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Abstract: To extract the weak fault features hidden in strong background interference in the event
of the early failure of rolling bearings, a two-stage based method is proposed. The broadband
noise elimination ability of an adaptive morphological filter (AMF) and the superior capability of a
frequency band selection (FBS) strategy for fault transient location identification are comprehensively
utilized by the proposed method. Firstly, the AMF with a simple theory and high calculation efficiency
is used as a preprocessing program to enhance the fault transient features. Then, the proposed FBS
strategy based on the sparsity index (SI) is utilized to further handle the filtered signal processed by
the AMF. Finally, the constructed optimum bandpass filter based on the analysis result of the FBS is
used to further filter the handled signal processed by AMF and envelope spectral analysis is applied
on the last filtered signal to realize the ideal fault feature extraction effect. Compared with the other
traditional FBS methods based on kurtosis or the other index, the proposed FBS strategy based on SI
has strong robustness to noise. One experimental signal and one engineering vibration signal are
used, respectively, to verify the feasibility of the proposed method.

Keywords: weak fault; adaptive morphological filter; feature extraction; frequency band selection;
rolling bearing

1. Introduction

Envelope spectral (ES) analysis is one kind of classical and effective fault feature
extraction method for rolling element bearing. However, its effect will be weakened under
the influence of strong interferences. Usually, the fault information sensitive frequency
band is needed to be selected out of the full band firstly and then ES analysis is applied on
the fault information sensitive frequency band to receive better feature extraction results.
The above process is essentially named as FBS. The typical signal characteristic of a faulty
rolling bearing is impulse or transient, so kinds of impulse sensitive indexes are used
for FBS. Spectral kurtosis (SK), as proposed by Antoni [1,2] with its fast implementation
algorithm, that is kurtogram [3], is the pioneer of FBS; it uses the temporal kurtosis to
reflect the amount of transient in each divided frequency band. In some conditions such as
strong background noise containing random impulse peaks, invalid results will be yielded
by SK. To overcome the above shortcomings of SK, ES analysis is applied on the faulty
signal firstly and the kurtosis of the envelope result is calculated subsequently for FBS;
the Protrugram [4] was proposed, which had superior performance to detect impulses
with a low ratio of signal-to-noise. In [5], the concept of the negentropy index of the faulty
bearing signal is introduced and used as an index for FBS, which could reflect the impulse
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and cyclostationarity of a bearing fault signal simultaneously. Besides, the concept of
infogram based on the introduced negentropy index was also introduced, which extended
the applicability domain of traditional SK. Besides, kinds of related improved methods
based on kurtogram such as the fast kurtogram by introducing genetic algorithm [6], the
adaptive SK [7], the improved kurtogram adopting wavelet packet transform as filter [8],
the improved kurtogram adopting robust local mean decomposition as filter [9], and so on
have also been arising.

