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Abstract: The evolution of Natural Language Processing technologies transformed them into viable
choices for various accessibility features and for facilitating interactions between humans and comput-
ers. A subset of them consists of speech processing systems, such as Automatic Speech Recognition,
which became more accurate and more popular as a result. In this article, we introduce an architecture
built around various speech processing systems to enhance Romanian emergency services. Our
system is designed to help the operator evaluate various situations with the end goal of reducing
the response times of emergency services. We also release the largest high-quality speech dataset of
more than 150 h for Romanian. Our architecture includes an Automatic Speech Recognition model
to transcribe calls automatically and augment the operator’s notes, as well as a Speech Recognition
model to classify the caller’s emotions. We achieve state-of-the-art results on both tasks, while our
demonstrator is designed to be integrated with the Romanian emergency system.

Keywords: Automatic Speech Recognition; Speech Emotion Recognition; Romanian language;
emergency services

1. Introduction

In recent years, the developments in Artificial Intelligence (AI) and, more specifically,
Natural Language Processing (NLP) made it a popular choice for various tools we use every
day, such as automatic translation, grammar correction, accessibility tools, and chatbots.
NLP technologies facilitate the interaction between humans and computers by allowing
machines to transcribe and understand spoken language.

Automatic Speech Recognition (ASR), also known as speech-to-text, is the study of
computational linguistics that focuses on processing speech signals with the objective of
transcribing spoken language into text. This process is usually effortless for real humans,
but it is a challenge for computers due to the various complexities of oral communication.

The first things that can be observed are the different accents or dialects, as well as
changes in pitch, tempo, or volume. Moreover, transcribing and understanding speech
becomes even more difficult as we consider the cognitive processes required for observation
and understanding the context in which the words are transmitted. The context cannot
be transformed into inputs for artificial neural networks as they are heavily influenced by
life experiences, together with the personal perception of the surrounding world. Finally,
challenges are present at a lower level concerning communication (e.g., background noise,
compressed audio) or at a higher level (e.g., punctuation, capitalization, or text formatting
in general).

Emergency services are present worldwide and, in Romania, the service is available
to the general population by calling the quick phone number “112”, similar to “911” in
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the United States of America or “999” in the United Kingdom. The Romanian emergency
system follows the European Telecommunications Standards Institute (ETSI) standard-
ization direction of the NG112 (Next Generation 112) specification corresponding to the
European emergency services. NG112 brings new functionalities, especially at the level
of multimedia communications, which opens the opportunity to implement new types of
services. Speech-recognition-based intelligence can ease the work of emergency services
dispatchers and provide relevant information for critical cases.

Though there are not many AI-enhanced emergency systems in operation, such tools
could help analyze calls and messages and support faster decisions. In return, AI tools
could reduce waiting times and save more lives by assisting operators in several use
cases like filtering abusive calls more efficiently and providing contextualized suggestions
to operators in specific situations. An example is the Danish company Corti [1], which
developed an AI system to analyze emergency calls and predict cardiac arrests more
accurately outside the hospital. According to Madsen et al. [2], emergency dispatchers
fail to identify about 25% of cases of cardiac arrest and therefore lose the possibility of
giving instructions for resuscitation. Artificial Intelligence could detect a cardiac arrest
also based on historical data given a predisposition of the caller for such conditions. The
developed algorithm listens to the call in real time and alerts the operator if the caller
has a cardiac arrest. In 2018, EENA launched a pilot project with Corti to test how this
system could work; the project was carried out in various locations in France and Italy.
In another implementation, ML2Grow (https://ml2grow.com/case/ai-system-ensures-
faster-handling-of-emergency-calls/, accessed on 1 December 2022) was used to identify
accidental calls. Based on the first seconds of a call, the “Hazira Digital” system determined
whether the call was accidental or intentional (real).

This article presents our solution for the Romanian emergency systems with a focus
on the underlying deep models and the overall architecture of the developed system, our
methods for data acquisition, and the training of models for a low-resource language.

Our main contributions are as follows:

• To our knowledge, the largest high-quality speech dataset of more than 150 h for Ro-
manian available at https://echo.readerbench.com/ (accessed on 1 December 2022);

• An architecture consisting of two central components, namely Automatic Speech
Recognition and Emotion Recognition models that achieve state-of-the-art results, in-
tegrated with the Romanian emergency system and designed to support the operators
take timely decisions.

The paper is structured as follows. After the introduction, the second section presents
related work, while the third section details the proposed system architecture, the speech
and emotion recognition algorithms, as well as the corpora used for training the models.
The fourth section unveils the results for speech and emotion recognition. The results are
discussed in the fifth section, while the paper ends with conclusions.

2. Related Work

In this section, we present state-of-the-art methods for Automatic Speech Recognition
and Speech Emotion Recognition.

2.1. Automatic Speech Recognition

Automatic Speech Recognition has been a subject of study for a long time. However,
significant improvements to make it viable for text transcription were made only in the
last decade. The underlying process is made up of several steps, the most common
and important ones being feature extraction, phoneme detection, word composition, and
text transcription.

