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Abstract: Water quality and pollution is the main environmental concern for ports and adjacent
coastal waters. Therefore, the development of Port Environmental Management systems often relies
on water pollution monitoring. Computer vision is a powerful and versatile tool for an exhaustive
and systematic monitoring task. An investigation has been conducted at the Port of Palma de
Mallorca (Spain) to assess the feasibility and evaluate the main opportunities and difficulties of the
implementation of water pollution monitoring based on computer vision. Experiments on surface
slicks and marine litter identification based on random image sets have been conducted. The reliability
and development requirements of the method have been evaluated, concluding that computer vision
is suitable for these monitoring tasks. Several computer vision techniques based on convolutional
neural networks were assessed, finding that Image Classification is the most adequate for marine
pollution monitoring tasks due to its high accuracy rates and low training requirements. Image set
size for initial training and the possibility to improve accuracy through retraining with increased
image sets were considered due to the difficulty in obtaining port spill images. Thus, we have found
that progressive implementation can not only offer functional monitoring systems in a shorter time
frame but also reduce the total development cost for a system with the same accuracy level.

Keywords: computer vision; marine litter; marine pollution; monitoring technologies; port water quality

1. Introduction

Ports and surrounding areas of the coast are zones in which a multitude of human
activities are concentrated in a limited space with usually low water renewal rates. In
consequence, ports and adjacent waters are very sensitive to pollution and accumulation
of solid waste and their impact on the aquatic environment and, in turn, socioeconomic
impact [1]. A relevant mechanism of water pollution in port areas is waste discharge and ac-
cumulation caused by non-continuous discharge events either intentionally or accidentally.
This means solid or liquid pollutant waste is discharged into the water instantaneously or
during a short period of time. These events constitute one of the most significant aspects
to be considered in port and coastal environmental management; thus, economic and
robust monitoring techniques are paramount to achieve adequate port water quality [2,3].
This issue is especially sensitive in city ports where there is a close relation between port
operation and city activity, and where city waste and pollution can easily get into port
water [4]. Currently, the most common approach for marine pollution monitoring in ports
relies on conventional methods of collecting in situ water and waste samples for subse-
quent analysis in a laboratory. Such methods are time-consuming, expensive and do not
provide a real-time picture of water quality in port waters. Thus, in practice they tend to be
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implemented at minimum levels in order to comply with regulations, especially in ports
with scarce resources. The consequences of this limited monitoring at environmental man-
agement level are in many cases significant [5,6]. Additionally, real-time or near real-time
measurement and monitoring methods for marine pollutants and waste are necessary for
managing their environmental impacts and understanding the processes governing their
spatial distribution [7]. These techniques offer a complementary perspective on marine
pollution to hydrodynamics-based environmental management techniques [8–10]. Thus,
real-time pollution monitoring techniques can be linked with hydrodynamic models to
obtain improved environmental management systems [11].

Given the nature and frequency of these discharges, management systems will usually
consider the statistical parameters of the spatial and temporal distribution of the frequency
of discharges instead of individual events. Therefore, these systems do not require very high
levels of accuracy in monitoring as opposed to critical systems like biomedical applications,
but rather enough to offer statistically significant distributions. Monitoring systems that
offer 80% or higher accuracy are considered admissible based on the usual values required
in these types of applications [12].

In this context, it is important to note that pollution discharge events in ports are, in
most cases, visually perceivable. Consequently, it seems feasible to investigate the possi-
bility of establishing automated monitoring systems for these discharges using cameras
installed at strategic points in the port. Associated with automatic image analysis sys-
tems, computer vision techniques seem an excellent complement according to previous
experiences in other fields for detecting and recognition [12–14]. Computer vision tech-
niques have recently experienced a quick evolution, being implemented in a wide range
of different applications with high efficiency and performance [15–17]. Deep learning on
convolutional neural networks is proven to achieve very high performance on computer
vision tasks [18]. In fact, remote sensing technology is proven to provide spatially synop-
tic and near real-time measurements that can be effectively used to detect and manage
pollutants such as suspended sediments, oil and chemical spills, algal blooms and high
suspended solids [7,19]. Additionally, recent contributions in waste and pollutant detection
used Image Classification based on deep convolutional networks [20,21]. Such approaches
have been successful at addressing pollution detection in large surface areas. In the case of
port waters, satellite images cannot be used due to poor image resolution, and a monitoring
system tailored to smaller scales has to be generated. Specifically, a computer vision system,
supported by “in situ” mounted camera images would be a robust alternative for water pol-
lution monitoring at ports. This system would allow continuous and low-cost monitoring
of surface water pollution, addressing the limitations of traditional observational tech-
niques. In addition, it would constitute a leap forward in the digitalization of ports through
the practical application of artificial intelligence technology in coastal infrastructures at
limited cost. It is important to note that the aim of this novel monitoring system is not only
to give warnings for each discharge so that immediate action can be taken, especially in
particularly relevant episodes that generate a significant risk for health or navigation, but
also to obtain knowledge about the discharges that threaten the port waters where and
when they happen or if they are related to specific operations. In consequence, computer
vision, combined with traditional or Artificial Intelligence based analysis, may provide
operational knowledge in specific port areas and facilities, thus allowing development of
adequate environmental management strategies.

