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Abstract: We herein present a weakly-coupled double bow-tie multi-ring elliptical core multi-mode
fiber (DBT-MREC-MMF) supporting 22 eigenmodes for mode division multiplexing across the
C+L+U band. The proposed fiber introduces a multi-ring elliptical core, bow-tie air holes, and
bow-tie stress-applying areas to effectively split adjacent eigenmodes. By utilizing the finite element
method (FEM), we accordingly optimized the fiber to support the 22 modes under the weakly-coupled
condition. We evaluated the impact of fiber parameters on the minimum effective refractive index
difference (min ∆neff) between adjacent eigenmodes, model birefringence (Bm), and bending loss at a
wavelength of 1550 nm. Additionally, broadband performance metrics, such as effective modal index
(neff), effective index difference (∆neff), effective mode area (Aeff), differential mode delay (DMD), and
chromatic dispersion (D), were comprehensively studied over the entire C+L+U band, ranging from
1530 to 1675 nm. The proposed fiber is capable of supporting 22 completely separated eigenmodes
with a min ∆neff between adjacent eigenmodes larger than 3.089 × 10−4 over the entire C+L+U band.
The proposed DBT-MREC-MMF holds great potential for use in short-haul communication systems
that require MDM to improve transmission capacity and expand bandwidth.

Keywords: optical fiber; weakly coupled multi-mode fiber; short-haul communication;
mode-division multiplexing

1. Introduction

The exponential growth of new data traffic, social networks, and rapid technological
advancements has stimulated the need to expand the capacity of optical fiber commu-
nication [1–3]. However, the transmission capacity of traditional single-mode fiber has
approached the nonlinear Shannon limit [4,5]. The development of space division multiplex-
ing (SDM) technology has been instrumental in overcoming the limitations of traditional
single-mode fiber transmission [6,7]. SDM, using few-mode fiber (FMF) and multi-core
fiber (MCF), has been shown to significantly improve transmission system capacity [8,9].
In particular, few-mode fibers (FMFs) in mode division multiplexing (MDM) systems are
one of ways to break through the limitations of traditional single mode fiber. However,
mode coupling-induced crosstalk remains a key challenge in MDM transmission using
FMFs, necessitating a complex and costly multi-input multi-output (MIMO) digital signal
processing (DSP) system for effective mitigation [10–12]. To reduce or even eliminate the
need for MIMO-DSP, enlarging the mode effective refractive index difference between
degenerate modes to larger than 10−4 is a promising approach [13].

There have been several works on weakly coupled FMFs, including the ring core
fiber [14], elliptical core fiber [15], elliptical ring core fiber [16–18], panda type fiber [19],
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bow-tie type fiber [20], and air hole fiber [21–23]. While the previously proposed weakly-
coupled FMFs have demonstrated promising characteristics for mode division multiplexing,
they still have limitations in terms of the number of supported eigenmodes and bandwidth.
For example, Zhang et al. [24] proposed a panda-type separated-circles-formed elliptical
ring core FMF capable of supporting 10 modes, with a min ∆neff of 1.2 × 10−4 over
the whole C+L band. Du et al. [25] proposed a segmented ring-core panda-type fiber,
which also supports 10 modes, with a min ∆neff of 3.5 × 10−4 over the whole C+L band.
Yang et al. [26] proposed a bow-tie ring-core FMF that can support 14 modes, with a min
∆neff of 1.6 × 10−4 over the whole C+L band. Behera et al. [27] proposed an M-type
few-mode fiber that supports 10 modes, with a min ∆neff of 5 × 10−3 over the C band.
Han et al. [28] proposed a cladding rods-assisted depressed-core FMF that supports nine
modes, with a min ∆neff of 1 × 10−3 over the C band. However, the number of eigenmodes
and bandwidth supported by the fiber need to be further improved.