Inspired by the above FBS methods, a new FBS method based on SI is introduced
in this study due to the reason that SI has stronger resistance to noise and random shock
than the other impulse sensitive indexes such as kurtosis and negative entropy. However,
it should be noted that the effect of FBS would be not ideal when the inferences are too
strong, especially in the early weak failure stage of rolling bearing, and the reason is
mainly due to that the energy of impulse components is much weaker compared with the
other kinds of components, so it is better to preprocess the original vibration signal firstly.
Different signal processing methods such as wavelet transform (WT) [10] and empirical
mode decomposition (EMD) [11] could be selected for this target. However, as for WT, the
optimal wavelet basis is needed to be selected in advance, which is impossible in most
engineering cases because the prior knowledge of the diagnosis object is unknown. EMD
has the following two fatal flaws: (1) its mathematical theoretical support is relatively
weak [12]; (2) it is sensitive to noise [13]. Although the above two defects of EMD have
been solved to some extent by the subsequently emerging improved EMD methods such as
EEMD [14], CEEMDAN [15], and so on, their huge and complex calculations limit their
further engineering application. In view of the diversity characteristics of the target signal,
the analysis dictionary based on sparse representation methods [16–18] could use a series
of different wavelet bases to match the characteristics of the target signal and the above
drawbacks of WT and EMD are solved to some extent. Unfortunately, the multi-wavelet
basis functions still need to be constructed artificially. Though the multi-wavelet basis
functions could be learned adaptively according to the analyzed signal itself by the self-
learning dictionary based sparse representation methods [19–21], they have the defect of
requiring a huge amount of calculation. In recent years, as a new emerging signal processing
method, variational mode decomposition (VMD) [22,23] has been used widely in denoising
vibration signals of rotating machinery. However, as the two key parameters of VMD, the
penalty factor and the number of modes should be selected appropriately, which inferences
the denoising result of VMD directly [13]. Morphological filtering (MF) is an important
nonlinear filtering method based on mathematical morphological transformation [24]. MF
uses the same structure elements (SEs) as the filtering window to match the signal to
be analyzed or modify the signal locally in the time domain [25] and the information is
preserved when the local morphological features of the analyzed signal match the SEs. Its
working principle is simple and the calculation theory is efficient. Initially, MF was used
widely in other signal processing fields such as the image signal and power signal [26]. MF
could extract the edge contour and the shape features of the vibration signal effectively and
realize the retention of fault features and the removal of interference noise. Recently, various
examples in the literature have been emerging on the application of MF in mechanical fault
diagnosis and various satisfactory results have been achieved. However, the filtering effect
of MF in the fault diagnosis area is mainly determined by the selection of the scale and the
shape of the SE of MF; different kinds of corresponding research have been carried out.
An empirical rule was provided in [27] for choosing the shape and scale of SE. Filter the
original signal in different scales and their corresponding weighted average is calculated to
alleviate the scale selection influence of SE [28,29] and its defects include that its process is
time-consuming and fault-unrelated components might be contained [30]. Though some
research [31–34] reducing the fault-unrelated components problem existed in [28,29], the
problem of low computation effect was still not resolved.

To enhance the adaptive ability of MF in the feature extraction of rolling bearing, an
AMF with simple theory and high calculation efficiency is used as pre-processing step of
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the proposed FBS in the paper. The main contributions of the paper are as follows: (1) The
impulse characteristic components buried in the original multi-component vibration signal
of faulty bearing is enhanced by the AMF algorithm adaptively. (2) SI is introduced in the
FBS algorithm, which has more robustness to noise and random impulses. (3) The feature
extraction double enhancement method for the rolling bearing’s weak fault by combining
the AMF and FBS is proposed in the paper, whose feasibility and effectiveness are verified
through one experiment vibration signal and one engineering vibration signal, respectively.

The organizations of the remaining paper is as follows: the calculation processes of
AMF and FBS are presented in Sections 2 and 3, respectively. The overall flow chart of
the proposed method and its details are elaborated in Section 4. The effectiveness of the
proposed method is verified through an experimental signal and an engineering signal in
Section 5. The comparison study is carried out in Section 6 and the conclusion is obtained
in Section 7 at last.

2. AMF
2.1. Basic Theory of MF

There are four kinds of basic operators in MF: dilation, erosion, opening, and closing.
The one-dimensional original signal is denoted by f (n), whose discrete form could be
defined as F = (0, 1, · · · , N − 1). g(m) is also a one-dimensional signal, whose discrete
form is defined as G = (0, 1, · · · , M− 1)(N ≥ M). g(m) is the SE and the above four basic
operations of mathematical morphology are defined as follows:

Dilation:

( f ⊕ g)(n) = max{ f (n−m) + g(m)}{1 ≤ n ≤ N; 1 ≤ m ≤ M} (1)

Erosion:

( f Θg)(n) = min{ f (n + m)− g(m)}{1 ≤ n ≤ N; 1 ≤ m ≤ M} (2)

Opening:
( f ◦ g)(n) = ( f Θg⊕ g)(n) (3)

Closing:
( f •g)(n) = ( f ⊕ gΘg)(n) (4)

where ⊕, Θ, ◦, and • represent the dilation operator, erosion operator, opening operator,
and closing operator, respectively.