The conventional implementation used to be a hard-coded pipeline and acoustic
model tweaked manually until the accuracy was good enough for the specific domain
it was used in. As the pipeline was built on top of different modules that used various
algorithms for a particular task, optimizing the system implied adjusting each component.

https://ml2grow.com/case/ai-system-ensures-faster-handling-of-emergency-calls/
https://ml2grow.com/case/ai-system-ensures-faster-handling-of-emergency-calls/
https://echo.readerbench.com/
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The optimization process was laborious and sometimes reached the local optimum for each
component instead of the global optimum [3].

The newer methods leverage end-to-end learning, training a single Deep Neural
Network (DNN) model with multiple layers that replace the traditional pipelines. Neural
networks can process inputs and outputs of arbitrary length and take advantage of local
spatial coherence extracting more useful information with a relatively low computational
cost. These are just two of the characteristics that make them ideal for audio and speech
analysis. Furthermore, these systems can be classified into regular DNN-based models or
hybrid models, which leverage Deep Neural Networks and any other set of technologies,
such as the long-established Hidden Markov Models.

2.1.1. Romanian Datasets

Even though there is a decent amount of speech recordings available for the Romanian
language, and this quantity continues to increase steadily, it remains a low-resource lan-
guage by modern deep learning standards. Moreover, part of this data has low quality or is
too noisy for training or evaluation. Table 1 presents all available speech datasets available
for the Romanian language, summing up to around 300 h of recordings.

Table 1. Available speech datasets for the Romanian language.

Data Set Duration Recordings Unique
Transcripts

Unique Word
Count Speakers

Chamber of Deputies (eval) 4 h 296 296 7084 N/A
IIT 18 h 8877 8619 30,327 98
RACAI 11 h 3404 2646 15,877 3
RADOR 50 h 16,180 15,530 50,782 N/A
RASC 4 h 2976 2972 14,113 N/A
Robin 1 h 400 194 2165 4
RoDigits 37 h 15,389 100 10 154
Romanian Read-Speech [4] 99 h 136,120 11,924 18,485 164
SSC (eval) 5 h 3135 3008 11,291 N/A
SWARA 21 h 19,292 1803 6102 17
Various 32 h 18,568 15,419 36,174 3444+

The “various” dataset represents miscellaneous recordings that were obtained from
unknown sources that are too small in size to be representative on their own but have been
collected into a single, larger dataset that can be used for training. This is characterized by
a large number of speakers present in the dataset.

2.1.2. Hidden Markov Model-based Architectures

Hidden Markov Models (HMMs; Rabiner and Juang [5]) are a statistical Markov model
in which the states are not observable. HMMs learn about the initial Markov process by
observing a different process whose behavior depends on the modeled system. Gaussian
Mixture Models (GMMs; Reynolds [6]) are a probabilistic model that assumes all data
points are generated from a mixture of a finite number of Gaussian distributions with
unknown parameters.

In speech recognition, HMMs are used together with GMMs. The purpose of the
Hidden Markov Model is to consider the temporal dependencies between the acoustic
features which represent the context. In contrast, the Gaussian Mixture Model is used to
classify each frame, which represents the uttered phonemes. Paired with a pronunciation
lexicon and a language model, HMM-GMM models (Figure 1) can transform a given
sound wave into a word sequence. Each audio frame of the input wave is processed while
acoustic features (for example, Mel-Frequency Cepstral Coefficients or MFCC for short)
are extracted. The sentences are split into words, and then each word is converted into a
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sequence of phonemes using a phonetic dictionary or an additional grapheme-to-phoneme
model to determine the phonemes automatically.

Figure 1. Hidden Markov Model-based model for Automatic Speech Recognition.

CMUSphinx [7] is the most well-known speech-to-text solution, a speech recognition
development toolkit heavily used for experimenting with HMM-GMM-based speech recog-
nition architectures (Figure 2). It supports multiple types of acoustic models: continuous,
semicontinuous, and phonetic-tied models. The best results obtained with CMUSphinx
for the English language were obtained after training with LibriSpeech (100 h of clean
audio) (https://abuccts.blogspot.com/2017/08/gsoc-2017-with-cmusphinx-post-11.html,
accessed on 1 December 2022): 19.4% WER (continuous model) and 30.3% WER (phoneti-
cally tied model). The best results for the Romanian language vary between 3.8% WER and
23.17% WER, the former result being obtained [8] for a subset of a small and clean dataset,
while the latter for a much more difficult evaluation dataset.

Figure 2. Architecture of Hidden Markov Model-based Automatic Speech Recognition system.

2.1.3. Deep Neural Network-Based Architectures

In the field of Automatic Speech Recognition, a breakthrough consisted of the use of
Deep Neural Networks (DNNs) for developing end-to-end speech-to-text systems. They
successfully replaced the older and more complex traditional systems with a single neural net-

https://abuccts.blogspot.com/2017/08/gsoc-2017-with-cmusphinx-post-11.html
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work. DNNs have a simpler implementation and consistently outperform previous solutions.
The variety of networks used ranges from simple Recurrent Neural Networks (RNNs) using
Long Short-Term Memory (LSTM; Hochreiter and Schmidhuber [9]) to Transformer models
using Attention Mechanisms [10], mixing supervised and unsupervised learning, solving both
tasks of speech recognition and language modeling.