In this paper, we propose a weakly-coupled double bow-tie multi-ring elliptical core
multi-mode fiber supporting 22 eigenmodes across the C+L+U band. The multi-ring ellipti-
cal core, bow-tie air holes, and symmetrical bow-tie stress-applying areas improve modal
birefringence and effectively separate two adjacent degenerate modes. In particular, the
introduction of a multi-ring elliptical fiber with a high-index ring and a trench improves the
minimum effective refractive index difference between adjacent eigenmodes and reduces
the bending loss. The implementation of a double bow-tie structure enhances birefrin-
gence, resulting in a greater separation of degenerate modes. We investigated the effects
of various parameters of the proposed fiber on neff between adjacent eigenmodes, min
∆neff, Aeff, Bm, bending loss, and the number of supported eigenmodes at the wavelength
of 1550 nm. Moreover, we evaluated neff, min ∆neff, Aeff, DMD, and dispersion of the
C+L+U band. Simulation results demonstrate that the DBT-MREC-MMF effectively splits
adjacent eigenmodes by combining bow-tie stress-applying, bow-tie air holes, and multi-
ring elliptical core structures. The proposed fiber achieves min ∆neff between adjacent
eigenmodes larger than 3.515 × 10−4 across the C+L+U band. The proposed fiber has
potential applications in MIMO-free eigenmode-division multiplexing systems to increase
transmission capacity and spectral efficiency. Furthermore, the proposed fiber has potential
in MIMO-free eigenmode-division multiplexing systems to increase transmission capacity
and spectral efficiency.

2. Fiber Design

Figure 1 presents the schematic cross-section and refractive index profile of the pro-
posed DBT-MREC-MMF. The fiber comprises a cladding made of pure SiO2, two bow-tie air
holes, two bow-tie stress-applying areas doped with B2O3-doped silica, and three different
step-index cores doped with GeO2-doped silica. The refractive index difference between
the elliptical core and the cladding of the fiber is denoted as ∆n1, and the long and short
semi-axes of the elliptical core are a3 and b3, respectively. A high-index ring with the same
ellipticity as the elliptical core is introduced by addition to the elliptical core. The high-index
ring has an inner radius of long semi-axis a1 and short semi-axis b1, and an outer radius of
long semi-axis a2 and short semi-axis b2, with a relative refractive index difference between
the high-index-ring and cladding of ∆n2. Moreover, a trench layer with the same ellipticity
as the core is added close to the outer side of the elliptical core, with long semi-axis a4
and short semi-axis b4. The relative refractive index difference between the trench and
the cladding is ∆n3. The ellipticity of the core, high-index ring, and trench is defined as
e = a1/b1 = a2/b2 = a3/b3 = a4/b4. The bow-tie stress-applying areas have parameters of an
inner radius of r1, width h, and angle θ, with an outer radius of r2 = r1 + h. The bow-tie air
hole parameters have the long semi-axis a5 and short semi-axis b5, angle θ0, and ellipticity
e0 = a5/b5. The refractive index of air is 1. The diameter of the fiber cladding is 125 µm.

The relative refractive index differences between the cores and cladding are denoted as
∆= (n 2

core – n2
clad)/2n2

core. The cladding material is SiO2 with neff of 1.444 at a wavelength
of 1550 nm according to the Sellmeier equation [29]. The mole fraction (mol%) of GeO2 and
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B2O3, corresponding to ∆n1, ∆n2, and ∆n3, and the stress-applying area refractive index
can be theoretically calculated using the hybrid Sellmeier equation [29,30]. The hybrid
Sellmeier equation describes the relationship between the refractive index, wavelength,
and concentration of dopants.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 16 
 

 

Figure 1. Schematic cross-section and refractive index profile of the DBT-MREC-MMF. 

The relative refractive index differences between the cores and cladding are denoted 

as ∆ = (ncore
2  –  nclad

2 )/2ncore
2 . The cladding material is SiO2 with neff of 1.444 at a wavelength 

of 1550 nm according to the Sellmeier equation [29]. The mole fraction (mol%) of GeO2 

and B2O3, corresponding to Δn1, Δn2, and Δn3, and the stress-applying area refractive index 

can be theoretically calculated using the hybrid Sellmeier equation [29,30]. The hybrid 

Sellmeier equation describes the relationship between the refractive index, wavelength, 

and concentration of dopants. 

The thermal expansion coefficient (α) of the doped material is defined as α = (1 − m) 

α0 + mα1 [31], where m and α1 represent the mole percentage and thermal expanding co-

efficient of the doped material, and 1 − m and α0, respectively, are the mole percentage 

and thermal expanding coefficient of raw material. Thermal expansion coefficients of SiO2, 

GeO2, and B2O3 are 5.4 × 10−7 (1/K), 7 × 10−6 (1/K), and 10 × 10−6 (1/K), respectively. In prac-

tical fiber fabrication, a 30% mol-doped fraction of B2O3 in the stress-applying area has 

been utilized [31]. Based on this calculation, the refractive index of the stress-applying 

area is 1.468 at 1550 nm, and the thermal expansion coefficient is 3.378 × 10−6 (1/K). Further 

details regarding the fiber elastic parameters are summarized in [31], including the ther-

mal expansion coefficient (α), Young’s modulus (E), Poisson’s ratio (v), the first and sec-

ond stress optical coefficients (C1, C2), and operating and reference temperature. All sim-

ulations in this work were implemented using the finite element method at a wavelength 

of 1550 nm. 

