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Abstract: The emergence of the vibration energy harvesting system makes it possible for wireless
monitoring nodes in coal mines to realize self-power supply. In order to reveal the influence of
gravity effect on the response characteristics of the combined beam tri-stable piezoelectric energy
harvesting system (CTEHS), the system’s nonlinear magnetism is calculated according to the prin-
ciple of point magnetic charge dipole, and the system’s nonlinear resilience is obtained through
experimental measurements and nonlinear fitting methods. Based on the Lagrange equation, the
system’s electromechanical coupling motion model considering gravity is established. The system’s
motion equation is solved numerically based on the Runge–Kutta algorithm, and the effects of the
end magnet mass and the initial vibration point on the bifurcation behavior, potential energy, and
system output performance are investigated by emulation and experiment. The research shows that
the magnet’s gravity effect causes a change in the stable equilibrium position and the system’s motion
state and also causes the system to generate additional gravitational potential energy, which leads to a
potential asymmetric well of the system. Under the consideration of magnet gravity, the appropriate
end magnet mass and initial vibration point can not only reduce the system’s requirements for
external excitation strength but also effectively improve the system’s response and output. This
research provides a new theoretical basis for the optimal design of the tri-stable piezoelectric energy
harvesting system.

Keywords: tri-stable; magnetic coupling; gravity effect; asymmetric potential well; response
characteristics

1. Introduction

In the latest years, with the fast development of wireless monitoring and microelec-
tronics technology, wireless monitoring systems have shown strong application potential
in monitoring fields such as ecological environment [1], equipment status [2], and traffic
safety [3]. Most of the current wireless monitoring nodes use battery power; however,
chemical batteries are not only difficult to recycle but also need to be replaced regularly
and have high maintenance costs. Vibration energy harvesting technology can achieve
the transformation of vibration energy into electric energy, which provides new ideas and
methods to handle the endurance problem of wireless monitoring nodes [4,5].

At present, the vibration energy capture method by using the piezoelectric principle
has become the research hotspot due to its advantages of easy miniaturization, simple
structure and high energy density [6–8]. The researchers initially mainly studied the linear
piezoelectric energy capture system and characterized the system’s motion characteristics
by establishing a linear mathematical model. However, as far as the linear piezoelectric
energy harvesting system [9] is concerned, only when the vibration frequency is near the
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intrinsic frequency of the system structure can the system produce an efficient output. The
excitation frequency of the real external environment is often random, has a certain range,
and cannot always be near the intrinsic frequency of the system. As a result, the electricity
generation efficiency of the linear piezoelectric energy capture system is low, and it is
difficult to be widely used. In order to broaden the effective operating frequency band of
the piezoelectric energy capture system and improve the energy capture performance of the
system, researchers introduced nonlinear factors on the basis of the linear energy capture
system and began to explore and study the nonlinear piezoelectric energy harvesting
system [10,11]. The nonlinear energy harvesting systems currently studied are mainly
realized by introducing nonlinear stiffness. There are three main methods for introducing
nonlinear stiffness, which are external force coupling [12,13], piecewise linear [14,15], and
nonlinear strain [16,17]. Compared with the other two methods, external force coupling
has the advantages of strong reliability and easy realization and is the current key research
direction [18].

As the most common way of external force coupling, the introduction of nonlinear mag-
netism can make the system achieve a large response in monostable [19,20], bistable [21,22],
and multistable [23,24]. Researchers have conducted a great deal of research on the piezo-
electric energy capture system using this way [25–27]. Fan [28] proposed a monostable
piezoelectric energy capturer by introducing a set of symmetrical attracting magnets outside
the cantilever beam. The research results indicated that the energy harvesting bandwidth
and output voltage of the system are greatly improved compared with the linear system.
Xie [29] proposed an asymmetric double-beam monostable piezoelectric energy harvester
and found that the asymmetric structure has higher output performance and harvesting
efficiency than the symmetric structure. Ferrari [30] arranged two mutually repelling
magnets at the tip and outside to form a bistable piezoelectric energy harvester. Through
experimental tests, it was found that the introduction of magnetism significantly enhanced
the harvesting ability of the bistable energy harvester. Erturk [31] established a nonlinear
bistable model by using the attraction of two fixed magnets to the ferromagnetic beam
and proved that the bistable system has higher output voltage and power than the linear
system through theoretical and experimental studies. Lan [32] designed an improved
bistable energy capturer by placing a miniature magnet in the middle of two external
magnets, and the analysis results showed that the improved bistable system can achieve
high energy output at lower excitation intensity. Zhou [33] proposed a magnetic coupling
nonlinear tristable energy harvester. Compared with the bistable system, the tristable
system is easier to escape from the potential well and achieve a large response and output.
Jung [34] designed a tristable piezoelectric energy capturer with two rotatable magnets
and found that with the change of the magnet rotation angle, the motion characteristics of
the system also change. Sun [35] improved the structure of the traditional tristable energy
capturer and replaced the traditional two external magnets with a ring magnet. Simulation
and experiment prove that this ring magnet structure constitutes a tristable system and
is completely feasible. Zhou [36] arranged three magnets outside to form a quadstable
piezoelectric energy capturer. The experimental study indicated that the quadstable system
exhibited richer output response characteristics than the bistable system.