Deep Speech [3] (see Figure 3a) is one of the most known solutions built using a
Recurrent Neural Network (a single recurrent layer), which obtained a 16% WER after
training the model using the Switchboard dataset composed of 300 h of labeled speech
data. The second version, DeepSpeech 2 [11] (see Figure 3b), uses more recurrent layers
and further reduced the WER to 12.73% when trained on LibriSpeech. The most accurate
model built using deep neural networks is Whisper [12], which achieved a WER of 2.7%
on the LibriSpeech test-clean dataset. Whisper almost halved the overall WER down to
12.9% in comparison to wav2vec 2.0 [13], another renowned Automatic Speech Recognition
model, which achieved a WER of 29.5%.

(a) DeepSpeech 1 (b) DeepSpeech 2

Figure 3. Architecture of DeepSpeech Automatic Speech Recognition models.

2.1.4. Hybrid Architectures

The common perception is that the two solutions (i.e., Hidden Markov Model-based
and Deep Neural Network-based architectures) are competitors in the field of Automatic
Speech Recognition. Still, experiments indicate that the two technologies can be used to-
gether to benefit from the advantages of both types of models. In the past, they have shown
remarkable accuracy and flexibility. Deep Neural Networks can be used for providing
probability estimates for the state of the HMM, or smaller Hidden Markov Models can be
used for aligning training data for the DNN.

One well-known open-source toolkit for speech recognition that employs a hybrid
architecture is Kaldi [14]. The best-performing recipe provided by Kaldi obtained a WER of
8.76% when trained on the LibriSpeech dataset. The best result for a hybrid architecture,
combining HMMs and DNNs, and the same dataset is a 5.0% WER.
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2.1.5. Transformer Architectures

Transformers [10] have changed the NLP landscape in terms of employed models.
Compared to RNN and convolutional networks, Transformers can be trained significantly
faster and, for many use-cases, achieved state-of-the-art performances [10].

A powerful framework for transformers ASR models is wav2vec 2.0 [13]. The main
advantage of the framework is that models can be pretrained on large unlabeled data and
then fine-tuned on small labeled datasets. The authors achieved state-of-the-art results
(WER 4.8/8.2 on test-clean/other of LibriSpeech) with only 10 min of labeled data. Even
though wav2vec 2.0 for ASR is capable of producing good results, it can be improved
using a language model. Wav2vec 2.0 offers support for the n-gram language model based
on KenLM [15].

2.2. Speech Emotion Recognition

Speech Emotion Recognition is the task of identifying the emotion of the speaker from
audio signals. Human speech is much more than just words, and humans can efficiently
perform it as a natural part of our day-to-day oral communication, observe the other
acoustic properties (pitch, tempo, volume, etc.) and parse it accordingly (add or modify
information). From a machine learning perspective, this task is a classification problem,
like sentiment analysis, but it runs on raw speech instead of transcribed text. Emotion
classification is not an easy task. There are two models used for emotion classification:
the discrete model and the dimensional model. The discrete emotional model is based
on the six basic innate emotions described by Eckman et al. [16]: sadness, happiness, fear,
anger, disgust, and surprise. All other emotions are obtained by combining the basic ones.
The dimensional model uses a small number of characteristics, such as valence (wheater
positive or negative) and activation (i.e., intensity). Though simpler, the dimensional model
is unintuitive for most people and requires special training for emotional corpora labeling.
Hence, most emotional speech classifiers use the discrete model.

2.2.1. Corpora

Since speech emotion recognition is basically a classification problem, emotional
speech corpora play an integral part in the performance of such a system. Nevertheless,
obtaining such corpora is difficult. Unlike speech recognition, participants have to either
mimic an emotion or record an actual one and manually annotate each entry. Hence, there
are three types of datasets: simulated, induced, and natural. Simulated emotional speech
corpora such as IEMOCAP [17], EMODB [18], Toronto Emotional Speech Set [19], Danish
Emotional Speech (DES) [20], and Italian Emotional Speech Database (EMOVO) [21] are
created by actors (professional or amateur). Induced ones, such as eNTERFACE’05 Audio-
Visual Emotion Database [22] are recorded while emotion is triggered by some external
stimulus. Natural emotions corpora (e.g., AFEW-VA Database [23]) are extracted from
real-life recordings.

Our choice for the ODIN112 system is the only available Romanian corpus, EmoIIT [24].
We also trained and tested the developed classifier using the EmoDB [18] database to
compare our implemented classifier with other published results.

EmoIIT [24] is an emotional speech corpus recorded in Romanian. It is similar in
structure to EmoDB, and, to our knowledge, the only Romanian emotional speech corpus
available. The speakers are amateur actors, ages 20 to 22 years old, mostly students. The
dataset contains 523 recordings, split between 7 emotions: anger, boredom, fear, happiness,
sadness, disgust, and neutral.