3. Results Simulation Analysis and Optimization 

The main work of this section was to optimize parameters of the proposed fiber. 

3.1. Optimization of Multi-Ring Elliptical Core Parameters 

Figure 2 presents the schematic cross-section of the bow-tie muti-ring elliptical multi-

mode fiber (BT-MREC-MMF). In this study, we first optimized the parameters of the op-

tical fiber without adding bow-tie air holes. That is, we optimized the parameters of the 

bow-tie type multi-ring elliptical core optical fiber. 

Figure 1. Schematic cross-section and refractive index profile of the DBT-MREC-MMF.

The thermal expansion coefficient (α) of the doped material is defined as α = (1 − m)
α0 + mα1 [31], where m and α1 represent the mole percentage and thermal expanding
coefficient of the doped material, and 1 −m and α0, respectively, are the mole percentage
and thermal expanding coefficient of raw material. Thermal expansion coefficients of SiO2,
GeO2, and B2O3 are 5.4 × 10−7 (1/K), 7 × 10−6 (1/K), and 10 × 10−6 (1/K), respectively.
In practical fiber fabrication, a 30% mol-doped fraction of B2O3 in the stress-applying area
has been utilized [31]. Based on this calculation, the refractive index of the stress-applying
area is 1.468 at 1550 nm, and the thermal expansion coefficient is 3.378× 10−6 (1/K). Further
details regarding the fiber elastic parameters are summarized in [31], including the thermal
expansion coefficient (α), Young’s modulus (E), Poisson’s ratio (v), the first and second
stress optical coefficients (C1, C2), and operating and reference temperature. All simulations
in this work were implemented using the finite element method at a wavelength of 1550 nm.

3. Results Simulation Analysis and Optimization

The main work of this section was to optimize parameters of the proposed fiber.

3.1. Optimization of Multi-Ring Elliptical Core Parameters

Figure 2 presents the schematic cross-section of the bow-tie muti-ring elliptical multi-
mode fiber (BT-MREC-MMF). In this study, we first optimized the parameters of the optical
fiber without adding bow-tie air holes. That is, we optimized the parameters of the bow-tie
type multi-ring elliptical core optical fiber.

We first optimized the parameters of the fiber high-index ring structure. We fixed
a1 = 3 µm, a3 = 9 µm, a4 = 12 µm, ∆n1 = 0.012, ∆n2 = 0.018, ∆n3 = 0.005, r1 = 20 µm,
h = 8.9 µm, θ = 90◦, and r2 = 28.9 µm. The paraments a2 and e were adjusted to optimize
the ∆neff between adjacent eigenmodes. The influence of a2 and e on min ∆neff and the
number of supported eigenmodes are shown in Figure 3. It can be seen that the min ∆neff
first increases, and then decreases, with increasing a2 and e, while the number of supported
eigenmodes gradually increases with increasing a2 and decreasing e. Within the region
of 5.7 µm ≤ a2 ≤ 6.3 µm and 1.6 ≤ e ≤ 1.71, the proposed fiber supports 22 eigenmodes,
and min ∆neff between adjacent eigenmodes is larger than 2.3 × 10−4. To obtain a larger
min ∆neff and better-designed tolerances, we selected the middle point a2 = 6.1 µm and
e = 1.65 (i.e., b2 = 3.7 µm) in the region as the parameters of the high-index ring structure,
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which is marked by the red dot in Figure 3a. The preparation error ranges are ± 0.2 µm and
± 0.5 µm, respectively. The proposed MMF can support 22 eigenmodes and the effective
refractive index difference between adjacent eigenmodes is greater than 2.58 × 10−4.
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Figure 3. Variations of (a) the min ∆neff and (b) mode number as a function of a2 and e.