The following several commonly used morphological operators could be constructed
through the cascade combination of the above four morphological operators:

Dilation and erosion gradient operator (GDE) [31]:

GDE(n) = ( f ⊕ g)(n)− ( f Θg)(n) (5)

Closing and opening gradient operator (GCO) [35]:

GCO(n) = ( f •g)(n)− ( f ◦ g)(n) (6)

Closing–opening and opening–closing gradient operator (GCOOC) [36]:

GCOOC(n) = CO(n)−OC(n) (7)

Dilation and erosion average-hat operator (AHDE) [37]:

AHDE(n) = f (n)− ( f ⊕ g)(n) + ( f Θg)(n)
2

(8)
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Closing and opening average-hat operator (AHCO) [38]:

AHCO(n) = f (n)− ( f •g)(n) + ( f ◦ g)(n)
2

(9)

Closing–opening and opening–closing average-hat operator (AHCOOC) [39]:

AHCOOC(n) = f (n)− CO(n) + OC(n)
2

(10)

Although the feature extraction ability of the above kinds of combined morphological
operators shown from Equations (5)–(10) could be enhanced greatly, their transient feature
extraction performance is still unsatisfactory in the case of strong interference [40]. To
solve the above problem, the morphology gradient product operator (MGPO) [40] as in the
following is constructed by using the product of GCO and GCOOC:

MGPO(n) = GCO(n)•GCOOC(n) (11)

The same as the construction ideology of MGPO, the MHPO [41] is introduced to
extract the transient features by integrating AHCO and AHCOOC:

MHPO(n) = AHCO(n)•AHCOOC(n) (12)

The excellent performance of MGPO and MHPO in transient features extraction over
the other traditional morphological operations has been proved and the other two new
morphological operations named as MHPO1 and MHPO2 originating from AHDE [37] are
introduced for further enhancing the extraction ability of transient features:

MHPO1(n) = AHDE(n)•AHCO(n) (13)

MHPO2(n) = AHDE(n)•AHCOOC(n) (14)

In this paper, the MHPO1 shown in Equation (13) is used as a morphological opera-
tor for the reason that AHDE and AHCO had been verified much more efficiently than
AHCOOC in extracting transient features [37].

2.2. Strategy for Designing SE

The triangular SE, semi-circle SE, and flat SE [28] constructed from window functions
are commonly used in traditional MFs for vibration signal processing. However, the ap-
propriate shapes and proper length and height parameters need to be selected for a better
extraction effect in the above SEs. Unfortunately, it is impossible to gain the prior knowl-
edge of the diagnosed object in most engineering cases. The ratio between the sampling
frequency and characteristic frequency is used to determine the information adaptively by
some studies [36,39,40], whereas most of them has low computational efficiency, which is
not suitable for online application.

Considering the calculation efficiency and determining the information of SE adap-
tively, a new SE design strategy for MF is used [40], whose basic ideology is shown in
Figure 1, and it relies entirely on the intrinsic properties of the analyzed signal. Its concrete
steps are as follows:

Step 1: All the local maximum and minimum points of the original collected vibration
signal marked as a blue line in Figure 1 are found.

Step 2: The found local maximum and minimum points in step 1 are fitted by using
the cubic spline interpolation (CSI) method and the new fitted curve shown as the red line
in Figure 1 is obtained.

Step 3: Determine the shape of SE according to the narrow waveform (a− b− c, c− d−
e, e− f − g, and so on in Figure 1) between the two adjacent minimum points in the fitted
curve. Then, the minimum amplitude of each narrow waveform is adjusted to zero. At
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last, the adjusted narrow waveforms are measured as SEs to extract the impact components
buried in the original vibration signal.
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Figure 1. Illustration of designing SEs of MF.

A simulated signal s(t) is used to verify the de-noising ability of AMF in the section.
The mathematical expressions of the simulated signal s(t) and its four components are
provided in Equation (15) and their corresponding time domain waveforms are presented
in Figure 2a–e, respectively. In Equation (15), p(t) is the impulse signal and its demodulated
amplitude is represented by A(t). s(t) simulates a rolling bearing with a failed inner race
and the fault characteristic frequency (FCF) of the inner ring is set as 97 Hz. Theoretically,
there exists a random slip between the rolling elements and the raceways and the random
slip is represented by τi. In Figure 2e, the impulse features are hidden completely by the
strong interferences and the direct ES result of s(t) is shown in Figure 2f, on which only the
FCF of the inner race could be identified clearly. The AMF is applied on the original signal
as shown in Figure 2e and the filtered signal is presented in Figure 2g. Compare Figure 2g
with Figure 2e and the impulse features are enhanced evidently. The kurtosis index of the
signal shown in Figure 2g increases about 300% compared with the original signal through
calculation. The ES analysis result of the de-noised signal is shown in Figure 2h, based on
which not only the FCF on the inner ring could be extracted but also its harmonics are also
extracted perfectly.
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
s(t) = p(t) + h(t) + n(t)
p(t) = ∑97

i=1 A(t) · e−1000·(t−i/97−τi) sin[2π · 3900 · (t− i/97− τi)]
h(t) = 0.1 · sin(2π · 10 · t + π/6) + 0.1 · sin(2π · 20 · t− π/3)
r(t) = Br · e−800·(t−Tr) sin[2π · 2000 · (t− Tr)]
A(t) = 0.5 · [1− cos(2π · 10 · t)]