The Berlin Emotional Speech (EmoDB) [18] dataset is an emotional speech corpus
created by the Institute of Communication Sciences, Technical University, Berlin, Germany.
It was recorded by ten professional actors-five men and five women, in German. The
EmoDB dataset contains a total of 535 records representing 7 emotions: anger, boredom,
fear, happiness, sadness, disgust, and neutral. Recordings were made at a sampling rate of
48 kHz and then down-sampled to 16 kHz.
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2.2.2. Models

Almost all emotional speech classification algorithms use four classes of features:
prosodic, spectral, voice quality features, and Teager energy operator [25]. Currently,
most emotional speech classifiers are based on deep neural networks or a combination of
traditional classifiers and deep neural networks, such as in [26–31]. Results vary between
50% to more than 92% in overall accuracy [25]. A big factor in the overall performance is
the corpus used for training and testing.

3. Method
3.1. Corpus

One advantage of using deep neural networks is that they can learn from much larger
datasets. Many modern systems have been developed thanks not only to the advances in
neural architectures but also because of the availability of data, storage capabilities, and
the increased processing power of new computer hardware.

The largest limitation in training accurate speech processing models for the Romanian
language is the lack of data. Romanian is far from being a popular language and it is spoken
by approximately 23 million people. The total duration of publicly available resources
is approximately 300 h, out of which just about half are high quality and can be used
for producing relevant models. As a comparison, much more popular languages such
as English or Chinese have over 1000 h of labeled speech data and considerably more
unlabeled speech datasets. A recent neural network model named Whisper [12] has been
trained using 438,218 h of English hours and over 117,113 h, among the most popular
languages being Chinese (23,446 h), German (13,344 h), Spanish (11,100 h), Russian (9761 h),
French (9752 h), Portuguese (8573 h), Korean (7993 h), and Japanese (7054 h).

Data Acquisition

Datasets are one of the most important aspects of machine learning, and currently,
audio datasets of hundreds of hours of labeled speech are usual. New models have been
trained with over hundreds of thousands of hours of recordings. One remaining problem
consists of finding or collecting high-quality training data (clear recordings and correct
transcripts). In general, high-quality training datasets must be manually curated and are
difficult and expensive to produce because of the amount of necessary time involved in
recording and labeling data.

New methods that make use of unsupervised learning or semisupervised learning can
also include unlabeled entries. Still, in these cases, the data quantity requirements increase
significantly, and data acquisition remains a tiresome task. Another idea is to use existent
labeled data for bootstrapping a model that can transcribe the unlabeled data. Nevertheless,
this method is not ideal either because it is subject to recognition errors.

At this moment, there are several initiatives to crowdsource a dataset for the Romanian
language. Two of the most successful examples are Mozilla Common Voice (https://
commonvoice.mozilla.org, accessed on 1 December 2022) (40 h) and Echo (https://echo.
readerbench.com, accessed on 1 December 2022) (our project with more than 150 h, see
Table 2).

The data was recorded with the help of more than 200 volunteers, most of whom
were students at the University Politehnica of Bucharest aged between 20 and 24 years.
Tables 3 and 4 depict the distributions of their ages and gender; however, only about half
of the volunteers disclosed this information.

Data augmentation techniques are a common solution when the data is sparse. One
such solution is SpecAugment [32], one of the most popular and efficient augmentation
methods for speech. SpecAugment processes audio data by altering the audio spectrogram
instead of the raw input audio waveform. This method is simple as it consists only of a set
of basic operations: warping, masking of blocks in the frequency domain, or masking of
time steps).

https://commonvoice.mozilla.org
https://commonvoice.mozilla.org
https://echo.readerbench.com
https://echo.readerbench.com
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Table 2. Subsets of the collected speech corpora for the Romanian language.

Data Set Duration Recordings Unique
Transcripts

Unique Word
Count Speakers

Drama 6 h 4146 523 2724 77
Emergencies 10 h 6937 1309 822 205

Legal 13 h 4101 577 3079 76
Narratives 23 h 10,978 482 7961 81

News 11 h 4879 168 4391 76
Poetry 3 h 917 112 1836 71

Wikipedia 92 h 35,754 1001 7509 212

Echo Total 155 h 66,795 4059 22,521 215

Table 3. Statistics about the age of the volunteers.

Age 19 20 21 22 23 24 25+ N/A Total

Count 3 15 10 37 22 14 8 106 215

Table 4. Statistics about the gender of the volunteers.

Gender Male Female N/A Total

41 71 103 215

3.2. ODIN112 Architecture

Our ODIN112 architecture (see Figure 4) is built around various speech processing
systems to enhance Romanian emergency services. It includes an Automatic Speech
Recognition module to transcribe calls automatically and augment the operator’s notes,
as well as a module to classify the caller’s emotions. ODIN112 is meant to support the
operator in evaluating the situation with the end goal of reducing the response times of
emergency services (e.g., ambulances, firefighters, and police).

Voice input

IVR module

Localisation

Other  data

112 Emergency
system
voice

ODIN112 
Data structures 

(continuously updated)

Speech  to TextUI module

Call ID

Data input

Emotion
Detection 

(from voice)

Sound
detection

Keyword
identification

Decision module

112 Emergency
system  

presentation

ODIN112 
presentation

Arhive module

112 Emergency
system  

archive module

Emotion
 detection  
(from text)

Automatic 
speech

recognition

Figure 4. ODIN112 Architecture: Functional Components (the existing emergency services system
components are represented in blue).