Computer vision techniques can be classified according to the problem considered [22].
There are several classifications and the set of problems considered has grown in recent
times, but Image Classification is one of the most common applications and, in consequence,
is very promising in port environmental management [23]. Image Classification involves
assigning a label to an entire image; the labels (i.e., the categories in which images were
classified) that should be considered in the context of port environmental management
systems are three: clean water, pollution (spill) or floating waste (waste). One of the
most important requirements for the implementation of computer vision systems is the
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generation of a database of tagged images that can be used to train the algorithm. In
this respect, it is important to take into account that gathering a significant database of
images of spills can be time consuming, as they can only be achieved by installing cameras
in the port to record images of eventual spills. Thus, images will be incorporated to the
database progressively, and the question arises in terms of how many images—and image
types—are required to train the algorithm to achieve an adequate level of confidence on
the system. Specifically, it is important to determine whether it is preferable to train the
algorithm with all images available even when the number of images in each category
is different, or whether optimal results will be obtained only when there is an equal
number of images in each category. In the first scenario, the least common class will be
underrepresented, potentially affecting proper system performance, and in the second, the
number of images to be gathered increases, and consequently so does the time required to
achieve a working system.

In addition to image requirements, computer vision systems are evaluated according
to specific performance metrics. Four of the most common metrics are Accuracy, Precision,
Recall and F1-score [24,25]. However, the Accuracy metric does not provide a relevant
metric for a port environmental management system because clean water images will be
significantly more abundant than waste and spill ones; here Accuracy will provide mostly
a measure of how many times clean water is correctly predicted. However, preliminary
designs of computer vision systems for port environmental management suggest the need
to generate correct alarms on spill and waste instances. Thus, an alternative metric needs
to be put forward in order to compare trained algorithms with a set of images that are not
evenly distributed between categories, as will be the case in the current application.

The present paper evaluates the results of a set of experiments on surface spills and
floating marine waste identification based on random images as an initial stage of the
development of a system for port water quality monitoring. After the methodological
process (i.e., post-process) has been implemented, image sets have been obtained and
analyzed to determine the amount and proportion of each image class that is required.
In this sense, several computer vision techniques have been assessed, including Image
Classification as the most promising one identified preliminarily. In order to evaluate the
performance of the algorithm specifically for port environmental management applications,
a novel performance index (the error index) has been proposed. The set of images has
been conducted in the port of Palma de Majorca, which suffers important events of water
quality degradation.

The paper is organized as follows. Section 2 introduces the study area, the computer
vision technique used, the spill and waste classification, the system layout, the images
used, the algorithm training and the statistical reliability of the algorithms. Section 3
shows the results of the training processes and a comparison for different amounts of data
available in terms of image set sizes and distribution. Section 4 presents a discussion on
the design criteria for the system set-up and its further development. Finally, in Section 5,
the conclusions of the study are summarized.

2. Materials and Methods
2.1. Study Area

The port of Palma de Mallorca is located in the city of Palma, on the island of Majorca
(Balearic Islands, Spain; see location in Figure 1) in the Western Mediterranean Sea, with
approximate coordinates of: 2◦38.4′ E, 39◦33.7′ N. The management resides at the Port
Authority of the Balearic Islands in a landlord governance model. From the impact on
water quality degradation and environmental management, the port has the following
characteristics: (i) Strong Port–City relation. (ii) Development of several different port
activities (i.e., recreational boating, transport of passengers and goods, fishing, repair and
maintenance of boats and restoration and services on land). (iii) Sporadic discharges of
rainwater through four gullies and several collectors of stormwater drainage networks, in
some cases with risk of discharge of mixed rainwater and wastewater.
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2.2. Computer Vision Technique and Application to Pollution in Port Waters

Computer vision is a field where applications are developed using convolutional
neural networks that are trained using deep learning techniques. Specifically, it can be
defined as a set of techniques to automatically obtain descriptions or significant parameters
from the images of physical objects; these descriptions can be useful for decision making.
This is the case of the current investigation included in the field of marine waste and
litter detection. Due to the numerous potential applications of Computer vision, it has
experienced an important development in the recent years.