(15)

3. The FBS Strategy

The proposed FBS strategy mainly consisted of five steps:
Step 1: Segment the AMF filtered signal.
Step 2: Frequency band partition.
Step 3: The SI of each frequency band candidate is calculated.
Step 4: The frequency band candidate with the biggest SI is selected.
Step 5: Apply the ES analysis on the selected fault information sensitive frequency

band and the fault features are extracted.
In step 1, supposing the collected original discrete signal is represented as

x[n](n = 1, 2, · · · , N). The signal sampling frequency is noted as fs. The other three
parameters are symbolized as follows: Loverlap represents the sample overlap length be-
tween two neighboring segments; nseg represents the number of divided segments; and
Lseg represents the length of each segment. A sliding segmentation method, with its
mathematical being represented in Equation (16), is used to segment the original signal
x[n]:

N = (nseg − 1)× (Lseg − Loverlap) + Lseg (16)

In step 2, the low-pass/band-pass/high-pass filters are used to filter the original signal
to obtain frequency band candidates; fc in Equation (17) and ∆ f in Equation (18) represent
the filters’ corresponding center frequency and bandwidth, in which i is the segment index
of each band level and j is the filtering structure level and the partition ideology is same as
kurtogram [3]. The tree of filter bands as shown in Figure 3 is produced repeatedly in a
pyramidal manner.
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fc = (i +
1
2
)× 2−j−1 × fs (17)

∆ f = 2−j−1 × fs (18)

In step 3, the SI, also named GI [42], is used for FBS, whose calculation formula is
shown in Equation (19).

GI = 1− 2
N

∑
p=1

SEr[p]
‖SE‖1

(
N − p + 0.5

N
) (19)

where ‖‖1 represents the l1 norm, SE denotes the squared envelope of x[n], and SEr

represents SE in ascending order, that is SEr[N] ≥ SEr[N − 1] ≥ · · · ≥ SEr[1]. SE could be
calculated by using Equation (20):

SE = |s|2 = |s + j · H(s)|2 (20)

where s represents the analytical signal of the analyzed signal s, H() is the symbol of the
Hilbert transform, and j2 = −1.

To verify that the GI has an advantage and higher reliability than the other advanced
indexes such as the Hoyer measure [43], L2/L norm [44], and kurtosis index to reflect the
cyclic transient features, the five signals as provided in Equation (21) are used and their
four indexes are calculated. In Equation (21), Sig1 is the composite signal of two sinusoids,
Sig2 is the random white noise, Sig3 represents one impulse hidden in random white noise,
Sig4 is two impulses hidden in random white noise, and Sig5 is multiple impulses hidden
in random white noise to simulate the periodic shock vibration characteristics of the faulty
bearing. The time domain diagrams of Sig1–Sig5 are presented in Figure 4a and their
corresponding four indexes are provided in Figure 4b, based on which the phenomenon
of the increasing in GI with the much more evident transient features could be observed.
However, the other three indexes do not own the virtue of GI.
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Figure 4. Five signals with their four indexes. (a) Five signals. (b) Four indexes corresponding to the
five signals as shown in (a).