The general architecture of the information system is composed of a telephone ex-
change proxy, the IVR module (presented in detail in [33]), the ODIN112 user interface, and
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a set of microservices that provide the services of the scene and acoustic event classification,
emotion analysis, speech transcription. The Manager component uses the microservices
to handle the real-time processing of the audio streams associated with the inbound calls.
All modules are delivered as standard (Docker-like) containers, and the communication
between them is done through simple or standard interfaces. Those decisions make it easy
to be integrated into SNUAU, the Unique National Emergency Call System.

SNUAU is composed of single emergency call centers, integrated emergency dispatch
centers, and emergency dispatch centers of specialized intervention agencies. Both the
single centers for emergency calls, operated by the Romanian Special Telecommunication
Services (STS), and the emergency dispatches of specialized intervention agencies are
organized at the level of each county in Romania.

STS and their partners developed the current infrastructure of the emergency services
in the direction of the NG112 specifications. Our demonstrator is not fully integrated with
the new Romanian emergency system which is not yet in full operation, yet we considered
the usage of standard and open interfaces for rapid further integration: the data format for
intermodule communication and archiving is done in a JSON format to facilitate further
integration into the existing emergency system; archiving is done in a system that enables
rapid scaling—i.e., HDFS (Hadoop File System); our decision support system based on
keywords can be easily triggered via REST services; the decision support system identifies
the emergency index nodes that are usually used by the existing emergency system to
classify the emergency cases based on type into different subcategories. Thus, the response
to the incidents is triggered (e.g., the decision to involve an ambulance). In order to
achieve the online processing of the audio streams, we used TCP sockets to continuously
feed the processing modules with new parts of the audio call. The requirements are
different compared to real-time communication (such as VoIP), which is usually done using
UDP/RTP since the automated process requires reliable communication.

Our solution was developed to enable multiple parallel calls between the operator,
the caller, and the agencies providing the emergency services. The communication was
optimized for real-time processing, different modules can benefit from the entire call
without having to maintain a state between requests (new call samples are added to the TCP
flow dedicated for that specific call), and the modules have the possibility to return results at
times independent of receiving samples. Based on our experimental evaluation, the overall
experience is similar to observing automated captioning of live streaming; intermediary
results are published into the operator’s interface, and the automated feedback from our
solution is provided to the operator without delays.

The integration between the components inside the ODIN112 pilot is depicted in
Figure 5. When a new call arrives, the ODIN112 Manager component notifies the backend of
the user interface module to register the call. The ODIN112 Manager also starts multiplying
the audio stream to the transcription, noise identification, and voice sentiment analysis
services. The communication between the manager and the processing services/modules
is done using bidirectional TCP streams, allowing new audio fragments to be delivered for
processing at any time (achieving real-time processing) and each service module to provide
new results as soon as they are available.

Data-wise communication (consisting of Transcriptions, Emotion, and Sound detection
results) between the manager and the ODIN112 backend application is made through Kafka
queues ensuring scalable, fault-tolerant stream processing. Using such an implementation
helps decouple the producers and the consumers of the system while still providing reliable
processing for each provided message. Each call is handled on a Kafka topic defined as the
unique ID of the call. When the manager observes the end of a call, it notifies all the other
components (including the backend module), waits for the last results from each of the
processing services, and then decommissions the streams for the call that just ended. Kafka
offers a fault-tolerant implementation for ordered queues of messages. When compared
to using another open-source implementation of a consensus algorithm (such as Raft),
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Kafka comes with the advantage of being highly configurable in respect of replication and
fault tolerance.

MANAGER

POST (callid) 
/api/call/new

KAFKA 

Transcriptions

Emotion results

Sound detection 
 results

etc.

POST (callid) 
/api/call/ended

Create new topic (callid)

POLL (callid)

UI Module

Decision making
module

Archive module

Speech to
Text Module

Sound
Delection
Module

Emotion
Detection
Module

New Call

TCP
biderictional 

stream

Keyword 
identification 

module

Automatic
speech

recognition

Figure 5. ODIN112 Architecture: Communication and integration of components.

The text obtained from the transcript is sent to the keyword identification and text
sentiment analysis services. Keyword identification considers predefined word lists of
interest, whereas the text analysis service for emotion detection from text considers a
pretrained Romanian BERT model [34]. All obtained results are transmitted to the decision
module and recommendations will be triggered. As soon as the results start to be generated,
they are sent to the presentation interface and to the archiving module for long-term storage.
The archive module is backed by a Hadoop Distributed File System (HDFS) to provide
scalable, highly fault-tolerant storage required for the monitorization of any critical system.
These later components are not included in the scope of this paper.