An artificial neural network is a collection of connected nodes which loosely model
the neurons in a biological brain [26]. Each connection, like the synapses in a biological
brain, can transmit a signal to other neurons. When an artificial neuron receives a signal,
it processes it and, as a result, sends outputs (real numbers) to neurons connected to it.
In turn, the output signals of each neuron are computed by some non-linear function of
the sum of its inputs. Typically, neurons are aggregated into layers; different layers may
perform different transformations on their inputs coming from the one before. Signals
travel from the first layer (or input layer) to the last one (or output layer). Figure 2 depicts
schematically how neurons in different layers interact to provide meaningful results.

A Convolutional Neural Network (CNN) is a type of artificial neural network most
commonly applied to analyze visual imagery because they are shift invariant (or space
invariant), meaning that the position of a feature in an image is not important. This is due to
the CNN having a shared-weight architecture of the convolution kernels or filters that slide
along input features and provide translation equivariant responses known as feature maps.
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Figure 3 shows how the CNN architecture works towards generating relevant information
from an input image.
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The most important computer vision techniques are Image Classification, Object
detection, Object tracking, Semantic segmentation and Semantic instance segmentation.
Although all these techniques have a potential application in port water quality monitoring,
the most appropriate technique according to the input–output information desired is Image
Classification. This is due to the fact that the amount of information needed to train the
system is lower compared to other techniques, and it allows the classification of images
into simple classes that can be used to build temporal and spatial distributions of pollution
events [27].

Thus, the aim of this investigation is to evaluate the efficiency of training Image
Classification algorithms that, when taking as input the images of port water provided
by a camera monitoring system and operating in real-time, provide as output the class to
which each image belongs with the highest probability, according to a classification that is
relevant for proper environmental management of port water.

2.3. Computer Vision Classes Considered

The selection of the clean, spill and waste classes has been carried out after careful
consideration of the nature of pollution in ports as well as the level of detail that is useful
in port environmental management activities. Specifically, spills in ports have four main
origins (although in specific ports or terminals there may be others): users on land, users
on boats, discharges of mixed drainage networks and port operations. Considering their
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physical and chemical nature, there is an enormous variety in waste and contaminants that
can reach port waters, including suspended matter, hydrocarbons or eutrophication (not
a spill in itself, but a consequence of a nutrient spill) (see Figure 4). Identification of both
the origins and chemical nature of spills could be pursued, but the applicability of such
information is very limited; all these contamination events are managed in a similar fashion
and thus their identification would not provide any relevant input in port environmental
management. In contrast, a type of pollution that follows a different type of action from a
port environmental management perspective is floating waste (see Figure 4). Consequently,
for the computer vision system designed, two categories of pollution have been considered,
namely spill and waste. The spill class (class 1 in this study) refers to liquids mixing and/or
diluting in the water, or to clouds of suspended solids. The waste class refers to large
individual solids floating on the water or near the surface (class 2 in this study). Finally,
clean water has been labelled as class 0. These three classes provide sufficient information
for a port environmental management system to take relevant decisions on time and cost.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 16 
 

each image belongs with the highest probability, according to a classification that is rele-
vant for proper environmental management of port water. 

2.3. Computer Vision Classes Considered 
The selection of the clean, spill and waste classes has been carried out after careful 

consideration of the nature of pollution in ports as well as the level of detail that is useful 
in port environmental management activities. Specifically, spills in ports have four main 
origins (although in specific ports or terminals there may be others): users on land, users 
on boats, discharges of mixed drainage networks and port operations. Considering their 
physical and chemical nature, there is an enormous variety in waste and contaminants 
that can reach port waters, including suspended matter, hydrocarbons or eutrophication 
(not a spill in itself, but a consequence of a nutrient spill) (see Figure 4). Identification of 
both the origins and chemical nature of spills could be pursued, but the applicability of 
such information is very limited; all these contamination events are managed in a similar 
fashion and thus their identification would not provide any relevant input in port envi-
ronmental management. In contrast, a type of pollution that follows a different type of 
action from a port environmental management perspective is floating waste (see Figure 
4). Consequently, for the computer vision system designed, two categories of pollution 
have been considered, namely spill and waste. The spill class (class 1 in this study) refers 
to liquids mixing and/or diluting in the water, or to clouds of suspended solids. The waste 
class refers to large individual solids floating on the water or near the surface (class 2 in 
this study). Finally, clean water has been labelled as class 0. These three classes provide 
sufficient information for a port environmental management system to take relevant de-
cisions on time and cost. 