Sig1 = sin(2π/100 ∗ t) + 3 sin(2π/10 ∗ t)t = 1 : 1000
Sig2 = 0.25randn(Sig1)
Sig3 = Sig2; Sig(700) = 8
Sig4 = Sig2; Sig(340 : 233 : end) = 8
Sig5 = Sig2; Sig(28 : 100 : end) = 10

(21)

4. Flow Chart of the Proposed Method

To handle the difficult problem of early weak fault feature extraction of rolling bearing,
a corresponding two-stage method is proposed by combining the AMF and FBS strategy.
The scale and shape of SE could be determined by AMF adaptively based on the intrinsic
characteristics of the signal to be analyzed itself, which could reduce the interferences to
a maximum extent. To further reduce the influence of noise interference caused by full
frequency band ES analysis, the proposed FBS is used to select the fault information’s
most sensitive frequency band. Finally, ES analysis is implemented on the selected fault
information sensitive frequency band and a satisfactory feature extraction result could be
obtained. Figure 5 shows the overall flow of the proposed method, whose specific details
are as follows:

Step 1: Collect the vibration signal of the faulty rolling bearing using accelerated
sensors.

Step 2: The scale and shape of SEs are determined according to the processes in
Section 2.2.

Step 3: Apply the MF shown in Equation (13) using the obtained SEs in step 2 on the
original vibration signal.

Step 4: Select the fault information sensitive frequency band based on the proposed
FBS in Section 3 to further eliminate the noise pollution caused by full frequency band ES
analysis.

Step 5: Apply ES analysis on the signal contained in the selected frequency band.
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5. Verification
5.1. Experiment Verification

The rolling bearing life cycle experiment is conducted in the section and the signal
collected at the early weak failure stage is analyzed using the combined two-stage method.
The accelerated bearing life test (ABLT-1A) is provided by Hangzhou Bearing Test &
Research Center. It simultaneously hosts four rolling element bearings on one shaft driven
by an AC motor and coupled by rubber belts. The test rig is shown in Figure 6. A new
bearing will be installed if one fails. Select one of the same test bearings as [45] as the study
object. The parameters and the fault characteristic frequencies of the test rolling bearing are
shown in Tables 1 and 2, respectively.
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Figure 6. The test rig.

Table 1. The parameters of the test rolling bearing.

Type Ball
Number

Ball
Diameter

(mm)

Pitch
Diameter

(mm)

Contact
Angle

Motor
Speed
(rpm)

Load
(kN)

6307 8 13.494 58.5 0 3000 12.744

Table 2. The fault characteristic frequencies of the test rolling bearing.

fr fc fb fi fo

50 19 102 246 153

The whole life cycle of the selected test bearing is 2469 min. The vibration data
corresponding to the 2297th minute are used as the analyzed object, whose time-domain
diagram is presented in Figure 7a. It is found that failure arises on the inner ring of the
test bearing by disassembling it after experiment and the FCF of the inner race is 245 Hz.
The transient characteristics of the faulty bearing are obscured for the effect of strong
interferences and the judgement of the fault location occurring on the inner race would
not be realized based on the periodic interval between the two adjacent impacts in the
waveform as presented in Figure 7a. Figure 7b is the full-band ES analysis result and only
the spectral energy distribution characteristics between 0 Hz and 800 Hz are displayed for
convenient analysis. Unfortunately, any useful fault characteristic information could not be
obtained based on Figure 7b by applying ES analysis over the full frequency band and the
main reason is still due to the strong inferences.
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Figure 7. Experiment verification of the proposed method. (a) The original vibration signal of the
experimental bearing at its early weak fault stage. (b) Envelope spectral of the signal shown in (a).
(c) The filtered signal of the signal shown in (a) using AMF. (d) Envelope spectral of the signal shown
in (c). (e) Analysis result of the signal shown in (c) using the proposed FBS method. (f) Envelope of
the filtered signal of the signal shown in (c) using the proposed FBS method. (g) FFT of the signal
shown in (f).

Based on the described method in Figure 5, AMF is used to preprocess the original
signal initially and the de-noised signal is shown in Figure 7c. By comparing Figure 7c
with Figure 7a, the transient characteristics of the former are enhanced significantly and
the kurtosis index of the de-noised signal is about 5.2 times that of the original signal
through statistical calculation, which proves the enhancement effect of AMF on the transient
characteristics of the faulty bearing. To verify the necessity of further processing on the
de-noised signal, full-band ES analysis is carried out on the signal as shown in Figure 7c,d,
which show the corresponding result: although the FCF of inner race is extracted, its
harmonics still could not be identified effectively due to the inference of strong interferences,
and further FBS is needed to handle de-noised signal. Apply FBS on the de-noised signal
and Figure 7e presents the analysis result, based on which the key parameters (center
frequency fc and bandwidth Bw) of the selected optimal frequency band with the biggest SI
(SI = 5.78) for ES analysis are as follows: fc = 3200 Hz and Bw = 6400 Hz. According to the
above two obtained parameters, a band-pass filter is constructed to further filter the signal
shown in Figure 7c and the envelope result of the further de-noised signal is displayed in
Figure 7f. Apply FFT on the envelope signal shown in Figure 7f and the last fault features
extraction effect is shown in Figure 7g, based on which both the FCF of the inner race and
its harmonics are extracted perfectly.
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5.2. Engineering Verification