3.3. Automatic Speech Recognition Model

For this project, we used the Kaldi toolkit to develop our model (see Figure 6) and
designed a framework for ingesting our training data. As with any Kaldi recipe, the
processing logic happens in several stages, each representing a step of the data preparation
process or training a model. The most important steps are extraction of the acoustic features
from input recordings, training several HMM-GMM models that become gradually more
complex and use more data, and finally training a Deep Neural Network model that uses
twelve Time Delay Neural Network Factorization (TDNNF) layers. Time Delay Neural
Networks classify patterns with shift-invariance and learn context at each layer of the
network. This network does not require explicit segmentation prior to classification.

The features extracted for the acoustic features are the Mel Frequency Cepstral Co-
efficients (MFCC; Mermelstein [35]), followed by applying Cepstral Mean and Variance
Normalization (CMVN). The MFCCs are extracted from frames of 25 ms with a stride
of 10ms. For the input of the TDNNF-DNN, additional identity vectors (also known as
iVectors) are extracted to characterize speaker characteristics.

Identity vectors (iVectors) [36] are generally used in speaker identification and rep-
resent information about the speaker and audio recording characteristics. In our context,
iVectors are used as an additional input to help the network adapt to speaker characteristics
and usually result in a 1% WER improvement. The iVectors used by Kaldi are similar in
the sense that they are based on similar ideas as Joint Factor Analysis, where a Universal
Background Model collects sufficient statistics for iVector extraction, and a Probabilis-
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tic Linear Discriminant Analysis backend computes a similarity score between iVectors.
Kaldi replaced the Universal Background Model based on a GMM with one considering
a DNN [37].

Before the features are extracted, the data is first processed to normalize the audio
and label inputs. For example, the audio is transformed to mono-channel, 8000 Hz, 16-bit
PCM WAVs, and various automatic corrections are applied to the labels (for example,
the punctuation marks are added, “î” inside word is replaced with “â” and vice-versa),
numbers are transformed to words (for example “42” is transformed to “patruzeci şi doi”),
and words are transformed to uppercase.

Figure 6. Model architecture for Automatic Speech Recognition system.

There are four HMM-GMM models built on top of each other, each with corresponding
methods to improve accuracy and to consider larger volumes of data. Each subsequent
model is used to align the training data used for the next model (see Figure 7). The
first model is a simple, context-independent mono-phone model. The second model
is a more complex, triphone context-dependent system trained using first (delta) and
second derivatives (delta–delta or double delta) features. The third model applies Linear
Discriminant Analysis (LDA) and a diagonalizing transformation known as Maximum
Likelihood Linear Transform (MLLT) to the input training. The last HMM model’s features
are transformed one last time using a feature space maximum likelihood linear regression
(fMLLR), which is known to be a Speaker Adaptive Training (SAT) method.
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Figure 7. Training pipeline for Automatic Speech Recognition system.

The last model (i.e., our final ASR model) was trained for 12 epochs using the
MFCC and iVectors of the entire training dataset. It was defined using Kaldi’s XCon-
fig domain-specific language (DSL) and employs the implementation of the neural network
named “nnet3” from Kaldi (available at https://kaldi-asr.org/doc/dnn3.html, accessed on
1 December 2022; Povey et al. [38]).

3.4. Speech Emotion Recognition Model
3.4.1. Speech Pre-Processing

Our aim is to develop a system for emergency services. As a consequence, the speech
data to be processed is recorded from a telephone. Hence, it passed through several
coding/decoding steps in the communication network and is sampled at 8 kHz. The
training and testing datasets must reflect the nature of the real speech signal. For this reason,
we coded and decoded all recordings with a Full Rate GSM (GSM-FR) codec, assuming
that currently, most calls to emergency services are from mobile terminals. We consider the
Full Rate GSM codec as a worst-case scenario. The speech quality (measured using mean
opinion score-MOS) of the decoded GSM-FR speech is lower than the quality of current
codecs (e.g., Adaptive Multirate Narow Band-AMR-NB and Adaptive Multirate Wide Band-
AMR-WB) [39,40]. As such, our model will also work with better codecs if satisfactory
results are obtained when classifying emotional speech samples coded/decoded with the
GSM Full Rate codec.

All recordings are segmented in 1-second frames, with a stride of 10 ms. For each
frame, a log-spectrogram (see Figure 8) is computed. The log-spectrograms are transformed
to RGB images after applying dynamic range normalization between −90 dB and −7 dB.
This processing is similar to [30].

Figure 8. Sample spectrogram used as input to the neural network.

https://kaldi-asr.org/doc/dnn3.html
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3.4.2. Neural Network Architecture

The neural network trained on top of the log-spectrogram is the well-known VGG16 [41].
VGG16 consists of a total of 21 layers, out of which 16 have learnable weights. We use the
pretrained model with ImageNet and retrain the whole network (134,289,223 parameters). A
block diagram is presented in Figure 9. The network’s input is the log-spectrogram computed
as in the previous section and reshaped to 224 × 224 × 3. The output is represented by the
seven classes from EmoIIT or EmoDB. The finetuning parameters are presented in Table 5.

Figure 9. Neural network architecture based on VGG16.

Table 5. Fine-tuning parameters for the VGG16 experiments.