Most of the above research and analysis on the magnetic coupling nonlinear energy
harvesting system are carried out under ideal conditions without considering the gravity
effect of the system. However, gravity is real and inevitable in the energy harvesting
system. Therefore, it is necessary to further explore the influence of gravity effect on the
piezoelectric energy harvesting system. For the combined beam tri-stable piezoelectric
energy harvesting system (CTEHS) proposed by this research group, some related studies
are carried out in this paper considering the gravity of the end magnets. The remainder of
this paper is organized as shown below: In the next section, the overall structure of CTEHS
is described first, then the establishment process of the system’s magnetism model and
resilience model is introduced, and then the system dynamics equation considering gravity
is derived by using the Lagrange theorem. In Section 3, the effects of the magnet’s gravity



Appl. Sci. 2023, 13, 94 3 of 19

on the system’s bifurcation behavior and potential well characteristics are first studied,
then the effects of different end magnet masses and initial vibration points on the system’s
output characteristics are researched by numerical emulation. In Section 4, the results of
the theoretical study are validated by experimental tests. In the last section, the research
results and findings of this paper are refined and summarized.

2. Structure and Mathematical Model of CTEHS
2.1. Structure of CTEHS

The overall structure of CTEHS is shown in Figure 1, which mainly includes a pedestal,
combined beam, magnet, and PVDF (polyvinylidene difluoride). The combined beam
consists of a linear part and an arch part. The linear end of the combined beam is fastened
to the right side of the base, the arched end is connected with magnet 1, and the left side
of the base is symmetrically placed with two magnets: 2 and 3. A layer of PVDF piezo
sheet adheres to the top side of the beam. PVDF has two electrodes distributed on opposite
surfaces. When PVDF is subjected to external force, positive and negative charges will
appear on the surface of its two electrodes, thus forming positive and negative electrodes
of PVDF. In this paper, the upper surface electrode of PVDF is the positive electrode,
and the lower surface electrode is the negative electrode. Both ends of the load resistor
R are connected to the positive and negative electrodes of PVDF through wires. When
the pedestal is subjected to external vibration in the z-orientation, the end magnets of
the combined beam will produce a corresponding displacement, which will deform the
combined beam. According to the piezoelectric effect, the top and bottom surfaces of the
PVDF piezoelectric film will generate a definite volume of electric energy. In Figure 1, L is
the lateral length of the combined beam along the x-orientation, dh is the horizontal spacing
between the end magnet 1 and the external magnets 2 and 3, and dv is the vertical spacing
between the external magnets 2 and 3.

Appl. Sci. 2023, 13, 94 3 of 19 
 

resilience model is introduced, and then the system dynamics equation considering grav-

ity is derived by using the Lagrange theorem. In Section 3, the effects of the magnet’s 

gravity on the system’s bifurcation behavior and potential well characteristics are first 

studied, then the effects of different end magnet masses and initial vibration points on the 

system’s output characteristics are researched by numerical emulation. In Section 4, the 

results of the theoretical study are validated by experimental tests. In the last section, the 

research results and findings of this paper are refined and summarized. 