The engineering test object is a water pump unit of a paper mill, whose structure
diagram is shown in Figure 8: the centrifugal water pump is driven directly by motor. The
rotating speed and rated power of the driving motor are 1480 RPM and 250 kW, respectively.
The unit is tested by the off-line signal collection and analysis equipment produced by
Zhengzhou Expert Technology Co., Ltd. An acceleration sensor is used and its model
and sensitivity are EAG01-100 and 100 mv/g, respectively. The measuring points of the
unit and the amplitudes of each measured points are displayed in Table 3. The sampling
frequency is set as fs = 6400 Hz. Based on Table 3, the vibration amplitude corresponding
to the driving end of the pump is the largest. The bearing locating on the driving end of the
pump is disassembled after shutting off the unit and it is found that the fault arises on the
inner ring. The disassembled bearing and its fault location are shown in Figure 9 The type
of the bearing and its FCFs are detailed in Table 4. The channel with the largest vibration
value at the driving end of the pump in Table 3, that is, the horizontal direction channel is
chosen for analyzing.
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Table 3. The collected vibration values of the monitored machine.

Number Measured Points Direction Measured Values (mm/s2)

1 Free end of motor Horizontal 13.9

2
Drive end of motor

Horizontal 12.8

3 Vertical 11.3

4 Axial 8.0

5
Driving end of pump

Horizontal 45.9

6 Vertical 37.7

7 Axial 28.7
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Table 4. Fault characteristic frequencies.

Type Inner Race Outer Race Cage Rolling Element

7320 175.38 120.62 10.11 98.91

The time domain analysis result of the selected original signal is as shown in Figure 10a
based on which the transient features of the faulty bearing could be identified roughly.
Apply ES analysis on the original engineering vibration signal over the full frequency band
and the corresponding result is shown in Figure 10b. Unfortunately, the inner race FCF
could not be extracted due to the influence of the other interferences. Apply AMF on the
original signal and the de-noised signal is provided in Figure 10c, whose transient features
are enhanced evidently compared with the original engineering vibration signal and the
de-noising ability of AMF is proven again. Apply full frequency band ES analysis on the
de-noised signal and the corresponding result is shown in Figure 10d and the enhancement
effect of AMF on the impulse signal is further demonstrated because the FCF of the inner
race is extracted evidently on Figure 10d. Although an inner race fault diagnosis conclusion
could be obtained preliminarily based on Figure 10d, the spectral line energy components
corresponding to other components are also stronger, which affects the sufficiency of the
diagnosis conclusion. Section 5.1 is the same as the experimental signal; FBS analysis is
required for de-noising signal using AMF to obtain better effect. The FBS analysis result
of the signal shown in Figure 10c is presented in Figure 10e, based on which the key
parameters (center frequency fc and bandwidth Bw) of the selected optimal frequency band
with the biggest SI (SI = 4.2) for envelope spectral analysis are as follows: fc = 400 Hz and
Bw = 800 Hz. Construct an optimal band-pass filter using the obtained key parameters
to further filter the de-noised signal shown in Figure 10c and the envelope of the further
de-noised signal is provided in Figure 10f. At last, apply FFT on the envelope signal shown
in Figure 10f and the final envelope spectral extraction result is displayed in Figure 10g,
based on which the perfect effect is achieved.