Parameter Value

Optimization algorithm SGDM
Mini-batch size 32

Maximum number of epochs 13
Stochastic gradient descent momentum 0.9

Initial learning rate 0.0001%
Learning rate decay 0.0001%

3.5. Deployment

The current deployment of the ODIN112 pilot consists of a PBX (Private Branch
Exchange) telephone system, a microservice-based environment (including the processing
services, the manager, as well as the user interface of the platform), the IVR component
(as described in a previous article [33]) and an HDFS deployment used for the long-term
storage of the archive.

The deployment of ODIN112 components is based on microservices. The implemen-
tation is robust using processes/threads and async I/O. We considered the interactivity
and the increased potential for working with multiple simultaneous calls. The system
has flexible interfaces and smooth communication as sample streams over TCP, while the
communication is optimized for real-time processing.

The ODIN112 modules benefit from the entire call without having to maintain a state
between requests (new samples are added to the TCP stream made for the call). The
modules have the ability to return results at times independent of receiving samples.

The deployment considers only one flow per call between the manager and each
processing module, and the time points (in call coordinates) are added to results directly by
processing modules.
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4. Results
4.1. Automatic Speech Recognition

We have trained and tested several models on various subsets of presented datasets
(see Table 6. The most basic training dataset was SWARA [42]; the second training dataset
was Romanian Read-Speech Corpus (RSC) [4]; the third one was the one collected by
us using Echo, whereas the final one was trained using all available data. For the test
experiments, we used the evaluation partition of RSC and selected 10% of the other datasets
with no transcript overlap between train and test sets. For all experiments, we used the
same language model to reduce its impact.

Table 6. Training and evaluation datasets duration.

Dataset

Subset Train
[hours]

Test
[hours]

Total
[hours]

SWARA 19 2 21
RSC 92 5 97
Echo 141 14 155
All 394 62 456

The metric used for evaluation is the Word Error Rate (WER) derived from the Lev-
enshtein distance, which measures the difference between two sequences of words. It
represents the errors in a transcript over the total number of words spoken. It can be
computed as:

WER =
S + D + I

N
=

S + D + I
S + D + C

where S is the number of substitutions, D is the number of deletions, I is the number of
insertions, C is the number of correct words, and N is the number of words in the reference
(N = S + D + C).

WER is not a perfect metric, but it is an objective way of measuring the accuracy
of various speech systems. WER does not account for the type or cause of the error,
whereas the transcript can still be understood by a human even if the WER is high. For
example, in certain conditions, a misspelled or misrecognized word is a better output than
a missing word.

4.2. Speech Emotion Recognition

We performed four experiments, as depicted in Table 7. We first tested the network on
the unprocessed on both EMO-DB and EMO-IIT datasets in order to validate the network
architecture. The results were similar to the state-of-the-art ones presented in other papers.
The EMO-IIT results surpass previous experiments with accuracies of around 85% [24,28].
Then, we retrained the network using the GSM-like processed datasets, resulting in lower
weighted accuracies by a few percent. Detailed results presented as confusion matrices
are presented in Figure 10. While inspecting the confusion matrices for the EMO-IIT
experiments, we notice that anger is often misclassified as sadness. We listened to some
of the recordings and, indeed, some were misleading even for a human. For the EMO-
DB experiments, fear was misclassified as anger and happiness but only for the GSM
processed dataset.
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Table 7. Results for speech emotion recognition experiments.

Corpus Weighted Accuracy 5-Fold Cross-Validation
Weighted Accuracy

EMO-DB 94.46% 92.28%
EMO-IIT 94.98% 90.24%

EMO-DB GSM 88.57% 83.86%
EMO-IIT GSM 93.46% 91.20%

(a) EMO-DB (b) EMO-IIT

(c) EMO-DB GSM (d) EMO-IIT GSM

Figure 10. Confusion matrices for both normal and GSM-like coded speech.
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5. Discussion
5.1. Automatic Speech Recognition

Table 8 introduces the results for each model trained on a specific dataset, as well as
the overarching results when the model was tested on all datasets. Each dataset obtained
the best test scores when trained on the same dataset, except for the model trained on all
data which performed better on the test subset of SWARA.

Table 8. Word error rates when training and testing various Romanian models. All four models
were trained using only the “train” subset, whereas the evaluation was performed exclusively on the
“test” subsets.

Test Set

Train Set SWARA
[%WER]

RSC
[%WER]

Echo
[%WER]

All
[%WER]

SWARA 3.28% 6.01% 4.42% 2.99%
RSC 13.30% 4.36% 4.40% 3.32%
Echo 37.21% 11.90% 4.97% 5.29%
All 35.38% 13.89% 4.82% 5.94%

The model trained using the Echo dataset outperforms the others to the extent that
results are consistent across all test sets and the WER is between 4% and 5%; in contrast,
SWARA obtains error rates between 3% and 35%, RSC between 4% and 14%, and the
merged collection (i.e., All) between 3% and 6%. This argues that the model trained using
the Echo dataset generalizes better, which is a direct result of the higher data quality and a
larger diversity of transcripts.

