
.

We begin with proving that Bn ⊂ Jn,1.
Let B ∈ Bn. In Lemma A2 we proved that B ∈ Kn,1, that is, b is symmetric and

bk,j = b(j+k) mod n.
Now we prove that

n−1

∑
t=0

bt = 0.

Since B ∈ Bn, the vector

u(0) =
(

1 1 · · · 1
)T

is an eigenvector for the eigenvalue λ
(B)
0 = 0. Hence, the formula (A2) is a consequence

of (12).

Again by (12), we obtain
n−1

∑
t=0

(−1)tbt = 0,
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since the vector

u(n/2) =
(

1 − 1 1 − 1 · · · − 1
)T

is an eigenvector for the eigenvalue λ
(B)
n/2 = 0 if n is even. Thus, Bn ⊂ Jn,1. Now, observe

that Jn,1 is a linear space of dimension b(n − 1)/2c. Thus, Bn and Jn,1 have the same
dimension. Therefore, Bn = Jn,1.
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