We continued to optimize the parameters of the high-index ring; here, we fixed
a1 = 3 µm, a2 = 6.1 µm, a3 = 9 µm, a4 = 12 µm, ∆n1 = 0.012, ∆n3 = 0.005, r1 = 20 µm,
h = 8.9 µm, θ = 90◦, and e = 1.65. Figure 4a,b shows variations of neff and the min ∆neff
as a function of the relative refractive index ∆n2 in the high-index ring. Within the range
of 1.6% ≤ ∆n2 ≤ 2%, the min ∆neff is related to the ∆neff of the HGx

12 and HGy
12 modes.

As shown in Figure 4b, with increasing ∆n2, min ∆neff decreases. To obtain a larger min
∆neff, we took ∆n2 = 1.8%, such that the min ∆neff could reach 2.5 × 10−4.

As shown in Figure 5, we investigated the influence of a1 and a3 on min ∆neff and
the number of supported eigenmodes by the fiber at a2 = 6.1 µm, a4 = 12 µm, ∆n1 = 0.012,
∆n3 = 0.005, r1 = 20 µm, h = 8.9 µm, θ = 90◦, and e = 1.65. From the rectangular area
of Figure 5, within the region of 2.5 µm ≤ a1 ≤ 3.6 µm and 8.4 µm ≤ a3 ≤ 9.2 µm, the
proposed fiber supports 22 eigenmodes, and the min ∆neff between adjacent eigenmodes
is larger than 2 × 10−4. To obtain a larger min ∆neff and better-designed tolerances, we
chose the points a1 = 3.3 µm (i.e., b1 = 2 µm) and a3 = 9 µm (i.e., b3 = 4.45 µm) in the
region as the parameters of the elliptical core. This parameter is marked by a red dot in
Figure 5a. The effective refractive index difference between adjacent eigenmodes is greater
than 2.58 × 10−4.
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We investigated the influence of the core parameter ∆n1 on ∆neff at a1 = 3.3 µm,
a2 = 6.1 µm, a3 = 9 µm, a4 = 12 µm, ∆n2 = 0.018, ∆n3 = 0.005, r1 = 20 µm, h = 8.9 µm, θ = 90◦,
and e = 1.65, as shown in Figure 6. It can be seen that the min ∆neff first increases and
then decreases with increasing ∆n1. Min ∆neff is larger than 2.3 × 10−4 within the range
of 1% ≤ ∆n1 ≤ 1.48%. Here, we took ∆n1 = 1.3% to keep supporting 22 fully separated
eigenmodes in the whole C+L+U band. This corresponds to a 13 % mol fraction of GeO2
doped in SiO2.

Adding a trench structure can effectively reduce bending loss and obtain a larger
design tolerance at the same time [32]. We fixed a1 = 3 µm, a3 = 9 µm, a4 = 12 µm,
∆n1 = 0.012, ∆n2 = 0.018, ∆n3 = 0.005, r1 = 20 µm, h = 8.9 µm, θ = 90◦, and e = 1.65, and
adjusted a4 and ∆n3 accordingly, to optimize min ∆neff between adjacent eigenmodes.
The effect of a4 and ∆n3 on min ∆neff and the number of supported eigenmodes are shown
in Figure 7. Within the region of 10.25 µm ≤ a4 ≤ 13 µm and 0.0055 ≤ ∆n3 ≤ 0.009, the
proposed fiber supports 22 eigenmodes, and min ∆neff between adjacent eigenmodes is
larger than 2.3 × 10−4. The trench has a significant effect on lifting min ∆neff between
adjacent eigenmodes. Considering the feasibility of the fabrication process, we chose the
parameters of the red dot (a4 = 11 µm and ∆n3 = 0.7%) for further optimization.
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3.2. Optimization of Stress-Applying Parameters

To optimize the structure size of the stress-applying area, we analyzed the influence
of r1, h, and θ on ∆neff, Bm, and bending loss. Figure 8 shows the colormaps of min ∆neff
versus r1 and h with θ set as 60◦, 90◦, and 120◦, respectively. The influence of structure
parameters of optical fiber r1, h, and θ on bending loss along the direction of the x-axis
and y-axis at bending radius R = 30 mm are shown in Figure 9. It can be clearly seen
that the error range gradually decreases with the increase of angle θ. Bm increases with
increasing h and decreasing r1. The increase in the area of the bow-tie stress-applying areas
has a significant effect on improving the birefringence of the optical fiber. As shown in
Figure 8b, within the region of 7 µm ≤ h ≤ 15 µm and 16 µm ≤ r1 ≤ 26 µm, the proposed
fiber continues to support 22 eigenmodes with a min ∆neff larger than 2 × 10−4. To obtain a
larger min ∆neff, lower bending loss, and larger manufacturing error range with reasonable
parameter values, we finally choose the red point θ = 90◦, r1 = 20 µm, h = 11 µm as the
target fiber structure size. At this point, the min ∆neff value is 3.29 × 10−4, and modal
birefringence Bm = 3.28 × 10−4 N/m2.
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3.3. Optimization of Bow-Tie Air Holes Parameters