 
Figure 4. Right image: Spill class example. Center image: Waste class example. Left image: Mixed 
Spill and Waste example. 

The Image Classification technique does not consider the possibility of one image 
belonging to two or more classes; it simply returns the most likely class. This may consti-
tute a limitation of the method since spill and waste could theoretically appear simulta-
neously in an image. To overcome this limitation, an additional class should be defined 
including images with the presence of both (see Figure 4). However, this situation is very 
infrequent in ports, and, in fact, it did not occur in any of the images obtained in this 
investigation. The most common cases in which we could theoretically find spill and 
waste together are: (i) pollution originating from two or more independent incidents end-
ing up in an accumulation zone due to the hydrodynamic characteristics of the port; or (ii) 
mixed pollution released by rivers or collector systems that discharge into the port. In the 
context of the system proposed in this work, the first case is irrelevant because the main 
objective is to monitor discharge episodes rather than the persistence of discharges within 
the port. The second case is limited to specific areas and its processing constitutes a par-
ticularity that is to be faced in future research. Therefore, although this limitation exists, 
it does not seem to be an import limitation at this stage due to the infrequency of the 

Figure 4. Right image: Spill class example. Center image: Waste class example. Left image: Mixed
Spill and Waste example.

The Image Classification technique does not consider the possibility of one image
belonging to two or more classes; it simply returns the most likely class. This may constitute
a limitation of the method since spill and waste could theoretically appear simultaneously
in an image. To overcome this limitation, an additional class should be defined including
images with the presence of both (see Figure 4). However, this situation is very infrequent
in ports, and, in fact, it did not occur in any of the images obtained in this investigation.
The most common cases in which we could theoretically find spill and waste together
are: (i) pollution originating from two or more independent incidents ending up in an
accumulation zone due to the hydrodynamic characteristics of the port; or (ii) mixed
pollution released by rivers or collector systems that discharge into the port. In the context
of the system proposed in this work, the first case is irrelevant because the main objective
is to monitor discharge episodes rather than the persistence of discharges within the port.
The second case is limited to specific areas and its processing constitutes a particularity
that is to be faced in future research. Therefore, although this limitation exists, it does not
seem to be an import limitation at this stage due to the infrequency of the combined (i.e.,
spill and waste) event. The segregated monitoring system proposed represents the reality
of most existing ports and thus is easily scalable to other infrastructures.

2.4. Dataset Used

The dataset used in the current study consists of images obtained through manual
sampling in several different locations in the Port of Palma. About 3400 images were
obtained, of which only 1379 were actually used; 660 were selected as instances of clean
water class, 389 of spill class and 330 of waste class. Discarded images were too similar to
other images that were used or constituted excess clean water class and spill class images.
The number of images obtained in spill and waste classes were the main limitation as actual
pollution events are required to happen in the port during the fieldwork visit in order to
obtain them.
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In this study, different amounts of spill/waste and water images have been used, as
detailed in Section 2.5, in order to investigate the practical applicability of the developed
system. The images were gathered using different digital cameras, in 4:3 format and
different image resolutions (1 Megapixel and higher). Nevertheless, when using the images
for the training and validation of algorithms, they were transformed into square pictures
and their resolution was reduced (see Section 2.5). Figure 5 shows three images from each
class with square shape and reduced resolution.
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2.5. Experiments Description: Algorithm Training and Validation

In order to evaluate the feasibility of implementing a computer vision water quality
monitoring system in ports, three experiments have been carried out in the present study
using a CNN type system. The experiments intend to evaluate the feasibility of a computer
vision system in port environmental management and the performance impact of the results
on image set size and distribution. The main characteristics of each experiment are shown
in Table 1, including the research objectives.

Table 1. Summary of computer vision experiments in the current study.