2. Structure and Mathematical Model of CTEHS 

2.1. Structure of CTEHS 

The overall structure of CTEHS is shown in Figure 1, which mainly includes a ped-

estal, combined beam, magnet, and PVDF (polyvinylidene difluoride). The combined 

beam consists of a linear part and an arch part. The linear end of the combined beam is 

fastened to the right side of the base, the arched end is connected with magnet 1, and the 

left side of the base is symmetrically placed with two magnets: 2 and 3. A layer of PVDF 

piezo sheet adheres to the top side of the beam. PVDF has two electrodes distributed on 

opposite surfaces. When PVDF is subjected to external force, positive and negative 

charges will appear on the surface of its two electrodes, thus forming positive and nega-

tive electrodes of PVDF. In this paper, the upper surface electrode of PVDF is the positive 

electrode, and the lower surface electrode is the negative electrode. Both ends of the load 

resistor R are connected to the positive and negative electrodes of PVDF through wires. 

When the pedestal is subjected to external vibration in the z-orientation, the end magnets 

of the combined beam will produce a corresponding displacement, which will deform the 

combined beam. According to the piezoelectric effect, the top and bottom surfaces of the 

PVDF piezoelectric film will generate a definite volume of electric energy. In Figure 1, � 

is the lateral length of the combined beam along the x-orientation, �� is the horizontal 

spacing between the end magnet 1 and the external magnets 2 and 3, and �� is the verti-

cal spacing between the external magnets 2 and 3. 

 

Figure 1. Overall schematic diagram of CTEHS.  Figure 1. Overall schematic diagram of CTEHS.

2.2. Mathematical Model of CTEHS
2.2.1. Magnetism Model

In order to study the output performance of CTEHS, the nonlinear magnetism model
of the system must be established first. In this research, the magnetism between magnets
is calculated and modeled according to the point magnetic charge dipole theory. Figure 2
shows the geometric positions and relations of magnets 1, 2, and 3.
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In Figure 2, M1, M2, and M3 are the magnetization of the three magnets, Pi(i = 1, 2, 3, 4, 5, 6)
is the dipole point of the magnet, rij(i = 3, 4, 5, 6, j = 1, 2) is the orientation vector of
the point dipole, w is the transverse length of the three magnets, u(L, t) is the response
displacement of the end magnet 1 in the z-direction, and α is the rotation angle of the end
magnet 1. Based on the point magnetic charge dipole method, the magnetism between
magnet 1 and magnet 2 can be obtained as

F12 =
Q12
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where Q12 = µ0M1S1M2S2, δ1 = u(L, t)− dv/2, δ2 = u(L, t) + αw− dv/2. S1, S2 are the
surface areas of magnets 1,2 in the z-direction, and µ0 is the magnetic permeability under
vacuum conditions.

Similarly, the magnitude of the magnetism between magnet 1 and magnet 3 is

F13 =
Q13
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where Q13 = µ0M1S1M3S3, δ3 = u(L, t) + dv/2, δ4 = u(L, t) + αw + dv/2.
Therefore, the total magnetism between the three magnets is

Fm = F12 + F13 (3)

2.2.2. Resilience Model

Since the resilience of the combined beam is complex, the resilience of the system is
modeled by experimental measurement and polynomial fitting in this paper. The specific
implementation process is as follows: first, one end of the combined beam is fastened,
and the other end is pushed using an ergometer (YLK-10) to gauge the resilience data of
the combined beam, then multiple measurements are taken and averaged, and finally, the
resilience model of the system is obtained by polynomial fitting. The relationship between
resilience Fr and displacement u(L, t) is expressed as follows

Fr = k1u3(L, t) + k2u(L, t) (4)

The coefficients k1 and k2 in Equation (4) are obtained by polynomial fitting the mea-
sured resilience and displacement data with MATLAB. The coefficient k1 = −54715.8 N/m3,
k2 = −19.65 N/m in Equation (4). Figure 3 shows the experiment data and fitting curve
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of the displacement–resilience of the combined beam. It can be found from Figure 3 that
the resilience of the combined beam is nonlinear, and the fitted curve is in good agreement
with the experimentally measured data.
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2.2.3. Motion Equation of CTEHS

In this research, the motion equation of CTEHS considering the gravity effect is
established based on the Lagrange equation. The Lagrange function of the system is
as follows

La = Tl + Tm + Wp −Ur −Um −Ug (5)

where Tl is the kinetic energy of the combined beam and PVDF, Tm is the kinetic energy
of magnet 1, Wp is the electric energy produced by the PVDF, Ur is the resilient potential
energy of the combined beam and PVDF, Um is the magnetism potential energy between
three magnets, and Ug is the gravitational potential energy of the magnet 1. The following
are the specific manifestations of these energies:

Tl =
1
2
(
ρp Ap + ρb Ab

) ∫ L

0

[
∂u(x, t)