The bow-tie air holes were introduced between the multi-ring elliptical core and the
bow-tie stress-applying areas. We optimized the parameters of the bow-tie air holes of
the DBT-MREC-MMF to increase min ∆neff and reduce modal coupling. Figure 10 shows
the colormaps of min ∆neff versus e0 and a5, with θ0 taking 30◦, 45◦, and 60◦, respectively.
The influence of structure parameters e0, a5, and θ0 on bending loss along the direction of
the x-axis and y-axis at bending radius R = 30 mm is shown in Figure 11. It can be seen
from Figure 11 that Bm increases with the decrease of e0 and the increase of a5 and θ0. This
is because decreasing the ellipticity e0 and increasing a5 and θ0 implies an increase in the
geometric asymmetry and area of the bow-tie air hole. That leads to an increase in the
contribution of geometric birefringence to overall birefringence. Considering larger min
∆neff, appropriate manufacturing tolerances, and lower bending loss, e0 = 1, a5 = 18.5 µm,
and θ0 = 45◦ were selected as the parameters of the bow-tie air holes, as shown in the red dot
in Figure 10b. At this point, the min ∆neff value increases from 3.289× 10−4 to 3.515× 10−4,
and the modal birefringence value increase from 3.26 × 10−4 N/m2 to 3.627 × 10−4 N/m2.
The results show that the introduction of bow-tie air holes effectively increases the min
∆neff between adjacent eigenmodes.

In summary, we optimized the parameters of the fiber structure to support 22 eigen-
modes. The results indicate that the DBT-MREC-MMF exhibits a large min ∆neff between
adjacent eigenmodes. We selected the optimal parameters to achieve a larger min ∆neff and
better-designed tolerances.
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4. Mode Properties and Broadband Characteristics
4.1. Birefringence

Figure 12 shows mode field intensity distributions with electric vectors (white arrows)
distributions of modes supported by the DBT-MREC-MMF for all 22 eigenmodes at 1550 nm.
It is apparent that all polarization directions of eigenmodes are approximately horizontal
or vertical, and all the eigenmodes are well confined within the core region, which displays
a superior capacity to maintain polarization.
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Birefringence performance is important for studying the polarization properties of fibers.
High values of birefringence provide superior polarization retention. Modal birefringence is
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related to many factors, such as the size of the stress-applying area, temperature, core ellipticity,
core-cladding refractive index difference, thermal expansion coefficient, and wavelength of light.
When a fiber has an asymmetric structure and stress-applying areas, it is necessary to analyze its
modal birefringence (Bm). Bm can be classified into two types: geometric birefringence (Bg) and
stress birefringence (Bs). Bg is caused by the anisotropy of the refractive index of the material
due to the asymmetry of the fiber structure. Bs is caused by the photoelastic effect in the fiber
after the addition of stress-applying areas. Bm is defined as [31]:

Bm = Nx − Ny = Bg + Bs = Nx0 − Ny0 + (C1 − C2) (σx − σy), (1)

where Nx and Ny are the refractive indices of the material along the x and y directions. Nx0
and Ny0 are the refractive indices of the stress-free material. σx and σy are the normal stress
along the x and y directions of the material, respectively. C1 and C2 are the stress-optic
coefficients. Bs is defined as:

Bs= (C 1 − C2)(σ 1 − σ2). (2)

Figure 13a,b shows the distribution of the normal stress σx and σy in the transverse
cross-section of the proposed MMF. Stress along the x-axis (σx) is much larger than that
along the y-axis (σy). The normal stress along the x-axis (σx) and y-axis (σy) are ~5.38 × 107