Experiment Number Research Objective Number of Images
(Spill/Waste/Clean Water)

Image Resolution
(Pixels)

Experiment 1
Screening of computer vision system
overall performance and feasibility

for port environmental management
389/330/660 300 × 300

Experiment 2 Investigating the performance impact
of image set distribution 1320 images in different proportions 256 × 256

Experiment 3 Investigating the performance impact
of image set size Different numbers in equal proportions 256 × 256
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Keras open-source software library for Python (version: 2.4.3) on Tensorflow Google
developed open-source software library (version: 2.3.0) backend framework based on
the Anaconda3 platform was used in these experiments. Python 3.8.10 programming
language was used for training and validation process programming. The computer used
was equipped with an Intel Core i7-6700HQ CPU with 16 GB RAM and a NVIDIA GeForce
GTX 960M graphics card. The computer operating system was the 64-bit Windows 10
home edition. In the three experiments, a neural network InceptionV3, with “imagenet”
weights and a 3-channel resolution was deployed. InceptionV3 was chosen between
Keras available models, after discarding models designed for mobile devices considering
the compromise between accuracy and speed according to Keras documentation [28]
and CNN research [29,30]. An additional GlobalAveragePooling2D layer was added
with 1024 additional neurons with ReLU activation (0.2 dropout), as well as another
layer with 3 neurons with softmax activation. The latter layer is the one bearing the
spill/waste/clean water class information. In order to feed the neural network, two image
generators were used. For the training images, a series of transformations were applied
(rotation, horizontal and vertical shifts, crop, zoom and horizontal reflex) including a
standard normalization. In addition, data augmentation techniques were used on the
image set [31]. For image validation purposes, only normalization was applied. Data
ingestion was carried out in batches of 8 images. The training set images consisted of 80%
of the set and the remaining 20% were used for validation purposes. Firstly, a training
of additional layers was conducted and subsequently a fine-tuning was simultaneously
carried out of both final inception blocks and additional layers. The cost function used was
CategoricalCrossentropy (logit) and Adam was deployed as the optimization algorithm
(learning rate of 0.001 and 0.00001 was each of the training phases described previously).

For Experiment 2, 14 algorithms were trained, two for each image set distribution
tested. The distributions of images considered in these experiments are the ones shown
in Table 2.

Table 2. Distribution of images considered in Experiment 2.

Image Ratio Number of Images
of Class 0

Number of Images
of Class 1

Number of Images
of Class 2

1/1 330 330 330
1/2 660 330 330
2/5 660 264 264
3/1 660 196 196
1/4 660 165 165
1/8 656 82 82

1/16 656 41 41

For Experiment 3, 82 trainings based on image sets formed randomly of different sizes
(ranging between 18 and 990 total images). Here, one third of the total number of images
corresponds to each class.

In experiments 2 and 3, each algorithm training was started from the initial model and
not from the previously trained algorithm in order to prevent the propagation of errors or
beneficial traits from one algorithm to the next.

2.6. Algorithm Performance Evaluation

Some of the metrics used in this study are the ones commonly reported in the liter-
ature and applied investigations when evaluating the performance of computer vision
systems (8). These are the following:

Accuracy: Commonly defined as the ratio of true positives and true negatives to all
positive and negative observations. That is, how often we can expect the computer vision
system to correctly predict an outcome out of the total number of times it made predictions.
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Mathematically, it is formulated as the ratio of the sum of true positives and true negatives
out of all the predictions, namely:

Accuracy =
TP + TN

(TP + FN + TN + FP)
(1)

where TP = true positives; TN = true negatives; FN = false negatives; and FP = false
positives.

Precision: It represents the proportion of labels that were correctly predicted to be
positive. That is, it is a performance metric that is most useful when trying to control false
positives. As well as for Accuracy, Precision is also affected by class distribution; if there are
more images for a class that does not happen frequently, precision becomes lower.

Mathematically, it is formulated as the ratio of true positive to the sum of true positives
and false positives, namely:

Precision =
TP

(FP + TP)
(2)

Recall: It represents the system’s capacity to correctly predict the positives from
the set of actual positives. Recall is most useful when identifying positives as critical.
Mathematically, it represents the ratio of true positive to the sum of true positives and
false negatives.

Recall =
TP

(FN + TP)
(3)

F1 score: It is obtained as a harmonic mean of the Precision and Recall scores, giving
each of them an equal weight. It is often used as a single value that provides high-level
information about the model’s output quality and Precision/Recall balance.

Mathematically, it is formulated as a harmonic mean of the Precision and Recall scores.