∂x
+

.
y(t)

]2
dx (6)

Tm =
1
2

Me

{[
∂u(x, t)

∂t

]
x=L

+
.
y(t)

}2
+

1
2

Ie

[
∂2u(x, t)

∂t∂x

]2

x=L
(7)

Wp =
1
4

e31kp
(
hb + hp

)
V(t)

[
∂u(x, t)

∂x

]
x=L

+
1
2

CpV2(t) (8)

Ur =
∫

Frdu(L, t) (9)

Um =
∫

Fmdu(L, t) (10)

Ug = Fgu(L, t) = Megu(L, t) (11)

where ρb, ρp are the material densities of the combined beam and PVDF, Ab, Ap are the
cross-section areas of the combined beam and PVDF, and hb, hp are the thicknesses of the
combined beam and PVDF, respectively.

.
y(t) is the vibration velocity of the base, Me, Ie

are the mass and moment of inertia of the end magnet 1, respectively, V(t) is the response
voltage of PVDF, e31, Cp are the piezoelectric constants and equivalent capacitance of
PVDF, respectively.
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The end vibration displacement u(x, t) of the combined beam can be expressed ac-
cording to the Galerkin method as

u(x, t) = ∑N
i=1 ψi(x)γi(t) (12)

where ψi(x), γi(t) express the i-th mode shape function and modal coordinates of the
combined beam, respectively. The research in this paper is mainly aimed at low-frequency
vibration. Therefore, we only take into account the 1st-order modalities of the beam, and
the specific expression of the mode shape function ψ(x) is

ψ(x) = 1− cos
(πx

2L

)
(13)

Combining all the above equations, the electromechanical coupling motion equation
of the system considering gravity can be obtained as follows:{

M
..
γ(t) + C

.
γ(t) + Fr −ΘV(t) + Fm + Fg = −β

..
y(t)

Θ
.
γ(t) + V(t)/R + Cp

.
V(t) = 0

(14)

where

M =
(
ρp Ap + ρb Ab

) ∫ L

0
ψ2(x)dx + Meψ2(L) + Ie

(
ψ′(L)

)2 (15)

Θ =
1
2

e31kp
(
hp + hb

)
ψ′(L) (16)

β =
(
ρp Ap + ρb Ab

) ∫ L

0
ψ(x)dx + Meψ(L) (17)

..
y(t) = Acos(2π f t) (18)

In Equation (18), A is the acceleration amplitude of the external vibration, and f is the
frequency of the external vibration.

3. Simulation Analysis of CTEHS
3.1. Analysis of Bifurcation Characteristics of System Static Solution
3.1.1. Influence of End Magnet Mass Me on the (dh, u) Bifurcation Diagram

Table 1 lists the specific parameters of the system components used in the
numerical simulation.

Table 1. Simulation parameters of the system.

Component Parameter Value Unit

Length 40 mm
Width 8 mm

Combined Beam part Thickness 0.2 mm
Density 8300 kg/m3

Young’s Modulus 128 GPa
Length 40 mm
Width 8 mm

Thickness 0.11 mm
PVDF part Density 1780 kg/m3

Young’s Modulus 3 GPa
Piezoelectric Stress Constant −11.5 C/m2

Length 10 mm
Width 10 mm

Magnet part Thickness 5 mm
Mass 3.75 g

Magnetization Intensity 4.5 × 105 A/m
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Let
..
γ(t) =

.
γ(t) =

.
V(t) = V(t) =

..
y(t) = 0 in the system’s motion equation, then the

system’s equation in a static state is

Fr + Fm + Fg = 0 (19)

It can be found from Equation (19) that the static solution of the system depends not
only on the nonlinear magnetism and resilience of the system but also on the gravity of the
end magnets. The system’s static bifurcation diagram, under the consideration of the end
magnet’s gravity, can be obtained by solving Equation (19).