The “Echo” and “All” models have similar error rates, with “All” outperforming “Echo”
on SWARA and RSC, while “Echo” outperformed “All” for “Echo” and “All” datasets. Even
though the difference between the two is within 1%, the model trained on all the recordings
has the potential to outperform all of the other ones as the neural network used at this
moment may be too shallow to learn from all the data offered as input. Nevertheless, our
results are comparable to the best previously published results for the Romanian language,
namely: a 3.27% WER [4] reported on the RSC dataset for a similar TDNN model, but using
a Recurrent Neural Network language model; a WER of 2.79% [43] obtained also using an
RNN-LM trained on the RSC and SSC – the Spontaneous Speech Corpus, summing up to
over 225 h of recordings.

In addition, we rely on a simple processing of transcripts that considers only the
words for training the model, without any punctuation or letter casing; this is normally
handled by the language model. We will consider improving these aspects together with
the language model’s accuracy in future iterations of our solution.

5.2. Speech Emotion Recognition

Our results on the EMO-IIT dataset surpass the current state of the art, as shown in
Table 9. To our knowledge, there are no other results for GSM-coded emotional speech
recognition in Romanian. We chose to compute the weighted accuracy in order to compen-
sate for any imbalance in the distribution of emotion classes. Our results for the EMO-DB
dataset from Table 10 are similar to other current architectures. To our knowledge, the only
paper with experiments on the effect of bandwidth reduction on SER is Lech et al. [30],
where a pretrained AlexNet neural network is trained on log Mel spectrograms extracted
from the EMO-DB corpus. Our model follows a similar approach to Lech et al. [30], though
employing a more complex VGG16 type of neural network. The results from other works
employing VGG16 range from an accuracy of 71% [44]) to 92% [29]. The best results on the
EMO-DB corpus (95,89% accuracy) [45] were achieved using a combination of convolu-
tional and recurrent neural networks; our result is not far behind but employs a simpler
neural network model.

The train and test datasets contain high-quality entries with little noise. This is
usually not the case in emergency calls. Therefore, we will consider adding noise to the
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test recordings in future work. However, this is not a simple task. For this, we have to
determine the minimum signal-to-noise ratio (SNR) for which a human still perceives
emotions from speech and build noisy datasets with a range of SNRs around that value,
followed by thorough testing of the trained models with the noisy datasets.

Table 9. Comparison of EMO-IIT results (bold marks the best model).

Works EMO-IIT
Original/GSM Classifier Speech Features Test Set Result

Feraru and Zbancioc [24] original DL-CNN Mel spectrograms&MFCCs CV-10 folds 84.48% A

Zbancioc and Feraru [28] original DL-CNN Mel spectrograms CV-10 folds 84.71% A

Our model original VGG16 Log spectrograms CV-5 folds 90.24% WA
GSM 91.20% WA

CV—crossvalidation. WA—weighted accuracy. A—accuracy.

Table 10. Comparison of EMO-DB results (bold marks the best results).

Works EMO-IIT
Original/GSM Classifier Type Speech Features Test Set Result

Popova et al. [44] original VGG16 Mel spectrograms 70/30
random split 71.00% A

Issa et al. [46] original VGG16
MFCC&chroma&
Mel spectrogram&
contrast&tonnetz

CV-5 folds 86.10% A

Zhao et al. [45] original CNN-LSTM Mel spectrograms CV-5 folds 95.89% A

Rudd et al. [29] original VGG16-MLP HP &
Mel spectrograms

80/10/10
random split 92.79% A

Lech et al. [30] original AlexNet Mel spectrograms CV-10 folds 80.50% WA
GSM 76.80% WA

Our model original VGG16 log Spectrograms CV-5 folds 92.28% WA
GSM 83.86% WA
CV—crossvalidation. WA—weighted accuracy. A—accuracy. HP—harmonic percussive.

6. Conclusions

In our previous research [8], we have benchmarked various automatic speech recogni-
tion models and argued that our Kaldi is superior when it comes to its accuracy measured
as WER. In this article, we have further improved our model and retrained with a far larger
amount of diverse data. The accuracy levels proven by the speech technologies presented
in this paper, including the automatic speech recognition one, make it a viable solution for
building assistants that can help emergency services operators in making decisions.

We observed an increase in WER when the models are trained on a larger amount
of data because the vocabulary is more complex and there are more variations in speech
signals. However, from our lab tests that simulate real-world emergency conversations,
this translates to much better transcriptions. We believe the extended dataset provides
the system with a better chance of learning abstract speech rather than some very specific
words or voices.

In the future, we look towards further expanding our training datasets by collect-
ing more speech recordings through our crowdsourcing platform, Echo. Future work
includes extending the neural network by increasing its parameter number in order to learn
more from the training data. Finally, using richer language models and more elaborate
preprocessing methods will further increase the value of the extracted features.
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For emotional speech recognition, the best results in real-life applications are achieved
with natural corpora. However, natural corpora are difficult to develop because recordings
of actual emotional speech are not readily available and because, in some cases, the content
can cause emotional harm to the listener. We are currently annotating such a corpus
recorded from real-life emergency calls.
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ASR Automatic Speech Recognition
CMVN Cepstral Mean and Variance Normalization
DNN Deep Neural Network
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GSM Global System for Mobile communication
HMM Hidden Markov Model
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