N/m2 and ~−5.19 × 107 N/m2, respectively. Stress-induced birefringence, Bs = (C1 −
C2)× (σx − σy), is ~3.626× 10−4. According to Equation (1), we obtain the Bm of each point
in the cross-section of the MMF. Figure 13c,d shows the distributions of the von Mises stress
distribution and geometric and stress-induced birefringence (Nx − Ny) in the transverse
cross-section of the DBT-MREC-MMF. From Figure 13d, the maximum birefringence is
9.55 × 10−4 N/m2, and birefringence at the core is ~3.627 × 10−4 N/m2. As for the Bg,
which can be derived from Equations (1) and (2), the value is ~0.001 × 10−4. Since the Bs is
much larger than the Bg, the main part of the Bm is Bs.
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4.2. Bending Loss

For fiber in the actual transmission process, the loss generated by bending will decrease
the quality of signal transmission. The bending loss of each eigenmode is obtained from
the imaginary part of the effective index, shown as follows [33],

Bending Loss =
20·2π·Im(neff)

ln(10)·λ (3)

The DBT-MREC-MMF is asymmetric. The bending loss is different for different bending
directions. The bending losses along the x and y-axis are calculated here. As shown in
Figure 14, at the bending radius of 24, 22, and 10 mm along the x or y-axis, the number of
eigenmodes reduces to 20, 18, and 16, respectively. Under an identical bending radius, the
bending loss value of the low-order mode is lower than that of the high-order mode. When
R is 30 mm, the bending loss along the x and y-axis is below 10−4 dB/m. Numerical results
show that the proposed fiber has excellent bending resistance. When R is larger than 30 mm,
the proposed fiber supports 22 eigenmodes, and the corresponding maximum bending
losses of the fiber along the x and y-axis are 8.05× 10−4 and 3.789× 10−4 dB/m, respectively.
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Figure 14. Bending loss as a function of bending radius R along the (a) x-axis and (b) y-axis.

4.3. Broadband Performances

We further investigated the relationship between wavelength and mode properties
(neff, ∆neff, DMD, D, and Aeff) of DBT-MREC-MMF covering the whole C+L+U band.
The variations of neff and ∆neff as a function of the wavelength for each eigenmode are
presented in Figure 15a,b. It was found that the DBT-MREC-MMF supports 22 eigenmodes
over a range of wavelengths from 1530 to 1675 nm, and the min ∆neff between adjacent
eigenmodes is larger than 3.089 × 10−4 at 1530 nm. Results indicate that the DBT-MREC-
MMF can work across the whole C+L+U band.

The differential mode delay (DMD) is important to reduce the complexity and power
loss of MIMO processing. The DMD between mode A and mode B can be defined as [34]:

DMD = τB − τA =
ngB − ngA

c
=

neffB − neffA
c

− λ

c

(
∂neffB

∂λ
− ∂neffA

∂λ

)
(4)

where τB and τA are the group time delays of the two modes, ngB and ngA are the group
refractive indices, neffB and neffA are the effective refractive indices, and c and λ are the
speed of light and the operating wavelength in vacuum, respectively. Fiber dispersion is a
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key factor in determining transmission capacity, and the dispersion of each eigenmode is
calculated by [16]:

D = − λ

C
∂2neff

∂λ2 (5)
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As shown in Figure 16a,b, the DMD and dispersion of all 22 eigenmodes as a function
of wavelength were calculated. All of the eigenmodes exhibit a relatively small DMD
(−15.41~12.4 ns/km), which can induce negligible power penalties in short-haul optical
communication links. Moreover, the dispersion values for lower-order eigenmodes cover-
ing the whole C+L+U band vary from 17.39 to 63.75 ps/nm/km, indicating that dispersion
can be neglected when applied in short-haul optical interconnects. The dispersion value for
higher-order eigenmode HGy

31 is larger, and ranges from −77.57 to −70.85 ps/nm/km over
the whole C+L+U band. To compensate for the dispersion problem in fibers, specialized
dispersion-compensating fibers can be used. This method helps to ensure that the signal
transmitted through the fibers remains intact and undistorted, enabling high-quality data
transmission [35–37]. Hence, this fiber can be considered to be a promising candidate for
MIMO-free MDM systems.