First, the influence of end magnet mass Me on the system’s bifurcation behavior is
studied in (dh, u) plane. Taking dv = 20 mm, Me = 0,3,6,9,12,15 g, the bifurcation diagram of
the system in the (dh, u) plane is shown in Figure 4, where the real lines represent the stable
solution and the dotted lines represent the unstable solution. Figure 4a is the bifurcation
diagram when Me= 0 g, that is, the gravity of the end magnet is not considered, and two
saddle points S symmetrical about u = 0 appear in the system. When dh > dhS, there is
just one zero-point solution to the static equation. When dh < dhS, there exist three stable
solutions and two unstable solutions of the static equation, the system shows as a tristable
system at this time. When Me = 3 g, as shown in Figure 4b, under the influence of the
gravity of the magnet, the bifurcation diagram presents asymmetry up and down. The
upper saddle point shifts to the left to point S1, and the lower saddle point shifts to the right
to point S2, and the zero stable position of the system is shifted downward, and the offset is
∆u. When dh > dhS1, there is just one solution to the static equation, and the gravity effect
of the magnet makes this stable solution negative, at which time the system is monostable.
When dhS1 < dh < dhS2, there exist two stable solutions and one unstable solution of the
static equation, and the system shows as a bistable state. When dh < dhS1, there exist
five solutions to the static equation, and the system exhibits a tristable characteristic in
this range.

As shown in Figure 4c,d, when Me is increased to 6 g and 9 g, the saddle point S1
continues to move to the left gradually, S2 continues to move to the right gradually, the
middle stable solution continues to shift downward, and the offset ∆u becomes larger and
larger. In addition, the movement of the saddle points S1 and S2 makes the range of the
bistable system gradually increase. When Me = 12 g, as shown in Figure 4e, the middle
stable solution continues to move down and coincides with the lower saddle point S2,
forming a fork point P. At this time, the range of the system in a bistable state reaches the
maximum. When Me is increased to 15 g, as shown in Figure 4f, the middle stable solution
is separated from the fork point P. The fork point P turns into the saddle point S2 and moves
to the left, and the offset phenomenon of the middle stable solution becomes more obvious.

3.1.2. Influence of End Magnet Mass Me on the (dv, u) Bifurcation Diagram

Next, the influence of Me on the system’s bifurcation behavior is studied in (dv,u)
plane. Taking dh = 10 mm, Me = 0,5,10,15 g, the bifurcation diagram of the system in the
(dv,u) plane is shown in Figure 5. When Me = 0 g, as shown in Figure 5a, two symmetrical
saddle points, S, and a fork point, P, appear in the system’s bifurcation diagram. At this
time, the system has a total of three stable and two unstable solutions. When dv < dvP,
the system exhibits bistable characteristics, when dvP < dv < dvS, the system is a tristable
system, and when dv > dvS, the system behaves in a monostable state. Increase Me to 5 g,
as shown in Figure 5b, the system’s bifurcation diagram is no longer symmetrical up and
down, the upper saddle point S shifts to the lower left to point S1, the lower saddle point S
shifts to the lower right to point S2, the fork point P divides into two fork points P1 and P2,
and the zero stable solution of the system shifts downward. When dv < dvP2, the system
behaves as bistable, when dvP2 < dv < dvS1, the system exhibits tristable characteristics,
when dvS1 < dv < dvS2, the system behaves as bistable again, when dv > dvS2, The system is
a monostable system.
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(b) Me = 5 g; (c) Me = 10 g; (d) Me = 15 g.

Continue to increase Me to 10 g and 15 g, as shown in Figure 5c,d, the upper saddle
point S1 keeps moving to the lower left and the lower saddle point S2 keeps moving
to the lower right under the action of the magnet gravity. At the same time, the fork
point P1 gradually moves to the left, P2 gradually moves to the right, and the offset ∆u
of the middle stable solution becomes larger. The range where the system exhibits a
tristable state gradually decreases, and the range where the system exhibits a bistable state
gradually increases.

3.2. Analysis of Potential Energy

From Equation (5), the system’s potential energy includes the magnetism potential
energy and gravitational potential energy generated by magnets, as well as the resilient
potential energy of the combined beam, the expression of which is

U = Ur + Um + Ug (20)