Appl. Sci. 2023, 12, x FOR PEER REVIEW 13 of 18 
 

The time domain analysis result of the selected original signal is as shown in Figure 
10a based on which the transient features of the faulty bearing could be identified roughly. 
Apply ES analysis on the original engineering vibration signal over the full frequency 
band and the corresponding result is shown in Figure 10b. Unfortunately, the inner race 
FCF could not be extracted due to the influence of the other interferences. Apply AMF on 
the original signal and the de-noised signal is provided in Figure 10c, whose transient 
features are enhanced evidently compared with the original engineering vibration signal 
and the de-noising ability of AMF is proven again. Apply full frequency band ES analysis 
on the de-noised signal and the corresponding result is shown in Figure 10d and the 
enhancement effect of AMF on the impulse signal is further demonstrated because the 
FCF of the inner race is extracted evidently on Figure 10d. Although an inner race fault 
diagnosis conclusion could be obtained preliminarily based on Figure 10d, the spectral 
line energy components corresponding to other components are also stronger, which 
affects the sufficiency of the diagnosis conclusion. Section 5.1 is the same as the 
experimental signal; FBS analysis is required for de-noising signal using AMF to obtain 
better effect. The FBS analysis result of the signal shown in Figure 10c is presented in 
Figure 10e, based on which the key parameters (center frequency cf  and bandwidth wB
) of the selected optimal frequency band with the biggest SI (SI = 4.2) for envelope spectral 
analysis are as follows: cf  = 400 Hz and wB  = 800 Hz. Construct an optimal band-pass 
filter using the obtained key parameters to further filter the de-noised signal shown in 
Figure 10c and the envelope of the further de-noised signal is provided in Figure 10f. At 
last, apply FFT on the envelope signal shown in Figure 10f and the final envelope spectral 
extraction result is displayed in Figure 10g, based on which the perfect effect is achieved. 

  

(a) (b) 

  
(c) (d) 

 

0 0.5 1 1.5 2 2.5
Time [s]

0

10

20

30

40

0 100 200 300 400 500 600
Frequency [Hz]

0

0.5

1

Figure 10. Cont.



Appl. Sci. 2023, 13, 668 14 of 18Appl. Sci. 2023, 12, x FOR PEER REVIEW 14 of 18 
 

 

 
(f) 

 
(e) (g) 

Figure 10. Engineering verification of the proposed method. (a) The original vibration signal of 
engineering bearing. (b) Envelope spectral of the signal shown in (a). (c) The filtered signal of the 
signal shown in (a) using the proposed AMF. (d) Envelope spectral of the signal shown in (c). (e) 
Analysis result of the signal shown in (c) using the proposed FBS method. (f) Envelope of the filtered 
signal of the signal shown in (c) using the proposed FBS method. (g) FFT of the signal shown in (f). 

6. Comparison 
The Mkurtogram [46] method proposed by Liao et al. is used for comparison firstly. 

In Mkurtgram, envelope autocorrelation analysis of the original signal is carried out for 
the estimation of FCF firstly. Secondly, the targeted hunting frequency zone is set 
automatically according to the estimated FCF. Subsequently, the analyzed signal is 
decomposed by 1/3 binary filter banks and the frequency domain multipoint kurtosis 
(FDMK) of each decomposed signal is calculated. At last, the frequency band with the 
maximum FDMK is selected. As verified in [46], Mkurtogram has more advantages than 
the classical Kurtogram method and another new FBS method, that is the frequency 
domain correlated kurtosis [47] method. The analyzing results of the original 
experimental signal using fast Mkurtogram are presented in Figure 11. Though the 
calculation efficiency of Mkurtogram is higher than the proposed method and the FCF of 
the experimental bearing’s inner race is extracted as presented in Figure 11c, the 
harmonics of FCF are not extracted and the reason is due to the effect of the low sampling 
frequency when resampling being required using the Mkurtogram method. Similarly, 
Figure 12 provides the analyzing results of the original engineering signal using 
Mkurtogram, based on which not only an evident impulsive characteristic could not be 
observed, but also the FCF of the engineering bearing is not extracted. 

Am
pl

itu
de

 [m
/s

2 ]
Am

pl
itu

de
 [m

/s
2 ]

Figure 10. Engineering verification of the proposed method. (a) The original vibration signal of
engineering bearing. (b) Envelope spectral of the signal shown in (a). (c) The filtered signal of
the signal shown in (a) using the proposed AMF. (d) Envelope spectral of the signal shown in (c).
(e) Analysis result of the signal shown in (c) using the proposed FBS method. (f) Envelope of the
filtered signal of the signal shown in (c) using the proposed FBS method. (g) FFT of the signal shown
in (f).