The mode effective area (Aeff) of the fiber reflects the lateral distribution of the optical
field on the fiber cross-section. The nonlinear coefficient and Aeff are reciprocal to each
other. Aeff is calculated by Equation (6) [38]:

Aeff =

(s
|E|2dxdy

)2

s
|E|4dxdy

(6)

where E represents the mode field power distribution across the fiber cross-section wave-
length. The Aeff of the proposed DRT-MREC-MMF within the wavelength range of 1530
to 1675 nm is shown in Figure 17. The effective area gradually increases with increasing
wavelength. The Aeff values range from 66.8 to 96.39 µm2 over the whole C+L+U band.
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5. Fabrication Method and Tolerance

Table 1 clearly lists the tolerance parameters of the DBT-MREC-MMF. The min ∆neff
of the target value is 3.515 × 10−4. It is noteworthy that, within all the tolerance ranges
listed in Table 1, the value of min ∆neff is greater than 2 × 10−4, and the fiber supports
22 eigenmodes. These results demonstrate that the fiber exhibits a considerably high
tolerance and exceptional performance.

Table 1. Optimal parameters with fabrication tolerance of the DBT-MREC-MMF.
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Value
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a1/µm 2.5~3.6 3.3 a3/µm 8.4~9.2 9 ∆n1 0.01~0.0148 0.013
a4/µm 10.25~13 11 ∆n3 0.0055~0.009 0.007 h/µm 7–15 11
r1/µm 16~26 20 θ 70~100 90 e0 0.9~1.9 1
a5/µm 17.5~20.5 18.5 θ0 30~60 45
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The fabrication process of the proposed weakly-coupled DBT-MREC-MMF typically
involves the following steps: (1) Preform fabrication: The first step is to fabricate a preform
of the proposed fiber structure. This is typically done using the modified chemical vapor
deposition (MCVD) method, where a glass tube is heated and rotated while reactive gases
are introduced to deposit the desired dopants and form the core and cladding. (2) Drawing
the fiber: After the preform is fabricated, it is placed in a fiber drawing tower where it is
heated and drawn into a thin fiber. The fiber diameter is controlled by the drawing speed
and the temperature gradient along the preform. (3) Etching: Once the fiber is drawn, it is
etched to create the air-hole structure. This can be done using hydrofluoric acid or a similar
etchant, which selectively removes the cladding material around the air holes. (4) Cleaving
and polishing: The final step is to cleave the fiber to the desired length and polish the end
faces to ensure good optical coupling.

Several novel ring core fibers have been successfully developed [39,40], exhibiting ex-
cellent performance in data transmission. The fabrication process of stress-applying regions,
particularly the widely experimented bow-tie or panda-type in polarization-maintaining
fibers, has reached a mature stage [41,42]. Additionally, air-hole-assisted fibers have been
extensively studied and manufactured [43,44]. Drawing on these well-established fab-
rication techniques and experiences, it is reasonable to suggest that the proposed fully
degeneracy-lifted DBT-MREC-MMF for MIMO-free direct fiber MDM transmission could
be manufactured. We are confident that the fabrication of the proposed fiber will be
successfully realized.

6. Conclusions

In conclusion, we have presented a weakly-coupled double bow-tie multi-ring ellip-
tical core multi-mode fiber capable of supporting 22 independent eigenmodes across the
C+L+U band. The proposed fiber structure, incorporating bow-tie air holes, a multi-ring el-
liptical core, and bow-tie stress-applying areas, exhibits enhanced modal birefringence and
effectively separates adjacent eigenmodes. The proposed fiber design utilizes a multi-ring
elliptical core created by inserting a high-index ring and adding an outer trench, resulting
in improved separation and transmission between adjacent eigenmodes. The bow-tie air
holes lead to enhanced modal birefringence and improved separation of adjacent eigen-
modes. The bow-tie stress-applying areas induce stress on the fiber, further enhancing
modal birefringence and improving polarization maintaining performance.

Through parameter optimization, the proposed fiber achieves a ∆neff between adjacent
eigenmodes larger than 3.089 × 10−4 over the whole C+L+U band. The fiber has a high
effective area (66.8~96.39 µm2), low differential mode delay (−15.41~12.4 ns/km), and
negligible bending loss (<10−4 dB/m). Overall, our simulation results suggest that the
proposed DBT-MREC-MMF holds great promise for applications in eigenmode-division
multiplexing transmission, offering significant bandwidth improvements and increased
transmission capacity. By analyzing and optimizing the structural parameters, the proposed
fiber has potential applications in eigenmode-division multiplexing transmission to increase
bandwidth and improve transmission capacity.
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