To study the effect of the end magnet’s gravity on the total potential energy of the
tristable system, take dh = 11 mm, dv = 16 mm, Me = 0~20 g, according to Equation (20),
the 3D potential energy surface of the system with the change of end magnet mass Me
can be drawn as shown in Figure 6. It can be found from Figure 6 that the change law of
system potential energy on both sides of u = 0 is opposite. When u < 0, as Me increases, the
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system’s potential energy decreases gradually. When u > 0, the system’s potential energy
increases gradually with the increase of Me.
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To deeply analyze the variation features of the potential energy of the tri-stable system,
Me is taken as 0, 4, 8, 12, and 16 g, respectively. The system’s potential energy curves
under different Me are shown in Figure 7. When Me = 0 g, that is, when the gravity of
the magnet is not considered, the system’s left and right potential wells have identical
shapes, and the potential energy curve is symmetrical about u = 0. When Me = 4 g, the
left potential well of the system moves downward and becomes deeper, the right potential
well moves upward and becomes shallower, and the potential energy curve is no longer
symmetric. As Me continues to increase, the system’s left potential well continues to move
down, the right potential well continues to move up, and the asymmetry of the potential
well becomes more and more obvious. In addition, it can be found that under the action of
magnet gravity, with the increase of Me, the lowest points of the system’s three potential
wells, that is, the system’s three stable positions, all gradually move towards the negative
half-axis of u. This is accordant with the study results of the system’s bifurcation behavior.
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3.3. Analysis of System Response Characteristics
3.3.1. Influence of End Magnet Mass Me on System Response Characteristics

To investigate the effect of the end magnet’s gravity on the system’s response character-
istics, Equation (14) is solved by using the ODE45 algorithm to derive the system’s output
response under different initial excitation conditions. Taking dh = 12 mm, dv = 15 mm, exci-
tation frequency f = 10 Hz, Me = 0,4,6,8 g, Figure 8 shows the relation between the system’s
RMS voltage and the excitation acceleration A under different Me. As can be found in
Figure 8, the system’s RMS voltage jumps from low to high as the excitation acceleration A
increases. However, when Me takes different values, the excitation acceleration required
for the system to jump is different. When Me = 0 g, that is, without considering the gravity
of the magnet, the acceleration threshold for the system to achieve a large output voltage is
18.6 m/s2. When Me is 4, 6, and 8 g, the acceleration thresholds are 13 m/s2, 10.2 m/s2,
and 7.5 m/s2, respectively. It can be found that compared with not considering the magnet
gravity when the magnet gravity is considered, the acceleration threshold value of the
system showing a large response is significantly reduced. The larger the end magnet mass
Me, the smaller the acceleration threshold value of the system. In addition, it can be found
that with the increase of Me, the large RMS voltage of the system also increases gradually.
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To further analyze the effect of Me on the system’s dynamic characteristics, take
A = 10 m/s2, f = 10 Hz, and Me take 4 g and 8 g, respectively. The 3D time domain
simulation results of the system are shown in Figure 9a,b, where the bottom projection
shows the time–displacement diagram of the system, the left projection shows the time–
velocity diagram of the system, and the right projection shows the phase diagram of
the system. When Me = 4 g, as shown in Figure 9a, the kinetic energy derived by the
system is not enough to pass the potential barrier, the system can only oscillate slightly
in the well, and the system’s vibration velocity and displacement are small at this time.
When Me = 8 g, as shown in Figure 9b, the increase in the magnet’s mass makes the
system sufficient kinetic energy, and the system can readily pass the potential barrier
to realize an inter-well oscillation. At the moment, the system’s vibration velocity and
displacement are large. In addition, it can be found that the phase diagram of the system
shows a significant asymmetric feature after considering the gravitational effect of the
end magnet; the vibration displacement of the system is also asymmetric about the origin.
The displacement amplitude in the negative orientation of the system is bigger than that
in the positive orientation. This is consistent with the results of the potential energy
analysis above.
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Keeping other parameters constant, change the excitation acceleration A to 14 m/s2.
As shown in Figure 9c, when Me = 4 g, the system derives sufficient kinetic energy to
pass the potential barrier and achieve a large oscillation of the tri-stable state due to the
increase of the vibration acceleration. Compared with Figure 9a, the vibration velocity and
displacement are greatly improved at this time. As shown in Figure 9d, when Me = 8 g, the
system can more readily traverse the potential barrier to realize large-amplitude oscillations
between wells. Comparing Figure 9b,d, it can be found that the system’s vibration velocity
and displacement increase as the excitation acceleration increases. Figure 9d, compared
with 9c, shows that the larger the end magnet mass, the larger the vibration velocity and
displacement of the system for the same initial excitation conditions. However, the large
magnet mass will make the vibration displacement of the system too large, which may
cause the combined beam to be damaged during the movement. Therefore, it is essential to
select the appropriate end magnet mass for actual use.