F1 Score =
2 ∗ Precision ∗ Recall
(Precision + Recall)

(4)

In the case of experiment 1, where the objective is to validate the algorithm generated
for its application in port environmental management, the prior metrics are relevant and
sufficient. However, in experiment 2, as well as in realistic system application, we would
need an additional index that evaluates the performance of the system as an alternative to
the common Accuracy metric. This is due to the fact that the Accuracy metric is not the most
reliable in computer vision models trained on datasets where one event (in this case clean
water) is much more frequent than the rest of the events (in this case spill or waste). In this
case, Accuracy will mostly determine that clean water is detected correctly most of the time
but will not provide decisive information on the spill and waste detection performance.
As the latter are the actual events (alarms) to be detected by a computer vision system
applied in a port setting, Accuracy is not a parameter that becomes useful in the present
study or in real-life applications of the system. Precision, Recall and F1-Score indexes are also
not suitable for experiment 2 because they are class specific and for comparison purposes
an all-class synthetic index is needed. Consequently, a novel index has been defined for
the purpose of this application (as well as others that might face similar issues as the one
presented): the Error index. This index is defined as the ratio of the sum of errors made
in providing warnings (either false alarms or alarms that are incorrectly not provided) to
the sum of total alarms provided by the system. Adapting for the current application with
three classes (i.e., 1, 2 and 3), the Error index is defined as:

Error index =
(FP0 + FP1 + FP2)

(TP1 + FP1 + TP2 + FP2)
(5)

where TPi = true positives for class, i; TNi = true negatives for class, i; FNi = false negatives
for class i and FPi = false positives.
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The definition corresponds to a parameter that is more meaningful than Accuracy
for port water quality monitoring applications, as it eliminates the issue of the unequal
distribution of images during the application of the system. However, two limitations
have been detected: (i) Error index is not a normalized parameter and (ii) it overestimates
the errors made overall by the system because it eliminates a set of prediction successes.
Nevertheless, it is a conservative and meaningful index useful for port managers because
of its comprehensiveness.

3. Results
3.1. Experiment 1

The Image Classification algorithm has been trained and validated and an Accuracy of
0.91 has been obtained with an image evaluation time of about one second. Table 3 presents
the performance metrics for the identification of each of the classes. In general, adequate
performance metrics with the Image Classification technique have been achieved, proving
that the system is promising. As a shortcoming to be addressed with the validation dataset,
a proportion (>10%) of the cases classified as clean water are really contaminated water. This
aspect will be improved in the upcoming experiments, where image set distribution and
image set size are investigated in order to generate a more applied monitoring technique.

Table 3. Performance results for Experiment 1.

Class Precision Recall F1-Score

0—clean water 0.89 0.94 0.91
1—spill 0.95 0.86 0.90

2—waste 0.93 0.93 0.93

3.2. Experiment 2: Impact of Image Set Distribution

Figure 6a shows the Accuracy (y-axis) versus the image class ratio (x-axis) in the
different simulations carried out. In this figure, Accuracy remains relatively stable with
changing proportions of images in the training and validation dataset. On the other hand,
the Error index, formulated in the present study to be able to capture how adequate the
system is in correctly detecting contamination alarms, shows that the performance of
the system decreases significantly with an increasing disproportion of image classes (see
Figure 6b).
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3.3. Experiment 3: Impact of Image Set Size

Figure 7a shows Accuracy in different simulations where image set sizes vary. Accuracy
has been used in this experiment since it is a normalized parameter and thus easier to
interpret graphically, but similar conclusions have been reached with the Error index in
this case. Figure 7b shows how simulations with image set sizes lower than 297 images
(99 images per class) generate a significant dispersion in performance. Dispersion shows a
decreasing trend up to 99 images per class and from that point on there is no clear trend,
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remaining at moderate values. The number of 99 images per class is also the closest among
those used to the benchmark of 100 images per class usually recommended for training
Image Classification algorithms [27]. With datasets that have a number of images over
this amount, Accuracy becomes stable and increases in a linear manner with increasing
images provided to train and validate the algorithm. When carrying out a regression in
datasets with over 99 images per class (297 total images), both linear and quadratics fits
have been considered. Finally, a linear regression, shown in Figure 7a, was selected because
the quadratic fit is only marginally better than the linear one and because the linear fit
showed significantly more robustness. Robustness was here evaluated as the change in fit
parameters when random datapoints are removed from the set of results. Thus, in the range
of image set sizes considered in the study, also the relevant range for the application at
hand, the Accuracy presents a linear tendency with increasing image set size after a certain
number of images have been achieved.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 12 of 16 
 

 
Figure 7. (a) Dots: Accuracy vs. Number of Images per class. Line: Regression. (b) Standard devia-
tion of accuracy measures vs. Number of Images per class (when two numbers are displayed it 
means a number range). 