6. Comparison

The Mkurtogram [46] method proposed by Liao et al. is used for comparison firstly.
In Mkurtgram, envelope autocorrelation analysis of the original signal is carried out for the
estimation of FCF firstly. Secondly, the targeted hunting frequency zone is set automatically
according to the estimated FCF. Subsequently, the analyzed signal is decomposed by
1/3 binary filter banks and the frequency domain multipoint kurtosis (FDMK) of each
decomposed signal is calculated. At last, the frequency band with the maximum FDMK is
selected. As verified in [46], Mkurtogram has more advantages than the classical Kurtogram
method and another new FBS method, that is the frequency domain correlated kurtosis [47]
method. The analyzing results of the original experimental signal using fast Mkurtogram
are presented in Figure 11. Though the calculation efficiency of Mkurtogram is higher than
the proposed method and the FCF of the experimental bearing’s inner race is extracted
as presented in Figure 11c, the harmonics of FCF are not extracted and the reason is due
to the effect of the low sampling frequency when resampling being required using the
Mkurtogram method. Similarly, Figure 12 provides the analyzing results of the original
engineering signal using Mkurtogram, based on which not only an evident impulsive
characteristic could not be observed, but also the FCF of the engineering bearing is not
extracted.

The second compared method is the multi-objective informative based FBS (MOIFBS),
in which the grey wolf optimizer is used for capturing the impulsiveness and cyclosta-
tionarity characteristics to adaptively determine the parameters of FBS, and its excellent
performance is verified through two cases of slight bearing faults. Figure 13 presents the
MOIFBS results of the original experimental signal and the impulsiveness characteristic is
enhanced evidently by comparing Figure 13c with the original experimental signal. Unfor-
tunately, the FCF of the experimental bearing’s inner ring could not be identified evidently
in Figure 13d. Similarly, though the FCF and its harmonics of the engineering bearing
could be identified based on the analysis results as presented in Figure 13 by applying
MOIFBS on the original engineering signal. By comparing Figure 13d with Figure 9, the
extraction effect of the latter is better: the spectral line amplitudes located on the FCF and
its harmonics are evident based on Figure 13d, but they are relatively weaker compared
with the spectral line amplitude located on the rotating frequency of the experimental
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bearing, which will affect the judgment of inner race fault to a certain extent. The above
phenomenon does not exist in Figure 9 and the advantage of the proposed method over
MOIFBS is further verified.
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7. Conclusions

A two-stage method for weak fault feature extraction of a bearing by combining an
adaptive morphological filter with a new frequency band selection strategy is introduced
in the paper. Firstly, a new AMF is proposed that could adaptively determine the SEs of
MF according to the analyzed signal itself. The new AMF used the preprocessing method
to handle the original vibration of the faulty bearing for preliminary noise reduction. Sub-
sequently, the introduced FBS is implemented on the de-noised signal to further eliminate
the influence of interferences caused by a full frequency band envelope spectral. According
to the simulation verification of the new proposed AMF and FBS and the effectiveness
verification of the proposed two-stage method, the following conclusions could be drawn:

1. The MHPO1 shown in Equation (13) is used as a morphological operator in the paper,
which not only could de-noise the interferences preliminarily but could also enhance
the transient features of the faulty bearing.

2. The proposed new AMF method could provide a new option for adaptive SEs design
through simulation verification.

3. GI has the advantage of a higher reliability than the other advanced indexes such
as the Hoyer measure, L2/L norm, and kurtosis index to reflect the cyclic transient
features, which could be used as an index for FBS.

4. The two-stage rolling bearing weak fault feature extraction method combining an
adaptive morphological filter with a new frequency band selection strategy could
extract the periodic transient features of the faulty bearing much more effectively than
only using one extraction method of the two proposed methods.
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Abbreviations

AMF Adaptive morphological filter
SI Sparsity index
ES Envelope spectra
SK Spectral kurtosis
WT Wavelet transform
EMD Empirical mode decomposition
VMD Variational mode decomposition
MF Morphological filtering
GDE Dilation and erosion gradient operator
GCO Closing and opening gradient operator
GCOOC Closing–opening and opening–closing gradient operator
AHDE Dilation and erosion average-hat operator
AHCO Closing and opening average-hat operator
AHCOOC Closing–opening and opening–closing average-hat operator
SE Structure element
FCF Fault characteristic frequency
CSI Cubic spline interpolation
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