3.3.2. Influence of Initial Vibration Point u0 on System Response Characteristics

As can be seen from Figure 7, when the gravity of the end magnet is considered, the
left potential well of the tri-stable system incrementally falls and the right potential well
incrementally rises, and the potential energy curve exhibits asymmetric characteristics.
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Next, under the consideration of the gravity of the magnet, the influence of initial vibration
points on the system’s output characteristics is studied. Take the vibration frequency
f = 10 Hz, dh = 12 mm, dv = 16 mm, Me = 10 g, the initial velocity of the system is 0, and the
initial vibration point u0 is−14,−1, and 12 mm, respectively (that is, the lowest point of the
three potential wells). Figure 10 shows the change law of the system’s RMS voltage with
the vibration acceleration A under different u0. From Figure 10, it can be found that the
excitation acceleration threshold for the system to produce high-energy output is different
when the initial vibration point u0 of the system is different. When u0 is −14 mm, the
acceleration threshold for the system to produce high-energy output is 12.8 m/s2. When
u0 is −1 and 12 mm, the acceleration threshold of the system is reduced to 8.2 m/s2 and
8 m/s2, respectively. In addition, it can be found that the output voltage when the system
realizes a large response is consistent regardless of the stable balance point from which the
oscillation starts.
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To further study the effect of the initial vibration point u0 on the response charac-
teristics of the system, take A = 9 m/s2, f = 10 Hz, Me = 10 g, and the initial vibration
point u0 is −14 mm and 12 mm, respectively. The 3D time domain simulation results of
the system are shown in Figure 11a,b. When u0 is −14 mm, as shown in Figure 11a, the
system is situated in a large potential trough and cannot escape the bondage of the potential
trough. Therefore, the system can only perform intra-well oscillation, and the response
velocity and displacement at this time are relatively small. When u0 is 12 mm, as shown in
Figure 11b, the system is situated in a small potential trough, which can readily escape the
confinement of the potential trough, thereby realizing a large oscillation between the wells.
At the moment, the system’s vibration velocity and displacement are relatively large.

Keeping other initial parameters unchanged, improve the excitation acceleration A
to 13 m/s2. As shown in Figure 11c, when u0 is −14 mm, the excitation acceleration at
the moment reaches the acceleration threshold of the system’s large response. Therefore,
the system realizes the large periodic oscillation of the tri-stable state, and the response
velocity and displacement both show large amplitude. As shown in Figure 11d, when u0 is
12 mm, the system also performs periodic oscillation between wells under the excitation
acceleration at this time. In addition, the comparison between Figure 11b,d can again show
that increasing the initial vibration acceleration can improve the system’s vibration velocity
and displacement with the same other initial parameters.
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Figure 11. 3D time domain simulation diagram of the system under different u0 and A:
(a) u0 = −14 mm A = 9 m/s2; (b) u0 = 12 mm A = 9 m/s2; (c) u0 =−14 mm A = 13 m/s2;
(d) u0 = 12 mm A = 13 m/s2.

4. Experimental Validation

In order to validate the rightness of the mathematical model and simulation study, the
experiment model machine is fabricated, and the experiment testing platform is built into
this research. Figure 12 shows the experimental prototype of CTEHS. The combined beam
is made of beryllium bronze material and is machined in one piece. The right end of the
beam is clipped and fastened to the pedestal with a fixture, and the left end is glued with a
magnet. The top and bottom surfaces of the PVDF piezoelectric film are welded with wires
and packaged with insulating tape, and then the treated piezoelectric film is attached to the
combined beam with silicone sealant. Two magnets are bonded symmetrically on the left
inner wall of the pedestal. The pedestal is provided with several guide rails and chutes,
which can be used to regulate the spacing among these magnets.
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Figure 12. Experiment model machine of CTEHS.