4. Discussion 
4.1. Results Discussion System Set-Up 

Results showed in Section 3 demonstrate that Image Classification is adequate for 
marine pollution monitoring tasks due to its high Accuracy rates and low training require-
ments (Table 2). The system obtained a 91% accuracy rating, which can be considered a 
sufficient value for the requirements of a discharge management system in which the use 
of pollution event data is statistical and, if action is required, it will entail necessary direct 
validation. The time required by the trained algorithm to classify an image is approxi-
mately one second, which is compatible with the needs of real-time monitoring. The best 
performance was proven to be achieved when image set sizes for all classes are similar 
(Figure 5), providing the first insight into the requirements for adequate system imple-
mentation. In practice, spill images are difficult to obtain in great numbers and commonly 
clean water images will be the most dominant class. Thus, in order to achieve an algorithm 
that holds optimal performance, spill and waste images have to be obtained to achieve a 
total number between the three classes which is higher than 297 (Figure 6). In this sense, 
the results of experiments 2 and 3 are consistent with other documented application cases 
based on computer vision (e.g., [27]). 

The most appropriate performance metric to evaluate these systems in operation is 
the proposed Error index, since in operating conditions it is foreseeable to find a much 
higher number of class 0 images than those of classes 1 and 2. 

Our work suggests that the most appropriate way for the monitoring system to be 
implemented is through progressive implementation. In this sense, datasets would be 
ever increasing when additional spill and waste images were attained. At these points, 

Figure 7. (a) Dots: Accuracy vs. Number of Images per class. Line: Regression. (b) Standard
deviation of accuracy measures vs. Number of Images per class (when two numbers are displayed it
means a number range).

4. Discussion
4.1. Results Discussion System Set-Up

Results showed in Section 3 demonstrate that Image Classification is adequate for
marine pollution monitoring tasks due to its high Accuracy rates and low training require-
ments (Table 2). The system obtained a 91% accuracy rating, which can be considered a
sufficient value for the requirements of a discharge management system in which the use
of pollution event data is statistical and, if action is required, it will entail necessary direct
validation. The time required by the trained algorithm to classify an image is approximately
one second, which is compatible with the needs of real-time monitoring. The best perfor-
mance was proven to be achieved when image set sizes for all classes are similar (Figure 5),
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providing the first insight into the requirements for adequate system implementation. In
practice, spill images are difficult to obtain in great numbers and commonly clean water
images will be the most dominant class. Thus, in order to achieve an algorithm that holds
optimal performance, spill and waste images have to be obtained to achieve a total number
between the three classes which is higher than 297 (Figure 6). In this sense, the results
of experiments 2 and 3 are consistent with other documented application cases based on
computer vision (e.g., [27]).

The most appropriate performance metric to evaluate these systems in operation is the
proposed Error index, since in operating conditions it is foreseeable to find a much higher
number of class 0 images than those of classes 1 and 2.

Our work suggests that the most appropriate way for the monitoring system to be
implemented is through progressive implementation. In this sense, datasets would be ever
increasing when additional spill and waste images were attained. At these points, the
algorithm would be retrained with new datasets in order to generate higher Accuracy and
lower Error Index rates, improving the information provided by the system in a gradual
manner. After a total image data set of 297 (between the three classes considered) has
been reached, retraining would be less frequent due to the fact that performance only
increases gradually after that point. In this type of progressive implementation, functional
monitoring systems would be provided to port decision makers in a shorter time frame
while also reducing the total development cost for a system with the same accuracy level.

Considering that the training time of the algorithm is in the order of minutes and that
retraining of the algorithm will be carried out very infrequently (due to the difficulty of
obtaining pollution images), it is preferable that each training is carried out from the initial
model and not from the previously used algorithm in order to prevent error propagation.

Figure 8 depicts how the proposed implementation would be carried out in practice.
In addition to the image acquisition and identification of the three classes (with alarms
generated when spill or waste were detected), with increasing waste and spill images a
verification and dataset enhancement step would be prompted in the system. With the
enhanced dataset, the algorithm would be revised in order to achieve gradually better
Accuracy and Error index performance.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 13 of 16 
 

the algorithm would be retrained with new datasets in order to generate higher Accuracy 
and lower Error Index rates, improving the information provided by the system in a grad-
ual manner. After a total image data set of 297 (between the three classes considered) has 
been reached, retraining would be less frequent due to the fact that performance only in-
creases gradually after that point. In this type of progressive implementation, functional 
monitoring systems would be provided to port decision makers in a shorter time frame 
while also reducing the total development cost for a system with the same accuracy level. 

Considering that the training time of the algorithm is in the order of minutes and that 
retraining of the algorithm will be carried out very infrequently (due to the difficulty of 
obtaining pollution images), it is preferable that each training is carried out from the initial 
model and not from the previously used algorithm in order to prevent error propagation. 