Figure 13 shows the experiment testing platform of the system. When the experiment
is conducted, the experiment model machine is first fixed to the shaker (LT-50ST) by screws,
then the vibration parameters are configured by the control software, and the vibration
signals are transmitted to the shaker controller (VT-9008), then the vibration signals are
magnified by the power amplifier (VSA-L1000A) and passed to the shaker to make the
experiment model machine on the shaker vibrate. The end velocity and displacement of the
combined beam are gauged by a laser vibrometer (LV-S01) and recorded using a vibration
analyzer (CoCo-80X). The response voltage of the system is displayed and collected by a
digital oscilloscope (DSOX3024T).
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To verify the effect of different end magnet masses Me on the system’s response
characteristics, set the vibration frequency f = 10 Hz, the vibration acceleration A = 10 m/s2,
and take the magnet distances dh = 12 mm and dv = 15 mm. Figure 14 shows the phase
graph, time course graph of the experiment when Me is 4 g and 8 g, respectively. As
shown in Figure 14a, when Me = 4 g, the system cannot pass the potential barrier and can
only make small oscillations in the well. At this time, the system’s vibration displacement
amplitude is just 1.8 mm, and the RMS voltage is just 2.48 V. When Me = 8 g, as shown
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in Figure 14b, the system can surmount the obstacle of the potential barrier and realize a
large-amplitude oscillation between wells. The system’s vibration displacement amplitude
achieves 28 mm, and the RMS voltage reaches 46.38 V. In addition, it can be seen from
Figure 14 that the system’s vibration displacement and voltage are asymmetric about the
origin, which indicates that the motion of the system under the gravity of the magnet is
asymmetric. This is consistent with the results of the simulation analysis.
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Figure 14. Phase graph, time course graph of the experiment under different Me: (a) Me = 4 g;
(b) Me = 8 g.

To verify the effect of different initial vibration points u0 on the system’s response
characteristics, take the magnet distances dh = 12 mm and dv = 16 mm, the end magnet mass
Me = 10 g, set the vibration frequency f = 10 Hz and the vibration acceleration A = 9 m/s2.
Figure 15 shows the phase graph, time course graph of the experiment when u0 is −14 mm
and 12 mm, respectively. When u0 =−14 mm, as shown in Figure 15a, the system is unable
to get rid of the constraints of the deeper potential well and can only do intra-well periodic
oscillations. At this time, the system’s vibration displacement amplitude is just 2.1 mm and
the RMS voltage is just 3.41 V. As shown in Figure 15b, when u0 = 12 mm, the system is able
to readily pass the lower potential barrier and perform inter-well periodic oscillation. The
system’s vibration displacement amplitude is increased to 32 mm, and the RMS voltage
achieves 49.66 V.

The above experiment results have a fine consistency with the theoretical calculations
qualitatively, but there are some deviations in quantitative terms. The main sources of
these deviations are: (1) In the experimental prototype, there is a slight error in the size
of the fabricated magnet and the combined beam with the simulation. (2) The tension
and compression deformation of the arched part of the combined beam is neglected in
the theoretical modeling, while the deformation of the arched part also generates some
displacement during the actual oscillation, which results in some errors between the actual
displacement and the theoretically calculated displacement.
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5. Conclusions

In this paper, the mathematical model of CTEHS is established considering the gravity
effect of the magnet, and the influences of the end magnet mass and the initial vibration
point on the system’s static bifurcation and output characteristics are investigated by the
method of numeric calculation, and experiments are carried out to validate the theoretical
analysis. The major findings of the research are described below:

(1) The gravity of the end magnet has a considerable influence on the system’s static
bifurcation behavior. With the increase of the end magnet mass Me, the downward shift of
the stable middle position of the system becomes more and more obvious, and the upper
and lower stable positions also show significant asymmetry. In addition, the saddle and
bifurcation points in the bifurcation diagram move under the gravity of the end magnets,
which makes the range of different systems’ stable states change, and the system’s response
characteristics change accordingly.

(2) When the gravity of the end magnet is considered, the system generates additional
gravitational potential energy, which causes the system’s potential energy graph to show
asymmetry. When the mass Me of the end magnet is increased, the potential well on
one side of the system gradually moves down and the depth increases, and the potential
well on the other side gradually moves up and decreases in depth, and the asymmetric
characteristics of the potential energy curve are more obvious.

(3) The end magnet mass Me has a remarkable impact on the system’s response
characteristics. Considering the gravity effect of the magnets can significantly reduce the
excitation acceleration required for the system to realize higher output capability. As the
end magnet mass Me increases, the acceleration threshold of the system gradually decreases,
and the response displacement and output voltage gradually increase. The gravity effect of
the magnet can make it easier for the system to perform large inter-well oscillations at low
excitation intensities, thereby increasing the system’s energy capture efficiency.

(4) When the initial vibration point u0 of the system is different, the system’s output
characteristics are also different. When the system starts to vibrate from a stable equilibrium
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point with a deeper potential well, the acceleration threshold for the system to achieve
a large response is high. When the system starts from a stable equilibrium point with a
shallower potential well, the acceleration threshold for a large response is relatively low. The
suitable initial vibration point is beneficial to reduce the system’s requirement for external
excitation intensity, thus greatly enhancing the system’s performance in harvesting energy.
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