Figure 8 depicts how the proposed implementation would be carried out in practice. 
In addition to the image acquisition and identification of the three classes (with alarms 
generated when spill or waste were detected), with increasing waste and spill images a 
verification and dataset enhancement step would be prompted in the system. With the 
enhanced dataset, the algorithm would be revised in order to achieve gradually better 
Accuracy and Error index performance. 

 
Figure 8. Progressive implementation of port water monitoring systems. The operational action re-
fers to eventual anti-pollution measures planned by the port authority. 

4.2. Future Applications 
The most critical part of an applied computer vision system for the detection of pol-

lution in ports is the availability of images with spills or floating waste. Therefore, future 
implementations would include tools and developments that improve upon the speed 
and cost of image obtention. Specifically, when a spill or floating waste image is detected, 
considering information on the duration of the pollution event would be critical to accu-
mulate as much images as possible from the same event. This could be achieved either 
manually when a spill or waste event system was detected by the computer vision system, 
or a hybrid hydrodynamic computer vision system could be generated. In this sense, a 
hydrodynamic model in the framework of operational oceanography systems [32] would 
automatically provide information on the duration of the pollution event, and the dataset 
would be increased also in an automatic manner. However, hybrid systems can be com-
plex; thus, proper investigation of the actual practicality of developing such a system 
should be further investigated. Future implementation in operational mode (with a large 
amount of images acquired) may entail an increase in the number of classes considered 
either by subdivision of some of the current classes or even by incorporation of a new class 
to codify the simultaneous presence of spill and waste as explained in Section 2.3. Addi-
tionally, pre-filtering and preparation of images could provide better image sets that 

Figure 8. Progressive implementation of port water monitoring systems. The operational action
refers to eventual anti-pollution measures planned by the port authority.

4.2. Future Applications

The most critical part of an applied computer vision system for the detection of
pollution in ports is the availability of images with spills or floating waste. Therefore,
future implementations would include tools and developments that improve upon the
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speed and cost of image obtention. Specifically, when a spill or floating waste image is
detected, considering information on the duration of the pollution event would be critical
to accumulate as much images as possible from the same event. This could be achieved
either manually when a spill or waste event system was detected by the computer vision
system, or a hybrid hydrodynamic computer vision system could be generated. In this
sense, a hydrodynamic model in the framework of operational oceanography systems [32]
would automatically provide information on the duration of the pollution event, and the
dataset would be increased also in an automatic manner. However, hybrid systems can be
complex; thus, proper investigation of the actual practicality of developing such a system
should be further investigated. Future implementation in operational mode (with a large
amount of images acquired) may entail an increase in the number of classes considered
either by subdivision of some of the current classes or even by incorporation of a new
class to codify the simultaneous presence of spill and waste as explained in Section 2.3.
Additionally, pre-filtering and preparation of images could provide better image sets that
would increase the performance without relying on algorithm retraining. This would
include—for instance—filtering to avoid classification interference by passing boats and
port infrastructures and detecting of waste and discharge events located far from the camera
location with less loss of image resolution. In addition, pre-filtering may avoid or reduce
the effect of sunlight reflections, and other transformation of the images may yield better
detail of the contamination event and reduce interference of other less relevant details also
contained in the images.

5. Conclusions

Experiments on port water quality identification based on random image sets have
been conducted. The reliability and development requirements of the method have been
evaluated showing that computer vision tools are suitable for these monitoring tasks.
Several computer vision techniques were considered for use in real-time marine pollution
monitoring, with the decision that Image Classification was the most adequate for such
tasks due to its high accuracy rates and low training requirements. These requirements
and the possibility to improve accuracy through retraining with increased image sets were
considered due to the difficulty in obtaining port spill images, finding that progressive
implementation can not only offer functional monitoring systems in a shorter time frame,
but also reduce the total development cost for a system with the same accuracy level. A
novel performance metric for the case of computer vision systems in the port environmental
management application was put forward and tested, providing meaningful conclusions.

Future lines of research include the development of additional methods that improve
the time taken to obtain spill and waste images, ultimately increasing the applicability and
speed in which it provides meaningful information to port decision makers. In addition,
future works include the consideration of a new class for combined spill and waste for
those ports that receive mixed (i.e., waste and spills) discharges from waterways or water
collection infrastructure. In addition, image preparation and pre-filtering could also yield
algorithms with higher performance metrics and help overcome limitations for monitoring
systems where camera location is not optimal or where reflected sunlight makes images
hard to classify.
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